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The problem of robust and optimal output feedback design
for interval state-space systems is addressed in this paper.
Indeed, an algorithm based on Set Inversion Via Interval
Analysis (SIVIA) combined with interval eigenvalues com-
putation and eigenvalues clustering techniques is proposed
to seek for a set of robust gains. This recursive SIVIA-based
algorithm allows to approximate with subpaving the set so-
lutions [K] that satisfy the inclusion of the eigenvalues of the
closed-loop system in a desired region in the complex plane.
Moreover, the LQ tracker design is employed to find from
the set solutions [K] the optimal solution that minimizes the
inputs/outputs energy and ensures the best behaviors of the
closed-loop system. Finally, the effectiveness of the algo-
rithm is illustrated by a real experimentation on a piezoelec-
tric tube actuator.

1 Introduction
During the last decades, the problem of designing robust

control laws for interval systems has gained much attention
[1–10]. The main advantage of intervals is that they permit
to model parametric uncertainties easily by bounding them.

The robust control design for interval systems using in-
terval transfer function representations has been widely stud-
ied in the literature after the well-known Kharitonov theo-
rem [1–3, 8–11]. However, these techniques were not well
adapted to multivariable systems. State-space based interval
modeling and control design have therefore been studied.

The robust state-feedback controllers synthesis for inter-
val state-space models has been considered in several works
[4, 5, 7, 12]. The above works are focused on placing all the
coefficients of the system’s closed-loop characteristic poly-
nomial within a desired closed-loop interval characteristic
polynomial. However, only the degree of stability of the
closed-loop system with state-feedback was addressed and
no performances measure was discussed. In fact, the more
practically important region for the closed-loop poles is the

sector shown in fig.1 since it directly impacts many dynamic
characteristics of the system, such as the degree of stability
and damping ratio.

Fig. 1: Region Ω of desired eigenvalues for the closed-loop.

Actually, the controllers provided by the robust feed-
back synthesis are usually not the optimal one and the com-
bination between the robustness and the optimality is always
a difficult task and always it necessitates to use some ad-
vanced mathematical techniques such as Linear Matrix In-
equality (LMI) [13, 14]. Indeed, the process of modeling
the errors by intervals gives the opportunity to use the tradi-
tional optimal synthesis such that the Linear Quadratic (LQ)
approaches. However, the optimal synthesis yields interval
Lyapunov and Riccati equations containing interval matrices
which are by themselves an actual problem for the mathe-
matics research communities and there are several works un-
der this topics [15–18]. Notwithstanding, in the last decade
there are some approaches reformulating the interval Lya-
punov and Riccati equations as a convex optimization prob-
lem with LMI constrains under some assumptions. Neverthe-
less these methods contain a lot of parameters to set which



make them not practical.
The paper provides a simple algorithm to find the range

of the robust and optimal feedback gains to control any in-
terval system described by interval state-space model. As
it is not systematic that all states of the system can be ob-
tained, we restrict the analysis to robust output-feedback de-
sign which is not addressed in the previous works that deal
with interval systems. However, the algorithm can also be
used for robust state-feedback. The proposed algorithm is
based on using the regional pole constraints to impact di-
rectly the dynamics of the interval system. Moreover, to
reduce the computational complexity of the controller de-
sign, the problem of regional pole assignment is converted
to eigenvalues inclusion problem and it is solved by a set-
inversion algorithm called Set Inversion Via Interval Analy-
sis (SIVIA) which is based on interval analysis [19]. Finally,
the robust output-feedback design is combined with the Lin-
ear Quadratic (LQ) tracker design and a Particle Swarm Opti-
mization (PSO) technique to obtain the feedback gains which
robustly ensure the desired performances and, in addition to
that, which minimize the linear quadratic cost function.

The paper is organized as follows. Section 2 is dedicated
to brief preliminaries on intervals analysis and interval ma-
trices theory including eigenvalues computation. Section 3
presents an overview of the structure of the output-feedback
scheme for interval systems as well as the eigenvalues region
of interest. Section 4 summaries briefly the general frame-
work to find the robust and the optimal feedback gains. Sec-
tion 5 gives a description of the proposed approach to syn-
thesize the robust output-feedback controller itself. Section
6 describes the LQ tracker for output-feedback design to find
the optimal gain. An application of the proposed method to
control a piezoelectric tube actuator is discussed in Section
6. The experimental results and verification are presented in
the same section. Finally, conclusions are given in Section 7.

2 Interval analysis and matrix theory preliminaries
During the remaining parts of the paper the standard-

ized notations in interval analysis will be use [20, 21]. The
bold font will symbolize interval values whereas usual font
will symbolize point values. The interval values may also
be denoted by Lie brackets. The lower and upper bounds of
an interval will be denoted by underline and overline letters
respectively. An interval value [x,x] can be defined by the
set of x ⊂ R such that x ∈ x and x ≤ x ≤ x. The set of real
interval x is denoted by IR .

Given two intervals [x] = [x,x] and [y] = [y,y]. The result
of an operation ♦ ∈ {+,−, ·,/} between the two intervals is
an interval that contains all possible solutions:

[x]♦[y] = {x♦y | x ∈ [x],y ∈ [y]} (1)

2.1 Definition of interval matrix
A real interval matrix (interval matrix) is a matrix in

which all the elements are interval numbers [21]. Further-

more, an interval matrix is also defined as a family of matri-
ces:

A := [A,A] =
{

A ∈ Rn×n; A≤ A≤ A
}

(2)

where A, A ∈ Rn×n, A ≤ A being given matrices and the in-
equality being considered element-wise. The midpoint Ac
and the radius A4 of A are denoted respectively by:

Ac :=
1
2
(
A+A

)
, A4 :=

1
2
(
A−A

)
(3)

2.2 Eigenvalue computation
The eigenvalue set Λ(A) corresponding to A is defined

as the set of all eigenvalues overall A ∈ A, that is [21],

Λ(A) = {λ+ iµ | ∃A ∈ A,∃x 6= 0 : Ax = (λ+ iµ)x)} (4)

Some interval matrices have symmetric interval matrices
as subclass. In such a case, the symmetric interval matrix AS

corresponding to interval matrix A is defined as the family of
all symmetric matrices denoted As in A, that is,

AS =
{

A
S
∈ A

}
(5)

It is worthy to note that a real symmetric interval matrix
AS ∈ IRn×n has n interval eigenvalues which are real. The ith
interval eigenvalue of a symmetric interval matrix AS is:

λi(AS) = [λi(AS), λi(AS)] :=
{

λi(A) | A ∈ AS)
}

i = 1, ..,n (6)

In the sequel, for simplicity reason, sometimes the terms
eigenvalues, matrices and vectors will be used instead of
interval eigenvalues, interval matrices and interval vectors.
Furthermore, the Re() and Im() notations are used to denote
the real and imaginary part of a complex number, respec-
tively. Also the ρ() symbol is used to denote the spectral
radius of a matrix.

