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Abstract: Every finite simple group P can be generated by two of its elements. Pairs of generators for
P are available in the Atlas of finite group representations as (not necessarily minimal) permutation
representations P . It is unusual, but significant to recognize that a P is a Grothendieck’s “dessin
d’enfant”D and that a wealth of standard graphs and finite geometries G—such as near polygons and
their generalizations—are stabilized by a D. In our paper, tripods P −D − G of rank larger than two,
corresponding to simple groups, are organized into classes, e.g., symplectic, unitary, sporadic, etc.
(as in the Atlas). An exhaustive search and characterization of non-trivial point-line configurations
defined from small index representations of simple groups is performed, with the goal to recognize
their quantum physical significance. All of the defined geometries G ′s have a contextuality parameter
close to its maximal value of one.

Keywords: finite groups; dessins d’enfants; finite geometries; quantum commutation; quantum
contextuality

1. Introduction

Over the last few years, it has been recognized that the detailed investigation of commutation
between the elements of generalized Pauli groups—the qudits and arbitrary collections of them [1]—is
useful for a better understanding of the concepts of quantum information, such as error correction [2,3],
entanglement [4,5] and contextuality [6–8], that are cornerstones of quantum algorithms and quantum
computation. Only recently, the first author observed that much of the information needed is
encapsulated in permutation representations, of rank larger than two, available in the Atlas of finite
group representations [9]. The coset enumeration methodology of the Atlas was used by us for deriving
many finite geometries underlying quantum commutation and the related contextuality [10–13].
As a bonus, the two-generator permutation groups and their underlying geometries may luckily be
considered as dessins d’enfants [14], although this topological and algebraic aspect of the finite simple
(or not simple) groups is barely mentioned in the literature. Ultimately, it may be that the Monster
group and its structure fits our quantum world, as in Dyson’s words [13]. More cautiously, in Section 2
of the present paper, we briefly account for the group concepts involved in our approach by defining
a tripod P − D − G. One leg P is a desired two-generator permutation representation of a finite
group P [9]. Another leg D signs the coset structure of the used subgroup H of the two-generator free
group G (or of a quotient group G′ of G with relations), whose finite index [G, H] = n is the number
of edges of D, and at the same time, the size of the set on which P acts, as in [11]. Finally, G is the
geometry with n vertices that is defined/stabilized by D [10]. Then, in Section 3, we organize the
relevant P − D − G tripods taken from the classes of the Atlas and find that many of them reflect
quantum commutation, specifically the symplectic, unitary and orthogonal classes. The geometries of
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other (classical and sporadic) classes are investigated similarly with the goal to recognize their possible
physical significance. A physically-oriented survey of simple groups is [15].

2. Group Concepts for the P −D − G Puzzle

2.1. Groups, Dessins and Finite Geometries

Following the impetus given by Grothendieck [16], it is now known that there are various ways to
dress a group P generated by two permutations: (i) as a connected graph drawn on a compact oriented
two-dimensional surface, a bicolored map (or hypermap) with n edges, B black points, W white points,
F faces, genus g and Euler characteristic 2− 2g = B + W + F− n [17]; (ii) as a Riemann surface X of
the same genus equipped with a meromorphic function f from X to the Riemann sphere C̄ unramified
outside the critical set {0, 1, ∞}, the pair (X, f ) called a Belyi pair, and in this context, hypermaps are
called dessins d’enfants [14,16]; (iii) as a subgroup H of the free group G = 〈a, b〉 (or of a two-generator
group G′ = 〈a, b|rels〉) where P encodes the action of (right) cosets of H on the two generators a and b;
the Coxeter–Todd algorithm does the job [11]; and finally (iv), when P is of rank at least three, that is
of a point stabilizer with at least three orbits, as a non-trivial finite geometry [10–13]. Finite simple
groups are generated by two of their elements [18], so that it is useful to characterize them as members
of the categories just described.

There are many mathematical papers featuring the correspondence between items (i) and (ii) in
view of a better understanding of the action of the absolute Galois group Gal(Q̄/Q), the automorphism
group of the field Q̄ of algebraic numbers, on the hypermaps [16,17,19]. Coset enumeration featured in
Item (iii) is at work in the permutation representations of finite groups found in the Atlas [9]. Item (i)
in conjunction to (iii) and (iv) allowed us to arrive at the concept of geometric contextuality as a lack of
commutativity of cosets on the lines of the finite geometry stabilized by P [11].

Item (iv) may be further clarified thanks to the concept of the rank of a permutation group P.
First it is expected that P acts faithfully and transitively on the set Ω = {1, 2, · · · , n} as a subgroup of the
symmetric group Sn. The action of P on a pair of distinct elements of Ω is defined as (α, β)p = (αp, βp),
p ∈ P, α 6= β. The orbits of P on Ω×Ω are called orbitals, and the number of orbits is called the
rank r of P on Ω. The rank of P is at least two, and the two-transitive groups identify the rank two
permutation groups. Second the orbitals for P are in one to one correspondence with the orbits of
the stabilizer subgroup Pα = {p ∈ P|αp = α} of a point α of Ω. This means that r is also defined
as the number of orbits of Pα. The orbits of Pα on Ω are called the sub-orbits of P, and their lengths
are the sub-degrees of P. A complete classification of permutation groups of rank at most five is in
the book [20]. Next, selecting a pair (α, β) ∈ Ω×Ω, α 6= β, one introduces the two-point stabilizer
subgroup P(α,β) = {p ∈ P|(α, β)p = (α, β)}. There exist 1 < m ≤ r such non-isomorphic (two-point
stabilizer) subgroups Sm of P. Selecting the largest one with α 6= β, one defines a point/line incidence
geometry G whose points are the elements of Ω and whose lines are defined by the subsets of Ω sharing
the same two-point stabilizer subgroup. Thus, two lines of G are distinguished by their (isomorphic)
stabilizers acting on distinct subsets of Ω. A non-trivial geometry arises from P as soon as the rank
of the representation P of P is r > 2, and simultaneously, the number of non isomorphic two-point
stabilizers of P is m > 2.

2.2. Geometric Contextuality

Let G′ be the two-generator group defined by a set of relations on its generators and H a subgroup
of G′ of index n. As shown in Section 2.1, the permutation representation P associated with the pair
(G′, H) is a dessin d’enfant D whose edges are encoded by the representative of cosets of H in G′.
A graph/geometry G may be defined by taking the n vertices of G as the edges of D and the edges of
G as the distinct (but isomorphic) two-point stabilizer subgroups of P .

Further, G is said to be contextual if at least one of its lines/edges corresponds to a set/pair of
vertices encoded by non-commuting cosets [11]. A straightforward measure of contextuality can be
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taken as the ratio κ = Ec/E between the number Ec of lines/edges of G with non-commuting cosets
and the whole number E of lines/edges of G. Of course, lines/edges passing through the identity coset
e have commuting vertices, so that one always as κ < 1.

In Section 3 below, the contextuality parameter κ corresponding to the collinear graph of the
relevant geometry G is displayed in the right column of the tables. In order to compute κ, one needs the
finite presentation of the corresponding subgroup H in G′ leading to the permutation representation
P , but this information is not always available in the Atlas.

We can also quote two other approaches of quantum contextuality. The first one consists of
computing the Lovasz number of the incidence graph of the geometry in question, e.g., [21], the second
one is based on cohomological concepts [22].

2.3. Illustrating the Concepts

2.3.1. The Mermin Square

We first show how to recover the geometry of the well-known Mermin square, a (3× 3) grid,
that is the basic model of two-qubit contextuality [23] (see Figure 7 in [10] and Figure 3i in [11]). Starting
with group G′ =

〈
a, b|b2〉 and making use of a mathematical software, such as Magma, one derives

the (unique) subgroup H of G′ that is of index nine and possesses a permutation representation P
isomorphic to the finite group P36 = Z2

3 × Z2
2 reflecting the symmetry of the grid. The permutation

representation is as follows:

P = 〈9|(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ,

where the list [1, ..., 9] means the list of coset representatives [e, a, a−1, a2, ab, a−1b, a−2, a3, aba].
The permutation representation P can be seen as a dessin d’enfant drawn on a torus (as in
Figure 1i) [10,11]. Next, we apply the procedure described in Item (iv) of Section 2.1. There are
two types of two-point stabilizer subgroups that are isomorphic to the single element group Z1 or to
the two-element group Z2. Both define the geometry of a (3× 3) grid comprising six lines identified,
but their non-identical, but isomorphic two-point stabilizers s1 to s6, made explicit in the caption
of Figure 1. The first grid (not shown) is non-contextual in the sense that the cosets on a line are
commuting. In the second grid, shown in Figure 1j, the (group theoretical) commutator for the points
on a line is the identity element e except for the one associated with the right-hand side column where
it is (a−1b, ab, aba) = a−1 (which is not the class e of the identity element). The non-commuting cosets
on this line reflect the contextuality that occurs when one takes two-qubit coordinates for the points
of the grid; see [11,12] for more details about the relationship between non-commuting cosets and
geometric contextuality.

2.3.2. A Modular Geometry

Now, we deal with a contextual configuration G arising from a modular dessin d’enfant, that is
that follows from a subgroup H ∼= Γ′ of the modular group G′ =

〈
a, b|b2, a3〉 ∼= Γ = PSL(2,Z).

Let us remind how to pass from the topological structure of a modular dessin D to that of
a hyperbolic polygon P ([13], Section 3). There are ν2 elliptic points of order two (resp. ν3 elliptic
points of order three) of P ; these points are white points (resp. black points) of D. The genus of P
equals that of D; a cusp of P follows from a face of D; the number B of black (resp. the number W of
white) points of D is given by the relation B = f + ν2 − 1 (resp. W = n + 2− 2g− B− c), where f is
the number of fractions and c the number of cusps in P .
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Figure 1. The dessin d’enfant (i) leading to Mermin’s square (j). The two-point stabilizer
subgroups of the permutation representation P corresponding to the dessin (one for each line) are
as follows: s1 = (2, 3)(4, 7)(5, 6), s2 = (1, 7)(2, 8)(6, 9), s3 = (1, 4)(3, 8)(5, 9), s4 = (2, 6)(3, 5)(8, 9),
s5 = (1, 9)(4, 5)(6, 7), s6 = (1, 8)(2, 7)(3, 4), where the points of the square (resp. the edges of the dessin
d’enfant) are labeled as [1, .., 9] = [e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

Now, we pass to a specific example by selecting a subgroup H of index 12 whose permutation
representation P is isomorphic to the finite group Z2

2 o (Z2
3 oZ2) of order 72 ([12], Figure 4). The dessin

of Figure 2i has of course trivalent black points; it corresponds to a subgroup of the modular group
Γ that is recognized to be the congruence subgroup Γ0(6) of Γ depicted in Figure 2j. The normalizer
of Γ0(6) in Γ is the moonshine group Γ+

0 (6) [13]. The configuration G = [126, 243](4) is of rank four,
comprises 12 points and 24 lines/triangles with six lines through each point. It is pictured in Figure 2k.
The group of automorphisms of G is isomorphic to Z4

2 o P36, where P36 was encountered in Figure 1
as the symmetry group of the Mermin square. The complement of the collinearity graph of G is
the (3× 4)-grid that physically corresponds to the geometry of the 12 maximum sets of commuting
operators in a qubit-qutrit system [24]. Two points on a line of the grid correspond to maximum
sets having one point in common, while the triangles in (k) correspond to maximum sets of (three)
mutually unbiased bases.

Figure 2. The contextual dessin d’enfant (i) with permutation group of order 72; it corresponds to the
congruence subgroup Γ0(6) of modular group Γ, as shown in (j); the stabilized configuration is in (k).
Triangles with a star inside have non-commuting cosets.



Mathematics 2017, 5, 6 5 of 17

2.4. A Few Significant Geometries

There exist layers in the organization of finite geometries; see [25] for an introduction and [26–28]
for advanced material. A partial linear space is an incidence structure Γ(P, L) of points P and lines
L satisfying axioms (i) any line has at least two points and (ii) any pair of distinct points is incident
with at most one line. In our context, the geometry G that is defined by a two-generator permutation
group P , alias its dessin d’enfant D, has order (s, t), meaning that every line has s + 1 points and every
point is on t + 1 lines. Thus, G is the geometric configuration [ps+1, lt+1](r), with p and l the number of
points and lines. The extra index r denotes the rank of P from which D arises.