The recent advances on interval analysis computation
have provided a new opportunity to estimate the outer bound
of the eigenvalues of interval matrices. The estimation of
the outer bounds of an interval eigenvalue means finding a
unique interval in which all eigenvalues of the interval ma-
trix are bounded. For example, Deif [22] and Kolev [23]
proposed some methods to estimate the exact bounds under
some hard assumptions which are however not easy to ver-
ify as mentioned in [24]. Mayer [25] proposed an enclo-
sure method of the interval eigenvalue for a real and a com-
plex interval matrices based on Taylor expansion whereas
Ahn [26] proposed their estimation based on perturbation
theory. Recently, Matcovschi [27] employs an optimization
technique with Bilinear Matrix Inequalitie (BML) to find the
outer bounds of an interval eigenvalue. A cheap formula to
estimate the outer bound is proposed by Rohn [28] for sym-
metric interval matrices classes. This formula is presented in
Theorem.1. The Rohn’s result was extended to generalized
interval matrices by Hladik [24] as reminded in Theorem.2.

Theorem 1 (Rohn, 2005 [28]). Let AS ∈ IRn×n. For
each i = {1, .......,n} it holds that

λi(AS)⊆ [λi(Ac)−ρ(A∆), λi(Ac)+ρ(A∆)] (7)



Theorem 2 (Hladik, 2013 [24]). Let A∈ IRn×n. Then for
each eigenvalue ν+µ j ∈ Λ(A) we have

λn

( 1
2 (A

T +A) 0
0 1

2 (A
T +A)

)S
≤ ν≤ λ1

( 1
2 (A

T +A) 0
0 1

2 (A
T +A)

)S

(8)

λn

(
0 1

2 (A
T −A)

1
2 (A

T −A) 0

)S
≤ µ≤ λ1

(
0 1

2 (A
T −A)

1
2 (A

T −A) 0

)S

(9)
where λ1 and λn are the low and the high extreme eigen-

values limits respectively.

Unfortunately, the proposed Hladik’s and Rohn formu-
las are not always conservatives for large uncertainties and
are feasible only when the interval components are thin due
to the warping effect. In order to handle this problem, an-
other interesting method for interval eigenvalues computa-
tion can be used in the case of large uncertainties is the vertex
approach [29,30]. The later is based on the calculation of all
exposed edges of interval matrix and the convex hull of all
roots of possible characteristic equations. The main disad-
vantages of this approach is that it takes much time compared
to others, but it is a more worthy method.

3 Overview of interval output-feedback design
The output-feedback control problem is among the most

important open questions in control engineering [31]. The
objective of output-feedback is to find the feedback matrix
gain K such that the closed-loop system satisfies some de-
sired transient part performances. In other words, the eigen-
values of the closed-loop system are placed in desired loca-
tions. The designed controllers are robust in the sense that
all the eigenvalues of the closed-loop which contains the in-
terval system are clustered inside a desired region [32].

Consider a linear Multi Input Multi Output (MIMO) in-
terval uncertain system described by the state-space equa-
tion: {

ẋ(t) = Ax(t)+Bu(t) ;
y(t) = Cx(t)+Du(t)

(10)

where x ∈ Rn, u ∈ Rm, y ∈ Rp, A ∈ IRn×n, B ∈ IRn×m,
C ∈ IRp×n, and D ∈ IRp×m. The matrices A, B, C, D are
unknown but bounded by elements lying in known upper and
lower bound; i.e. A = [A,A], B = [B,B], C = [C,C], and
D = [D,D].

Remark 1. Notice that even if the input command u is
known as non-interval signal, the model above normally
yields interval state and output signals x and y respectively
due to the interval parameters. However, the real process is
non-interval but assumed to have a behavior inside the above
model. therefore the signals x and y (and u) are maintained
as non-intervals.

Theorem 3 (Smagina Y,2002 [4]). The pair (A,B) is
controllable for any A ∈ A and B ∈ B if a square interval
matrix

Y = [B,AB, .......An−1B] (11)

satisfies the condition

0 /∈ Det[Y] (12)

Since the theorem of Smagina is simply based on the ver-
ification of the rank of the interval controllability matrix
using the determinant approach by checking that the zero
value does not belong to the interval determinant. This the-
orem can be extended to verify the controllability and the
observability of any interval state-space system with square
or non-square controllability and observability interval ma-
trices. However for the case of non-square controllability
and observability interval matrices, we need to generate sev-
eral square matrices from the non-square one and check the
rank of each one separately: if the inclusion condition (12) is
satisfied for one square matrix then we conclude for the con-
trollability or the observability of the interval system. Fur-
thermore, the theorem of Smagina can also be extended to
verify the output controllability of the interval system using
the following output controllability matrix [33].

Y = [CB,CAB, .......CAn−1B,D] (13)

Let us assume that the interval system (A, B, C, D) is
output controllable. In classical output-feedback design, the
linear output-feedback control law is presented by:

u(t) = Ky(t)+Nr(t) (14)

where K ∈Rm×p is the output-feedback gains, N ∈Rm×p

is the feedforward control gains, and r(t) ∈ Rp is the refer-
ence input.

For simplicity reason, the modified output-feedback will
be used where the output-feedback control law is described
by [34]:

u(t) = K(y(t)−Du(t−1))+Nr(t) (15)

3.1 Modified output-feedback with integral compen-
sator

In order to eliminate any steady-state offset that may oc-
cur, a compensator must be added to the closed-loop sys-
tem [35]. The static feedforward gain (DC-gains) N is not
the ideal solution in the case of interval system because it
always creates a non-null steady-state error [5]. For this pur-
pose the integral compensator is used. The proposed control
law is therefore pictured in fig.2 and given by:

u(t) = ky(y−Du(t−1))+Kiξ(t) (16)

where ξ(t) is the integral of tracking error (i.e. ξ̇ = r(t)−
y(t)).

It is well known that adding an integral action in the
closed-loop system allows being robust with respect to slow
system parameters variations. However, model parameters
could be exhibit both fast and slow variations - for exam-
ple in piezoelectric actuators cases, hysteresis could cause



slow and fast variations of parameters while creep nonlin-
earity and ambient temperature variation could cause very
slow variation. In this case, the search for robust gains for
the output feedback controller must be considered to ensure
the stability and the desired performance of the closed-loop
system.

The output-feedback control law can be presented by
(n+ p) dimensional augmented state vector formed by the
state vector x(t) and the integrator variable ξ(t). The state
equations for both ẋ(t) and ξ̇ are consequently:


ẋ(t) = (A+BKyC)x(t)+BKiξ(t)
y(t) = (C+DKyC)x(t)+DKiξ(t)
ξ̇(t) = r(t)− y(t) = r(t)− (C+DKyC)x(t)−DKiξ(t)

(17)

From (16), the augmented state space model is yielded:(
ẋ(t)
ξ̇(t)

)
=

(
(A+BKyC) BKi
−(C+DKyC) −DKi

)
︸ ︷︷ ︸

(
x(t)
ξ(t)

)
+

(
0
I

)
︸ ︷︷ ︸r(t)

[Aaug−cl ] [Baug−cl ]

y(t) =
(
(C+DKyC) DKi

)︸ ︷︷ ︸
(

x(t)
ξ(t)

)
[Caug−cl ]

(18)

Fig. 2: Output-feedback with integral compensator.

3.2 Performances specifications and region of interest
The output-feedback controller composed of Ky and Ki

will be computed by eigenvalues assignment technique. For
that let us define the region of interest Ω which represents
a convex polygon in the complex plan as shown in fig.1.
The specifications of the desired region are related to the de-
sired percent-overshoot P.O and the specified settling time Ts
for which the response remains within n% of the final value
given by [34]:

P.O = 100.e
−π. η√

1−η2 ; and TS =
1

ηωn
.ln( 100

n ) (19)

where η and ωn are the damping ratio and natural pulsa-
tion respectively.

3.3 Eigenvalue clustering in subregions for interval sys-
tems

This subsection is based on the works of Horng [36] and
Gutman [37]. They proposed various conditions which guar-

antee that all eigenvalues of non-interval and interval matri-
ces lie inside algebraic regions of the complex plane. Gut-
man [37] gave necessary and sufficient conditions to verify
that the eigenvalues of a non-interval matrix lie or not in a
specified region. These conditions are known as the general
theory for matrix root-clustering. As shown in Theorem.4,
these conditions are very similar to Lyaponuv equations. The
proof of the following theorem are detailed in [37].

Theorem 4 (Gutman and Jury 1981 [37]). For the
eigenvalue clustering of Ac ∈ IRn×n in a region Ω, described
by:

Ω = {(x,y) | γ00 + γ10x+ γ01y < 0}

=
{

λ ∈ C | c00 + c10λ+ c01λ < 0
}

(20)

it is necessary and sufficient that, given any Q ∈ Hn
+(The set

of positive definite hermitian n× n matrices), there exists a
unique P ∈ Hn

+, satisfying the following equation:

c00P+ c10AT
c P+ c01PAT

c =−Q (21)

where


c00 = γ00

c10 =
1
2 (γ10 + iγ01)

c01 =
1
2 (γ10− iγ01)

(22)

On the other hand, Horng [36] extended the problem of
eigenvalue clustering of non-interval matrices to interval ma-
trices. He gave sufficient conditions permitting to ensure that
the eigenvalues of interval matrices lie in various specified
subregions of the complex plane such as: half plane, circular
disk, parabola,.... These conditions could be very interest-
ing to analyze the performances or to design controllers with
robust performances for interval systems. One of these con-
ditions deals with a half-plane subregion (positive, negative,
vertical, horizontal, or inclined) of the complex plane and is
given by Theorem.5.

Theorem 5 ( Horng 1993 [36]). If all the eigenvalues of
Ac lie in the half plane Hpl(γ00,γ10,γ01), then all the eigen-
values of A ∈ [A] are inside the same half plane if

ρH pl ≡ λMax
([
|(γ10− iγ01)P|A4

]
s
)
< λmin(Q) (23)

where Q ∈ Hn
+and P ∈ Hn

+ satisfies (21).

Particularly, in this paper a combination of three half planes
have been used (Ω1,Ω2 and Ω3) to describe the desired re-
gion as shown in fig.1. The combination of several subre-
gions is easily done by a propagation method. For more de-
tails on the combination of several subregions, refer to [36].



3.4 MIMO cyclic output feedback design
Cyclic design is the process of reducing the problem of

Multi Input Multi Output (MIMO) design into a problem of
Single Input Multi Output (SIMO) design based on the idea
that if a state equation of the MIMO system can be controlled
by many inputs, therefore it can be controlled by only one
input which is a linear combination of the different initial
inputs under the condition that the matrix A is cyclic, i.e.
the characteristic polynomial of A equals its minimal poly-
nomial [12]. For this purpose we remind the following three
theorems introduced by [38].

Theorem 6 ( [38]). A realization {A, B, C} in (10) is mini-
mal if and only if it is controllable and observable.

Theorem 7 ( [38]). If {A, B, C} is a minimal realization,
then almost any (constant) output feedback K will make
A+BKC cyclic.

Theorem 8 ( [38]). 1f {A, B} is controllable and A is
cyclic, there exists at least one vector q such that {A, Bq}
is controllable.

If the cyclic condition is violated for some A ∈ A and B ∈
B then according to [4] and [38] for the controllable pair
(A,B), a feedback matrix K can be found to make the pair
(A+BKC,B) cyclic. Adopting the interval extension of this
design principle, the robust output feedback gain for inter-
val MIMO systems assumes the form K = qk for almost all
q ∈ Rm, where m is the number of system inputs and k can
be obtained by letting [b] = [B]q and then by applying the
design procedure discussed in the next sections of this paper.

4 Framework for Robust and Optimal Controller De-
sign
In this section the general framework used in this pa-

per is provided to find the robust and the optimal feedback
gains in an offline manner. Foremost, to find the range of
interval robust gains the proposed SIVIA-based algorithm
is used which is a combination of interval eigenvalue com-
putation, eigenvalues clustering, and interval analysis tech-
niques. Moreover, in order to find the optimal gains, the
LQ tracker design is used which is based on the resolution
of interval Lyapunov equation and the use of Particle Swarm
Optimization (PSO) algorithm to minimize a linear quadratic
cost function. The flowchart in fig.3 summaries the general
framework, whereas, each framework component will be de-
tailed in the next sections(4 and 5).

5 Problem formulation using Set-Inversion
The problem of robust output-feedback control can be

summarized by searching for the matrix gain [K] (with [K] =
[[Ky] [Ki]]) that assigns the interval system eigenvalues to a
desired region in the complex plan, taking into account the
uncertainty of the interval system. Thus, the problem con-
sists in finding the range of the robust gains [K] of the closed-
loop system such that the inclusion (24) is satisfied.

Fig. 3: General framework for the design of optimal and ro-
bust controllers.

eig
[
Aaug−cl([A], [B], [C], [D], [K])

]
⊆ΩDesired region (24)

where Aaug−cl is the augmented closed-loop matrix of the
system (18) and ΩDesired region is the desired subregion of
eigenvalues.