We introduce a first layer of organization that is less restrictive than that of a near polygon to
be defined below [28] and that of a symplectic polar space encountered in Section 3.3. We denote by
Gu = G(s, t; u) a connected partial linear space with the property that, given a line L and a point x not
on L, there exist a constant number u of points of L nearest to x. A near polygon (or near 2d-gon) is
a partial linear space, such that the maximum distance between two points (the so-called diameter)
is d, and given a line L and a point x not on L, there exists “a unique point” on L that is nearest to x.
A graph (whose lines are edges) is of course of type G1. A near polygon is, by definition, of type G1.
Symplectic polar spaces are of the form Gu, possibly with u > 1, but not all Gu with u > 1, are polar
spaces. A generalized polygon (or generalized N-gon) is a near polygon whose incidence graph has
diameter N (the distance between its furthest points) and girth 2N (the length of a shortest path from
a vertex to itself) [27]. According to the Feit–Higman theorem [26], finite generalized N-gons with
s > 1 and t > 1 may exist only for N ∈ {2, 3, 4, 6, 8}. They consist of projective planes with N = 3 and
generalized quadrangles GQ(s, t), generalized hexagons GH(s, t) and generalized octagons GO(s, t)
when N = 4, 6, 8, respectively.

Many G ′s have a collinearity graph that is a strongly regular graph (denoted srg). These graphs
are partial geometries pg(s, t; α) of order (s, t) and (constant) connection number α. By definition, α is
the number of points of a line L joined to a selected point P by a line. The partial geometries pg listed
in our tables are those associated with srg graphs found in [29].

2.5. A Few Small Examples

Let us illustrate our concepts by selecting a rank three (or higher) representation for the group of
the smallest cardinality in each class of simple groups. The notation for the simple groups and their
representations are taken from the Atlas [9].

2.5.1. Alternating

The smallest non-cyclic simple group is the alternating group A5 whose finite representation is
H =

〈
a, b|a2 = b3 = (ab)5 = 1

〉
.

The permutation representations of A5 are obtained by taking the subgroups of the finite index of
the free group G = 〈a, b〉 whose representation is H.

Table 1 lists the rank r and the number m of two-point stabilizer subgroups for the permutation
representations P up to rank 15. The only non-trivial permutation group has index 10, rank three,
sub-degrees 1, 3, 6 with P = 〈10|(2, 3, 4)(5, 7, 8)(6, 9, 10), (1, 2)(3, 5)(4, 6)(7, 10)〉.

Table 1. Parameters r and s for small index representations of A5.

A5 Index 5 6 10 12 15

r 2 2 3 4 5
m 2 2 3 1 1

The dessin d’enfant D corresponding to P is pictured in our previous papers (see [10],
Figure 10, [11], Figure 3j, [13], Figure 4). The geometries that are stabilized are the Petersen graph PG
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or Mermin’s pentagram MP, depending on the choice of the two-point stabilizer subgroup. Thus, A5

features three-qubit “3QB” contextuality.

2.5.2. Symplectic

The smallest (simple) symplectic group is S′4(2) = A6, whose finite representation is
H =

〈
a, b|a2 = b4 = (ab)5 = (ab2)5 = 1

〉
. Table 2 lists the rank r and the number m of two-point

stabilizer subgroups for the permutation representations P up to rank 30.
The smallest non-trivial permutation group P has index 15, rank three and sub-degrees 1, 6, 8, as

shown in Table 2.

Table 2. Parameters r and s for the small index representations of A6.

A6 Index 6 10 15 20 30

r 2 2 3 4 7
m 2 2 3 2 3

The geometry that is stabilized by P is the (self-dual) generalized quadrangle GQ(2, 2), alias the
graph L̂(K6) (the complement of the line graph of the complete graph K6). It is known that GQ(2, 2)
is a model of two-qubit “2QB” commutation; see [11], Figure 12. The permutation representation of
index 30 of S′4(2) stabilizes the configuration [3016, 1603] of rank seven that turns out to be a geometry
of type G2.