This problem of interval eigenvalues assignment can be
transformed into a set-inversion problem that can be solved
using inversion algorithms. The set inversion operation con-
sists in searching the reciprocal image X of a compact set
Y by a function f , i.e. X = f−1(Y ) = {X ∈ Rn | f (x) ∈ Y )
[1, 19]. The Set Inversion Via Interval analysis (SIVIA) al-
gorithm, introduced by Jaulin in 1993 [19], is one of the
most powerful approach existing in the literature. This al-
gorithm is based on the subpaving technique which uses a
set of non-overlapping boxes to approximate the solution set
of the inversion problems. In this work, the SIVIA algo-
rithm is adapted with the aim to approximate with subpaving
the solution set [K] that satisfies the inclusion (24). In the
sequel, this modified SIVIA algorithm is called by the recur-
sive SIVIA-based algorithm.

The recursive SIVIA-based algorithm to compute the
output-feedback parameters is outlined in Table.1. It re-
quires initial box [K0] that may contain the solution, the in-
terval state-space matrices, the desired region of eigenval-
ues, and the required accuracy for the paving ε. Since the
closed-loop matrix is non-symmetric, the eigenvalues inter-



val approximation are calculated by mean of Hladik formula
(Theorem.2) whereas in the case of symmetric matrix the
Rohn’s formula (Theorem.1) can be used. Furthermore the
sufficient conditions of eigenvalues clustering (Theorem.5)
are used as second check to the solution boxes [Kin] that sat-
isfy the eigenvalues inclusion (24) to be sure that the closed-
loop eigenvalues are certainly inside the desired regions. The
proposed algorithm provides complete information about the
ranges of feedback gains including: inner (solution), checked
(verified solution), outer (undefined), and infeasible (no so-
lution) subpavings where all the sets subpavings are initially
empty.

Remark 2. In this paper, the Horng clustering conditions
is used (Theorem.5) as a second check in our algorithm to
be sure that the eigenvalues of the closed-loop system are
strictly inside the desired region as explained previously.
However, both of the interval eigenvalue computation ap-
proach and the eigenvalue clustering technique are guaran-
teed and it is enough to use only one of them with the SIVIA
algorithm to sought for the robust gains.

Remark 3. The proposed recursive SIVIA-based algorithm
provides a complete information about the ranges of feed-
back gains that ensure the stability and the desired perfor-
mance. Contrariwise, it is time demanding especially in the
case of system with large number of unknown parameters.
This problem is well known to the interval arithmetic commu-
nity and several works were undertaken to reduce the time of
computation. In our case, the synthesis of the robust gains
are done offline thus the time consumption is not critical.
However, it can always be handled by:- Reducing the com-
plexity of the system by splitting the system to several sub-
systems using cyclic design or decentralized feedback con-
trol (as explained in the sequel of this paper). - Using the
contractor-separator approach proposed recently by Jaulin
in [39]. - Furthermore, the parallel structure of the recur-
sive SIVIA-based algorithm allows the use of parallelism and
distributed computation and other intelligent methods.

Remark 4. For the output-feedback, when mp≥ n (m,n and
p are defined in (10)) the recursive SIVIA-based algorithm
can find the solution easily whereas in the case of SISO (Sin-
gle Input Single Output) or when mp < n it is not guaranteed
that the algorithm finds a solution. In fact there are several
necessary and sufficient conditions to verify the existence of
output-feedback gains as outlined in [31]. However in our
algorithm if the solution doesn’t exist the algorithm will stop
at the first iteration in step 3 as long as eig([Aaug−cl ])∩Y =�
is maintained.
The proposed recursive SIVIA-based algorithm can be used
for robust output-feedback as well as for robust state-
feedback. In addition it can also be used for non-interval
as well as for interval systems. In all these cases it only
suffices to replace the closed-loop matrix Aclosedloop by the
corresponding one.

Table 1: The proposed recursive SIVIA-based algorithm for
solving a set-inversion problem.

SIVIA (in: [A], [B], [C], [D], [K] = [intialbox], [kin] =

�, [Kout ] =�, [KUn f easibl ] =�, [Kchecked ] =�,ε,Y =

ΩDesiredragiono f Eigenvalue )

Step 1 Iteration i

- Claculate Aaug−cl([A], [B], [C], [D], [K])

- Calculate eig([Aaug−cl ]) using Theorem.1 or 2

Step 2 -If eig([Aaug−cl ])⊆ Y Then [kin] = [kin]∪ [K]

-If the eigenvalues clustering in subregions algorithm is
checked (Theorem.5) Then [kcheked ] = [kcheked ]∪ [Kin]

Go to step 6

Step 3 -If eig([Aaug−cl ])∩Y =� Then [kUn f ] = [kUn f ]∪ [K]

Go to step 6

Step 4 -If width[K]< ε Then [kout ] = [kout ]∪ [K]

Go to step 6

Step 5 - Else bisect [K] and stack the two resulting boxes.

Step 6 -If the stack is not empty, then unstack into [K](i+1),
increment i and go to Step 1.

-Else End.

6 LQ tracker design to choose the optimal gains
In fact, the obtained solution by the proposed recursive

SIVIA-Based algorithm will guarantee that any choice in-
side the solution boxes [K] will ensure the specified perfor-
mances. However, there is no method to choose among these
solutions the optimal gains that minimize the inputs/outputs
energy and ensure the best behaviors of the closed-loop sys-
tem. For this reason the LQ design is adopted to handle
this problem. Indeed, in control design we are often inter-
ested not in regulating the state near zero but in following
a nonzero reference command signal. This reference-input
tracking or servodesign problem is called LQ tracker prob-
lem. In this section the LQ tracker design of an interval state-
space model is covered.

First of all, to streamline the notation let us start by re-
defining the input and the output matrices as described by
equations (25).

(
ẋ(t)
ξ̇(t)

)
= (A∗+B∗K∗C∗)︸ ︷︷ ︸

(
x(t)
ξ(t)

)
+

(
0n×m
Im×m

)
︸ ︷︷ ︸r(t)

Ẋ(t) = Ac X(t) + Bc r(t)

y(t) = (C∗+D∗K∗C∗)︸ ︷︷ ︸
(

x(t)
ξ(t)

)
(25)

Cc

such that

A∗ =
(

A 0n×p
−C 0p×p

)
; B∗ =

(
B
−D

)
; C∗ =

(
C 0p×m

0m×n Im×m

)
;



K∗ =
(

ky ki
)

; D∗ =
(

D
0p×m

)
The LQ tacker design is based on finding the feedback

coefficient matrix K that minimizes the following quadratic
cost function [40],

J =

∞∫
0

(X̃T QX̃ +uT Ru)+
1
2

eTVe (26)

with R > 0, Q > 0, and V ≥ 0 are the weighting param-
eters. The e and X̃(t) are the tracking and the state errors
respectively and they are given by:

e = r(t)− y(t) (27)

X̃(t) = X(t)−Xss (28)

where Xss is the steady state response. Since the closed-
loop system will be asymptotically stable for acceptable de-
sign and for any Ac ∈ Ac and Bc ∈ Bc, thus the steady state
response can be given by (29).

Ẋ = 0 = AcXss +Bcr0⇒ Xss =−A−1
c Bcr0 (29)

where the matrices Ac and Bc are non-intervals and be-
long to the interval matrices Ac and Bc respectively.

Due to the integral compensator, the steady-state error e
is automatically equal to zero. The quadratic cost function is

J =

∞∫
0

(X̃T QX̃ +uT Ru) (30)

The weighting matrices (Qand R) regulate the penalties
on the transient part of the state variables X(t) and the control
signal u(t).

The optimal cost is found to satisfy the equation (31),
for more detail refer to [40].

J =
1
2

X̃T (0)PX̃(0) (31)

Where P is a positive definite interval matrix and is a
solution of the following interval Lyapunov equation

0 = g = AT
c P+PAc +Q+CT KT RKC (32)

From (28) and from the initial condition (i.e. the system
starts at rest X(0) = 0), we define X̃(0) = −Xss so that the
optimal cost (31) becomes,

J =
1
2

x̃T (0)Px̃(0) =
1
2

tr(PS) (33)

with S = XssXT
ss = A−1

c Bcr0rT
0 BT

c A−T
c .

It is now necessary to solve for the optimal feedback
gain K that minimizes the quadratic cost function. In or-
der to find the optimal gains there are gradient-based and
non-gradient-based approaches [40]. Generally the gradient-
based are faster than the non-gradient techniques. However
in the case of interval state-space model the gradient ap-
proaches are not applicable because the Lyapunov equation

(32) is an interval equation as shown by (34), where the so-
lution P is non-convex. Therefore another method based on
Particle Swarm Optimization (PSO) is proposed as explained
in the following subsections.

6.1 Resolution of interval Lyapunov equation
Let the interval Lyapunov equation be defined by (34):

0 = [AT
c ][P]+ [P][Ac]+ [C]T KT RK[C]+Q (34)

To solve an interval Lyapunov equation of the form (34),
there are many iterative and direct methods existing in the lit-
erature [41,42]. In fact in the literature, only the case of inter-
val Sylvester equation is studied. However, since the interval
Lyapunov equation is a special form of the interval Sylvester
equation, all the previous studies can be used for the resolu-
tion of (34). These methods are based on different techniques
such as simulation approach, linear programming, iterative
techniques as well as vertex approach [41–43]. However
the simulation approach is very time consuming because it
is simulated by mean of Monte Carlo method and in each
step a Sylvester equation is solved via a Hessenberg-Schur
which leads to huge computational time. In addition the lin-
ear programming approach [43] is based on solving 2m×n

linear programming problems that makes this approach very
troublesome even with small values of m and n (defined pre-
viously (10)) [41]. Furthermore the iterative techniques are
proved to be less efficient and work only for narrow interval
matrices as explained in [41], whereas the vertex approach
proposed by Rohn [42] is shown to be a good method for
solving the interval Lyapunov equation nevertheless its com-
putational time increases with the number of interval matri-
ces elements.

The vertex approach consists in computing a set solution
of 2n extreme or vertex matrices of the interval linear system
(35) obtained from the interval Lyapunov equation (34) by
means of the Kronecker product (36).

[G]p = [F ] (35)

where,

[G] = ([AT
c ]⊗ In)+(In⊗ [Ac]) (36)

and

p = vec([P]) = ([P11], [P12], ...., [P1n], ....[Pm1], [Pm2], ...., [Pmn)
T ]

[F ] = vec(−[C]T KT RK[C]−Q) = ([ f11], .., [ f1n], ..., [ fm1], .., [ fmn])
T

Here, the Kronecker product W ⊗Z of two matrices W
and Z is the block matrix whose (i, j) block is wi jZ.

Eventually the interval solution [P] is obtained using
convex-hull function on the 2n solution set of P.



6.2 Using Particle Swarm Optimization (PSO) to find
the optimal gains

In fact, by using the convex-hull function an overesti-
mated interval solution of [P] is obtained. In order to avoid
the convex-hull function and since we are only interested in
the minimization of the quadratic cost function (33), we pro-
pose to calculate the sum of the 2n quadratic cost function
as shown in (37) corresponding to 2n solutions of Lyapunov
equation.

J(k1, .....kn) =
1
2

(
2nvertex

∑
i=1

Pi(k1, .....kn)S

)
(37)

In other hand, we can notice that the quadratic cost func-
tion (37) can be obtained if and only if all the 2n Lyapunov
equations have solutions. This condition can be verified by
mean of interval eigenvalues as shown in Theorem.9.

Theorem 9 (Seif, 1994 [41]). A necessary and sufficient
condition for the interval Lyapunov equation is that 0 /∈ λI

i ,
∀ i where λI

i = {λi(Ac) : Ac ∈Ac} is the interval eigenvalue.

Actually, there is a complementary coordination be-
tween the previous section of regional poles assignment and
LQ tracker design. Indeed, the LQ tracker design provides
an optimal gains if and only if all the interval eigenvalues of
the closed-loop system doesn’t equal zero (Theorem.9) and
the system is asymptotically stable. However, the regional
poles assignment technique (Table.1) provides the intervals
of gains which ensure that all the interval eigenvalues are
strictly negative. Therefore, it is sufficient to apply an it-
erative search strategy only on the solution boxes provided
by the recursive SIVIA-based algorithm (Table.1) to find the
gains that minimize the quadratic cost function (37). This
search can be done using intelligent optimization techniques
such as Particle Swarm Optimization (PSO) and Genetic al-
gorithm (GA).

PSO and GA have an equal effectiveness to find the min-
imum quadratic cost function but in view of computational
efficiency, we propose to use the PSO because it consumes
less time than the GA to converge to the minimum as ex-
plained in [44]. An overview of Particle Swarm Optimiza-
tion (PSO) technique is provided in Appendix.A.

Before moving to the experimental validation of the pro-
posed approach, the main work done in this paper can be
summarized by the following points:

- If an interval system (A,B,C,D) is output controllable
(i.e. satisfies (13)) for any A ∈ A and B ∈ B, then A set of
robust gains can be found using the proposed SIVIA-based
algorithm (Table1) that ensure the stability and satisfy the
desired performances that take into account the physical lim-
itation of the system.