As for two-qutrit commutation, one uses the S4(3) permutation representation P of rank three
and index 40b found in the Atlas. The dessin d’enfant picturing P is found in Figure 3. The dessin has
signature (B, W, F, g) = (8, 28, 6, 0).

Figure 3. The dessin d’enfant stabilizing the generalized quadrangle GQ(3, 3) (a model of two-qutrit
“2QT” commutation). The dessin corresponds to the Sp(4, 3) permutation representation of index 40b
found in the Atlas. Only black points are shown: white points are implicit at the mid-edges or at the
ends of half-edges.

2.5.3. Unitary

The smallest (simple) unitary group is U3(3). Representations of U3(3) of index 28 (rank two),
36 (rank four), 63 (rank four) and 63 (rank five) may be found in the Atlas (denoted 63a and 63b,
respectively). The most interesting ones are the 63a, of sub-degrees 1, 6, 24, 32, and the 63b, of
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sub-degrees 1, 6, 162, 24. These representations stabilize the split Cayley hexagon GH(2, 2) (with
63b) and its dual (with 63a). The hexagon GH(2, 2) is a configuration of type [633] with 63 points on
three lines and 63 lines with three points. It may be used as a model of 3QBcontextuality; see [11],
Figures 5 and 6, for details and plots of the corresponding dessins d’enfants.

2.5.4. Orthogonal

The smallest (simple) orthogonal group is O7(3). The Atlas lists four representations of
rank three and index 351, 364, 378 and 1080. We could recognize that the first representation is
associated with the strongly regular graph srg(351, 126, 45, 45) and the geometry NO−(7, 3); the
second representation is associated with srg(364, 120, 38, 40) and the geometry of the symplectic polar
space W5(3); the third representation is associated with srg(378, 117, 36, 36) and presumably the partial
geometry pg(13, 18, 4); and the fourth representation is associated with srg(1080, 351, 126, 108) and the
geometry NO+(8, 3); see [29] for details about the undefined acronyms. The second representation
corresponds to the commutation of the 364 three-qutrit “3QT” observables [1]. It is found to be of type
G4. The representation of index 1120 and rank four of O7(3) found in the Atlas is associated with the
dual of W5(3) that is the dense near hexagon DQ(6, 3). See below Table 9 for further details.

2.5.5. Exceptional and Twisted

The smallest (simple) twisted exceptional group is Sz(8). The representation of index 520 listed in
the Atlas leads to an unconnected graph. The representation of index 560 of rank 17 and sub-degrees
1, 133, 266, 527 leads to a configuration of type [56013, 18204] (i.e., every point is on 13 lines, and there
are 1820 lines of size four). The Atlas also provides a representation of index 1456 and rank 79 that
leads to another geometry, of order (3, 4), with again 1820 lines of size four (see also the relevant item
in Table 10). The physical meaning of both representations, if any, has not been discovered.

2.6. Sporadic

The smallest sporadic group is M11. The Atlas provides representations of rank 3 and index 55,
rank 4 and index 66 and rank 8 and index 165. The first representation leads to the triangular
graph T(11) = L(K11). The second one leads two a non-strongly regular graph with 495 edges,
of girth 4 and diameter 2. The third representation leads to a partial linear space of order (2, 3) with
220 lines/triangles.

2.6.1. Brief Summary

The results of this subsection are summarized in Table 3. Observe that the smallest simple
linear group is equivalent to A5 and that the smallest untwisted group G2(2)′ is similar to U3(3).
Except for M11 and Sz(8), all of these “small” groups occur in the commutation of quantum observables.
Further relations between the geometry of simple groups and the commutation of multiple qudits are
given in the next section.
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Table 3. A few characteristics of a index m and rank r = 3 (or higher) representation of the simple group
of smallest cardinality in each class. The characteristics of the Sp(4, 3) representation for two qutrits is
added to this list. The question marks point out that a physical interpretation is lacking.