- If the interval system is a high order system, it is al-
ways preferable to reduce the complexity of the problem of
searching for a robust gains by reducing the order of the sys-
tem using cyclic design technique as outlined in subsection
3.4.

- After finding the set of robust gains using the SIVIA-
based algorithm we can always search for an optimal gains

among the set of the robust gains by the resolution of the in-
terval Lyapunov equation (34) and the use of the PSO tech-
niques as summarized in section.6.

7 Application to piezoelectric tube actuator
Piezoelectric tube actuators are among the most used ac-

tuator in micro/nano-scales applications particularly in mi-
cro/nano manipulation, Scanning Probe Microscopy (SPM),
and Atomic Force Microscopy (AFM) due to their high
speed (large bandwidth up to 1kHz), high precision (sub-
nanometric), high resolution, and multi-degrees of freedom
[45–48]. Unfortunately, piezoelectric tube actuators are
characterized by nonlinearities (hysteresis and creep) and by
high sensitivity to the environment (vibrations and thermal
variation) which will be discussed in the next subsection.

The experimental setup is pictured in fig.4. It is com-
posed of a piezoelectric tube actuator (PT230.94), two opti-
cal displacement sensors (LC2420 from Keyence company),
a voltage amplifier (up to ±200V ). The actuator and the
sensors are connected to the computer through a dSPACE-
1103 acquisition board. The piezoelectric tube is made of
lead-zirconate-titanate (PZT) material coated by one inner
electrode (in silver) and four external electrodes (in copper-
nickel alloy).

Fig. 4: Presentation of the experimental setup.

In order to control the tube along X-axis or Y-axis, a
potential +U is applied on one electrode and the opposite
potential −U is applied to the counterpart electrode as de-
picted in fig.5. Furthermore, if potentials with the same sign
is applied on the four electrodes a relative displacement on
the Z-axis will be produced. In the terminal of the piezoelec-
tric tube, a small cube with perpendicular and flat sides have
been placed to be able to measure the linear displacement of
the tube deflections.

7.1 Modeling of piezoelectric tube actuator
Piezoelectric actuators such as piezoelectric tube and

piezoelectric multimorph cantilever are sensitive to the en-
vironmental variations (e.g. temperature variation) and
are characterized by nonlinearities (hysteresis and creep..)
which make the control of these systems not a trivial task. In
fact, there are several methods to control these actuators in-
cluding real-time adaptive and nonlinear techniques that take



Fig. 5: Structure and operation of the piezoelectric tube ac-
tuator.

into account these nonlinearities [3, 45, 49]. There are also
other robust methods to control the piezoelectric actuators
on the basis of linear models with uncertainties that embrace
the nonlinearities [50, 51]. Moreover, in [1, 2, 9], an inter-
val technique has been used which is based on bounding the
parametric uncertainties by intervals using transfer function
representation. In this paper an interval state-space repre-
sentation will be used to further derive a robust and optimal
controller using the proposed algorithm.

During the experimental process we focus only on two
axes (two degrees of freedom: 2-DoF). We will note Ux and
Uy the related applied voltages. The 2-DoF model for the
piezoelectric tube actuator can be expressed by the follow-
ing linear equations which represent the relation between
the deflections along the x and y axes and the applied input
voltages, whereas, the actuator sensitivity and its nonlinear
behaviors will be approximated by parametric uncertainties
bounded by intervals [45].

σx = Gxx (s)Ux +Gxy (s)Uy
σy = Gyx (s)Ux +Gyy (s)Uy

(38)

where σx and σy are the deflections along x- and y-axis.
Gxx(s), Gxy(s), Gyx(s), and Gyy(s) are the transfer functions
that represent the relations between Ux→ σx, Ux→ σy, Uy→
σx, and Uy→ σy respectively.

To characterize the 2-DoF piezoelectric tube, we apply
first a step voltage Ux of amplitude 200V and we set Uy to
zero and capture the deflections σx and σy. Then we repeat
the same procedures with Uy in which we apply a step volt-
age of amplitude 200V on Uy where Ux is a null input and we
capture the deflection σy and σx. The transfer function G(s)
to be identified for 2-DoF piezoelectric tube is composed of
four transfer functions Gxx(s), Gxy(s), Gyx(s), and Gyy(s) as
shown in equation (39). After identification by mean of Sys-
tem Identification MatlabToolbox [52] using Box-Jenkins
method and the step response data, the transfer functions (39)
is defined. Particularly, a fourth order model for Gxx(s) and
Gyy(s) and a second order model for cross-couplings trans-

fer functions Gyx(s) and Gxy(s) have been chosen in our case
because they are largely sufficient to represent the dynamics
of the piezoelectric tube.

G(s) =
(

Gxx(s) Gxy(s)
Gyx(s) Gyy(s)

)
(39)

where,

Gxx(s) =
(0.144)s4+(128.4)s3+(5.151∗105)s2+(1.603∗107)s+(3.45∗107)

s4+(574.5)s3+(4.735∗106)s2+(1.454∗108)s+(3.053∗108)

Gxy(s) =
(−0.0004783)s2+(4.155)s+(10.75)

s2+(1055)s+(2926)

Gyx(s) =
(0.00367)s2+(1.076)s+(0.2271)

s2+(213.1)s+(54.99)

Gyy(s) =
(0.1773)s4+(29.88)s3+(2.148∗106)s2+(4.518∗107)s+(6.658∗107)

s4+(265.6)s3+(1.98∗107)s2+(4.061∗108)s+(5.816∗108)

To obtain the interval model, we propose to consider
each parameter of (39) as center and we add a radius of 10%.
We therefore obtain:

Gxx(s) =
[b10]s4+[b11]s3+[b12]s2+[b13]s+[b14]

s4+[a11]s3+[a12]s2+[a13]s+[a1]

Gxy(s) =
[b20]s2+[b21]s+[b22]

s2+[a21]s+[a22]

Gyx(s) =
[b30]s2+[b31]s+[b32]

s2+[a31]s+[a32]

Gyy(s) =
[b40]s4+[b41]s3+[b42]s2+[b43]s+[b44]

s4+[a41]s3+[a42]s2+[a43]s+[a44]

(40)

where,

[b10] = [0.1295,0.1584] ;[a11] = [517.0544,631.9554] ;
[b11] = [115.5967,141.2849] ;[a12] = [4.2614,5.2085]×106;
[b12] = [4.6361,5.6665]×105 ;[a13] = [1.3083,1.5992]×108;
[b13] = [1.4428,1.7636]×107 ;[a14] = [2.7480,3.3588]×108;
[b14] = [3.1052,3.7954]×107 ;[a21] = [0.9492,1.1603]×103;
[b20] = [−0.5262,−0.4304]×10−3;[a22] = [2.6331,3.2183]×103;
[b21] = [3.7399,4.5711] ;[a41] = [239.0092,292.1225] ;
[b22] = [9.6729,11.8225] ;[a42] = [1.7819,2.1780]×107;
[b40] = [0.1595,0.1951] ;[a43] = [3.6549,4.4672]×108;
[b41] = [26.8926,32.8689] ;[a44] = [5.2346,6.3979]×108;
[b42] = [1.9330,2.3627]×106 ;[a31] = [191.8224,234.4497] ;
[b43] = [4.0660,4.9697]×107 ;[a32] = [49.4899,60.4878] ;
[b44] = [5.9926,7.3244]×107 ;[b31] = [0.9688,1.1842] ;
[b30] = [3.3,4.1]×10−3 ;[b32] = [0.2043,0.2498] ;

In fact, it is shown that creating the interval model by
using 10% of radius calculated from the center is sufficient
enough for a large number of cases and of applications in
piezoelectric actuators [1, 2]. Also these 10% are a good
compromise between the thinness of parameters uncertain-
ties and the feasability to find a feedback controller.

The above interval transfer function model of the piezo-
electric tube actuator can be expressed by the flowing MIMO
state-space model using canonical blocks [38, 53]:{

ẋ(t) = Ax(t)+Bu(t)
y(t) = Cx(t)+Du(t)

(41)



where,

A =



0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

−[a14]−[a13]−[a12]−[a11] 0 0 −[a22]−[a21]

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 −[a32]−[a31]−[a44]−[a43]−[a42]−[a41]


;

B =

[
00010001
00010001

]t

; D =

[
[b10][b20]

[b30][b30]

]
; C =

[
CxxCxy
CyxCyy

]
Cxx =

[
[b14]− [a14][b10][b13]− [a13][b10][b12]− [a12][b10][b11]− [a11][b10]

]
;

Cxy =
[
00[b22]− [a22][b20][b21]− [a21][b20]

]
;

Cyx =
[
00[b32]− [a32][b30][b31]− [a31][b30]

]
;

Cyy =
[
[b44]− [a44][b40][b43]− [a43][b40][b42]− [a42][b40][b41]− [a41][b40]

]
;

7.2 Controller calculation and experimental tests
The use of the interval model of the piezoelectric tube

allows us to find a robust output-feedback controller which
satisfies the desired performances. Indeed, in micro positing
applications, the rapidity is highly required and the overshoot
is extremely undesirable because it may cause micro/nano
objects damage. Therefore, the following desired perfor-
mances are adopted: negligible overshoot (1%) and a set-
tling time Ts ≤ 40ms. By using (19) we have ξ = 74.9 and
ωn = 52rad/s.

Fig. 6: The control design of a multi-input multi-output
piezoelectric tube actuator using output-feedback with inte-
gral compensator.

Before using the recursive SIVIA-based algorithm (Ta-
ble.1) to compute the real gain p× n matrix K for output-
feedback control, the MIMO cyclic output-feedback design
is used to reduce the complexity of calculation which is sim-
ply based on converting the MIMO to SIMO system under
cyclic condition as explained previously. However to make
the problem as simple as possible, before applying cyclic
design, the MIMO system is considered as two subsystems
with two independent outputs. Thus, two Multi Input Sin-
gle Output (MISO) systems are obtained (A,B,C1,D1) and
(A,B,C2,D2) where C1 =

[
CxxCxy

]
, C2 =

[
CyxCyy

]
, D1 =

[
DxxDxy

]
and D2 =

[
DyxDyy

]
then the cyclic design is applied on each

subsystem by replacing [b] := [B]q such that q = [αβ]′. In
order to retain controllability, we will need to chose α and
β such that α + β 6= 0. This condition ensures that [b] is
not a zero vector. For each subsystem we choose its corre-
sponding vector q. For example we can choose q1 = [1 0.1]′

and q2 = [0.1 1]′. In fact the recursive SIVIA-based algo-
rithm (Table.1) can be used directly to compute the real gain
p× n matrix K for the output-feedback control but it takes
much time, so it is always preferable to reduce the complex-
ity of computation and the number of parameters as possible
to make the convergence to the solution more rapidly. In the
case of MIMO systems, this can be done by using cyclic de-
sign or decentralized feedback control [54].

To characterize the set solution [K] of each subsys-
tem (with [K] = [[Ky1] [Ki1]] or [K] = [[Ky2] [Ki2]]) the pro-
posed recursive SIVIA-based algorithm described in Table.1
is used . Foremost an initial box [Ky]× [Ki] = [−5× 101,5×
101]× [−1×103,1×103] is chosen for each subsystem and an
accuracy of paving ε= 0.1. The obtained subpaving of each
subsystem is depicted in fig.7. The red boxes correspond to
the inner subpavings [Kin], i.e. the set solutions [Ky] and [Ki]
that satisfy the inclusion (24). The white boxes correspond
to the subpavings [KIn f easible] where the inclusion condition
is not satisfied. The yellow boxes refer to [Kout ] where no
decision on the inclusion is taken. The boxes in green color
correspond to the checked solution [Kchecked ] in which the
sufficient condition of eigenvalues clustering in the desired
region (Theorem.5) is verified.

(a)

(b)

Fig. 7: Resulting subpaving [Ky]and [Ki].

Furthermore to test the obtained solutions an arbitrary



point from the checked solution fig.7-a is selected that cor-
responds to the controller parameters of the first subsystem
Ky1 = −5 and Ki1 = 1000, and from fig.7-b with the same
manner the parameters of the second subsystem is chosen as
Ky2 = −1 and Ki2 = 1000. Thus the obtained gain matrices
are:

ky = [q1Ky1,q2Ky1] =

[
−5 1
−0.510

]
, and ki =

[
Ki1 0
0 Ki2

]
=[

1000 0
0 1000

]
.

The simulation and experimental step responses for the
closed-loop system are plotted in fig.8 and fig.10 respec-
tively. In fig.8, three simulation results were performed us-
ing three different values of the system matrices (A,B,C,D)
inside the interval system ([A], [B], [C], [D], [K]), where the
sup(), inf(), and mid() refer to the superior, inferior, and mid-
dle of the interval matrices. Indeed, it is clear that the closed-
loop system matrices satisfies the desired performance with
negligible overshoot and settling time less than 40ms.
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Fig. 8: Step response of piezoelectric tube for the closed-
loop system(Simulation using Matlab).