Type Group m r G Physics κ

alternating A5 10 3 PG = L̂(K5) MP in 3QB 0.767
linear L2(5) = A5 . . . . .

symplectic S′4(2) 15 3 GQ(2, 2) = L̂(K6) 2QB .
. S4(3) 40 3 GQ(3, 3) 2QT 0.704

unitary U3(3) 63 4 GH(2, 2) 3QB 0.846
orthogonal O7(3) 364 3 W5(3), G4 3QT .

except.untwist. G2(2)′ = U3(3) . . . . 0.846
except. twist. Sz(8) 560 17 [56013, 18204](17) ? 0.971

sporadic M11 55 3 T(11) = L(K11) ? .

3. Atlas Classes and the Related Geometries

3.1. Alternating

The non-trivial configurations that are stabilized by (low rank) small simple alternating groups
are listed in Table 4. The alternating group A7 is missing because no non-trivial geometry has been
recognized. Permutation groups for alternating groups An, n > 8 are those listed in the Atlas.

Table 4. The non-trivial configurations stabilized by small simple alternating groups and their rank r
given as an index. The notation T(n) = L(Kn) means the triangular graph, and S(2, k, v) means
a Steiner system, that is a 2− (v, k, 1) design [29]. The symbol srg is for a strongly regular graph.
A description of the A8 configuration on 35 points is given in the text.

An Geometries (rank) G(r) κ

A5 MP, T̂(5)(3) 0.767, 0.666
A6 GQ(2, 2), T̂(6)(3) 0.800
A8 T(8)(3), ([356, 307](3): srg, G3, S(2, 3, 15), lines in PG(3, 2), O+(6, 2)) 0.684, 0.737
A9 T(9)(3), [1265, 3152](5), [2803, 8410](5), [8404, 11203](12) -
A10 T(10)(3), [12610, 2106](4): srg), [21015, 15752](5), [94510, 31503](7) -
A11 T(11)(3), [1658, 3304](4), [4626, 13862](6) -
A12 T(12)(3), [2209, 4954](4), [46212, 7927](4) -
A13 T(13)(3) -
A14 T(14)(3), [36411, 10014](4) -
A15 T(15)(3), [136511, 30035](5) -

3.1.1. The A8 Configuration on 35 Points

It has been shown in the previous section that A5 and A6 are associated with three-qubit
contextuality (via Mermin’s pentagram) and two-qubit commutation (via the generalized quadrangle
of order two GQ(2, 2)), respectively. Since A8 encodes the 35 lines in PG(3, 2), the corresponding
configuration may be seen as a model of four-qubit contextuality; see [11], Section 4, for the recognition
of PG(3, 2) as a model of a 4QB maximum commuting set and [30] for an explicit reference to the
O+(6, 2) polarity.
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As the permutation representation is not in the Atlas, we provide a few details below.
The permutation representation on 35 points of A8 is:

P =< 35|(3, 4, 6, 12, 10, 5)(7, 13, 19, 23, 15, 9)(8, 14, 21, 24, 16, 11)(17, 25, 26)

(18, 27, 28)(20, 22, 30)(29, 33, 35, 34, 32, 31), (1, 2, 3)(4, 7, 8)(5, 9, 11)(12, 17, 18)

(13, 20, 14)(15, 22, 16)(19, 29, 21)(23, 31, 24)(25, 32, 27)(26, 33, 28) > .

The representation is of rank three, with sub-orbit lengths (1, 16, 18), and corresponds to a
dessin D of signature (B, W, F, G) = (9, 15, 5, 4)), that is of genus four, and cycles [643312, 31015, 75].
The two-point stabilizer subgroups are of order 32 and 36. The group of order 36 is isomorphic to the
symmetry group Z2

3 × Z2
2 of the Mermin square (a (3× 3) grid); see [10], Section 4.4. The edges of

the collinearity graph of the putative geometry G are defined as sharing the same stabilizer subgroup
of order 36, up to isomorphism, but acting on different subsets. The graph is srg of spectrum
[161, 220,−414] and can be found in [29]. The lines of G are defined as the maximum cliques of
the collinearity graph. In the present case, the lines do not all share the same stabilizer subgroup.
One gets G = [358, 565](3), a finite geometry of type G2. The collinearity graph associated with the
stabilizer subgroup of order 32 is the complement of the collinearity graph of G, and the corresponding
geometry is Ḡ = [356, 307](3), a configuration of type G3 and a model of the O+(6, 2) polarity.

3.2. Linear

The non-trivial configurations that are stabilized by (low rank) small simple linear groups are
listed in Table 5.

As for a relation to physics, we already know that the linear group L2(4) = L2(5) = A5

is associated with a 3QB pentagram and that L2(9) = A6 is associated with 2QB commutation.
Then, the group L5(2) is associated with 5QB contextuality through the lines in PG(4, 2). The other
configurations in Table 5 lack a physical meaning.

Table 5. The non-trivial configurations stabilized by small simple linear groups and their rank.
The configuration [212, 143](6) corresponds to the thin generalized hexagon GO(2, 1) (see Figure 6
of [31]).

Group Ln(m) Geometries (rank) G(r) κ

L2(4) = L2(5) = A5 MP, T̂(5)(3) 0.767, 0.666
L2(7) ([212, 143](6): GH(2,1)), [283, 214](7) 0.857, 0.893
L2(8) [367, 634](5): srg -

L2(9) = A6 GQ(2, 2), (T̂(6))(3) 0.800
L2(11) [553](9) -
L2(19) [376, 1712](4), [1715, 2853](15), [190108, 51304](16) -
L2(32) T̂(33)(17): srg 0.968

L3(2) = L2(7) . .
L3(3) [14478, 23084](8) -
L3(4) [5610, 2802](3): srg, Sims-Gewirtz graph 0.911

L5(2) [1557](3): srg, S(2, 3, 31), lines in PG(4, 2) -

3.3. Symplectic

The symplectic class of simple groups is a very useful one for modeling quantum commutation
of multiple qudits. In the previous section, we already met groups S′4(2) and S4(3) associated with
two-qubits and two-qutrits, respectively.
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3.3.1. The Group S4(3)

Let us go back to the group S4(3), whose finite representation is H = 〈a, b|a2 = b5 = (ab)9 =

[a, b]3 = [a, bab]2 = 1〉. Apart from GQ(3, 3) associated with two-qutrits, other geometries exist for this
group, as shown in Table 6.

Table 6. Characteristics of small index representations of S4(3) and their geometry. The bold notation
corresponds to geometries that are “stabilized” by the corresponding permutation representation P .
The other geometries are only “defined” from the collinearity graph associated with P .

S4(3) Index D-Signature Spectrum Geometry κ

27 (7, 15, 3, 2) [101, 120,−56] [275, 453](3): GQ(2,4) 0.785
36 (8, 24, 4, 1) [151, 315,−320] [3615, 1354](3): OA(6,3) 0.833
40b (8, 28, 6, 0) [121, 224,−415] [404](3): GQ(3,3) 0.704
40a (8, 24, 8, 1) [121, 224,−415] [404](3): GQ(3,3) dual 0.825
45 (9, 29, 7, 1) [121, 320,−324] [453, 275](4): GQ(4,2) 0.855

A few remarks are in order. Stricto sensu, only the generalized quadrangles GQ(2, 4) and GQ(3, 3)
are “stabilized” by the corresponding permutation representations P (and dessins d’enfants D; their
signature is given at the second column). The lines of each of the two geometries are defined as having
two-stabilizer subgroups acting on the same subsets of points. In a weaker sense, the permutation
representation for index 36, 40a and 45 “define” the geometries OA(6, 3), the dual of GQ(3, 3) and
GQ(4, 2) from the collinearity graph, its srg spectrum (shown at the third column) and the structure
of its maximum cliques. In these last cases, not all lines of the geometry have their pair of points
corresponding to the same two-stabilizer subgroup. Observe that case 40a and case 40b are isospectral,
but with a distinct D-signature.