In order to simulate the impact of the systems uncertain-
ties on the locations of the closed-loop eigenvalues and to
show the robustness of the proposed controller against these
uncertainties, a simulation test using Monte-Carlo Technique
is performed. During the simulation test, robust control gains
were selected randomly from the solution boxes, depicted in
fig.7, and values for the system matrices (A,B,C) inside the
interval system ([A], [B], [C]) and in each time the obtained
eigenvalues are drawn, as depicted in fig.9. The eigenval-
ues placement show clearly that the closed-loop system is
always stable and satisfies the desired performance related to
the damping ration and the natural pulsation (defined previ-
ously), as well as the system matrices are inside the interval
system ([A], [B], [C]) which means that the controller is ro-
bust against system uncertainties.

Fig.11 represents the bode diagrams of the identified
transfer functions Gxx, Gxy,Gyx, and Gyy and the closed-loop
transfer functions Txx, Txy,Tyx, and Tyy. This figure shows
that, with the calculated controller, the closed-loop system

Closed_loop eigenvalues

Fig. 9: The test of the robustness of the closed-loop system
using Monte-Carlo techniques.
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Fig. 10: Step response of piezoelectric tube for the closed-
loop system (experimental test).

achieves a convenient bandwidth relative to the bandwidth
of the open-loop system for Gxx and Gyy. Moreover, from
the bode diagram of the cross-couplings transfer functions
Gxy and Gyx ( fig.11-b and -c) it can be seen that the closed-
loop system ensures the rejection of the perturbation in low
and high frequencies, whereas, for the law frequencies the
rejection has a very small amplitude compared with high fre-
quencies.

In order to test the tracking performances of the closed-
loop system, an experimental test is carry out with various
trajectories including helix and series of steps shape trajec-
tories. The result for the series of steps trajectory is depicted
in fig.12. It is clearly shown that the piezoelectric tube ac-
tuator tracks successfully the reference with the desired per-
formances (negligible overshoot (1%) and settling time less
then 40ms).

To test the ability of the closed-loop to track complex
trajectories, the piezoelectric tube has been forced to track
an helix shaped trajectory, by applying simultaneously a sine
wave of amplitude 20µm on X and Y axes with frequencies
0.2Hz and 0.5Hz, respectively. Fig.13 shows that the helix
trajectory tracking is successfully achieved, with the tracking
error less than 0.5µm for X and Y axis.
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Fig. 12: Deflection response of piezoelectric tube.
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Fig. 13: Helix trajectory tracking

7.3 Controller calculation using LQ tracker design
To demonstrate the advantage of using the LQ tracker

design, an experimental comparison between choosing the
feedback gains from the solution boxes (fig.7) randomly and
by means of LQ tracker design has been considered. As ex-
plained in section 5, in order to find the optimal gains that
minimize the quadratic cost function (37) we take the solu-
tion boxes [Kin] from fig.7-a and -b provided by our recursive

SIVIA-based algorithm and we apply the Particle Swarm
Optimization (PSO) technique. Indeed the number of vertex
matrices used to calculate the quadratic cost function (37)
is 212 = 4096 vertex which makes the use of intelligent op-
timization technique compulsory. Notwithstanding, the use
PSO highly reduce the time of finding the optimal gains. Af-
ter several iteration of PSO algorithm using the weight fac-
tors of 0.5, 1.5 and 1.5 for w, c1, and c2 respectively the op-
timal gains were obtained at [-11.155 3.8795 756.7 717.85].

Fig.14 shows a comparison between choosing the feed-
back gains from the solution boxes (fig.7) randomly and by
means of LQ tracker design. Actually it can see clearly that
all of the step responses of the closed-loop system using dif-
ferent gains satisfy the desire performance with negligible
overshoot (1%) and with a settling time Ts ≤ 40ms. However
the optimal gains provide relatively better response. Hence,
we can conclude that the obtained robust and optimal output-
feedback gains ensure that the closed-loop system is always
stable under system uncertainties and simultaneously mini-
mize the quadratic cost function.

Finally, the advantage of the proposed approach is that
it provides a global ideas about the variation of the gains and
their impact on the system stability which gives the possibil-
ity to choose the robust gains easily. Furthermore, with the
proposed optimal synthesis it is very easy to find the optimal
gains among the robust ones with better understanding of the
system functionality.

8 Conclusions
In this paper an algorithm to determine the bounds of

the gains of an output-feedback control scheme, with integral
compensator, that clusters the closed-loop eigenvalues of in-
terval systems inside a desired region was presented. The
algorithm, called recursive SIVIA-based algorithm, is based
on the combination of the Set Inversion Via Interval Analysis
(SIVIA) approach, the Hladik and Rohn methods of calcula-
tion of intervals eigenvalues and the eigenvalues clustering
techniques. The proposed recursive SIVIA-based algorithm
is used here for robust output-feedback, but it can be used
for robust state-feedback for both non-interval and interval
systems. Furthermore, an LQ tracker design with Particle
Swarm Optimization (PSO) technique is proposed to find the
optimal gains that ensure the best behaviors of the closed-
loop system and minimize the inputs/outputs energy. Exper-
imental applications were carried out on a piezoelectric tube
actuator working in MIMO (Multi Input Multi output) case
demonstrated the efficiency of the proposed approach.
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Appendix A: Particle Swarm Optimization(PSO)
Particle Swarm Optimization (PSO) is a heuristic search

method that is inspired from the collaborative behavior and
swarming in biological populations [44]. It consists of three
steps: 1) generation of positions and of velocities of parti-
cles, 2) updating velocity, 3) and position update. In our case
a particle refers to a point, which represent a feedback gains
in the set solution given by the recursive SIVIA-based algo-
rithm, and that changes its position from one move (iteration)
to another based on velocity updates.

In the following we denote consequently xi
k and vi

k the
position and the velocity respectively of the ith particle at
time k. First, the positions xi

k and velocities vi
k of the initial

swarm of particles are randomly generated using upper and
lower bounds on the design variables values xmin and xmax as
expressed in (42) and (43). The uniformly distributed ran-
dom variable (rand) is used on (42) and (43) to allow the
swarm particles to be randomly distributed.

xi
0 = xmin + rand(xmax− xmin) (42)

vi
0 =

xmin + rand(xmax− xmin)

∆t
(43)

The second step is to update the velocities of all particles
at time k + 1 using the particles fitness or objective values
which represent in our case the quadratic cost function (37).

vi
k+1 = wvi

k + c1rand
(Ji− xi

k)

∆t
+ c2rand

(Jg
k − xi

k)

∆t
(44)

where c1 and c2 are self and swarm confidence factors
consequently, w is inertia factor , Ji is the best position of
each particle over time, and Jg

k is the best global value in the
current swarm.

Lastly, The Position of each particle is updated in each
iteration using its velocity vector as shown in (45).

xi
k+1 = xi

k + vi
k+1∆t (45)

The three steps are repeated until a desired convergence
criterion is achieved, in which the maximum change in best
fitness Jg

k should be smaller than specified tolerance for a
specified number of iterations.