3.3.2. The Group S6(2)

Another group of rich structure is the symplectic group S6(2) whose finite representation
is H =

〈
a, b|a2 = b7 = (ab)9 = [ab2]12 = [a, b]3, [a, b2]2 = 1

〉
. The smallest non-trivial permutation

representation P of S6(2) stabilizes the symplectic polar space W5(3) associated with three-qubits [1].
The small permutation representations of S6(2) are shown in Table 7. The one of index 135 is associated
with the near quadrangle DQ(6, 2) ([28], Chapter 6).

Table 7. Characteristics of small index representations of S6(2) and their geometry. The meaning
of the bold notation is as in Table 6. The * symbol means that the triangles of the configuration are
“stabilized”, but not the full lines.

S6(2) D-Signature Spectrum Geometry κ

63 (9, 47, 7, 1) [301, 335,−527] [6315, 1357](3): G3, W5(2) * 0.787
120 (16, 60, 14, 15) [561, 835,−484] [12028, 11203](3) 0.847
126 (18, 64, 14, 16) [641, 827, 063,−835] [12664, 26883](5) 0.766
135 (21, 75, 15, 13) [141, 535,−184,−715] [1357, 3153](4): DQ(6,2) 0.794
240 (36, 120, 28, 29) [1261, 684, 0120,−1835] [24017280, 5184008](5) 0.894
315 (45, 195, 37, 20) [181, 935, 384,−3195] [3153, 1357](5) * 0.909
336 (48, 216, 40, 17) [201, 835, 2168,−4105,−827] [33610, 11203](5) 0.918
960 (138, 480, 114, 115) [561, 8385,−4504,−1670] [96028, 89603](6) 0.961

3.3.3. The Geometry of Multiple Qudits

We define the multiple qudit Pauli group Pq(q = pn) as the n-fold tensor product between single
p-dit Pauli operators with ω = exp( 2iπ

p ) and p a prime number. Observables of Pq/Center(Pq)

are seen as the elements of the 2n-dimensional vector space V(2n, p) defined over the field Fp.
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The commutator [., .] : V(2n, p)×V(2n, p)→ P ′q induces a non-singular alternating bilinear form on
V(2n, p) and simultaneously a symplectic form on the projective space PG(2n− 1, p) over Fp.

The |V(2n, q)| = p2n observables of Pq/Center(Pq) are mapped to the points of the symplectic

polar space W2n−1(p) of cardinality |W2n−1(p)| = p2n−1
p−1 ≡ σ(p2n−1) (where σ(.) is the sum of the

divisor function of the argument), and two elements of [Pq/Center(Pq),×] commute if and only if the
corresponding points of the polar space W2n−1(p) are collinear [1].

A subspace of V(2n, p) is called totally isotropic if the symplectic form vanishes identically
on it. The number of such totally isotropic subspaces/generators ge (of dimension pn − 1) is
Σ(n) = ∏n

i=1(1 + pi). A spread sp of a vector space is a set of generators partitioning its points.
One has |sp| = pn + 1 and |V(2n, p)| − 1 = |sp| × |ge| = (pn + 1)× (pn − 1) = p2n − 1. A generator ge

corresponds to a maximal commuting set, and a spread sp corresponds to a maximum (and complete)
set of disjoint maximal commuting sets. Two generators in a spread are mutually disjoint, and the
corresponding maximal commuting sets are mutually unbiased.

The symplectic polar spaces W2n−1(p) at work, alias the commutation structure of n p-dits,
may be constructed by taking the permutation representation of index σ(p2n−1) of the symplectic
(rank three) group S2n(p) available in the Atlas. The special cases of two-qubits [with S′4(2)],
two-qutrits [with S4(3)] and three qubits [with S6(2)] can be found in Tables 4–6. For the group S6(3),
one finds two permutation representations of index 364 and 1120 that are similar to the ones of the same
index found for the group O7(3) (see Section 2.5, item “Orthogonal” and Table 9). The representation
of index 364 corresponds to the commutation structure of three qutrits, and the one of index 1120 is
the dual geometry encoding the non-intersection of the 1120 maximum commuting sets of size 26 built
with the three-qutrit observables.

The collinearity graph of the polar space W2n−1(p) is an srg(a, pb, b − 2, b), with
a = a(n) = σ(p2n−1) and b = b(n) = σ(p2n−3). The corresponding geometric configuration is of
the form [a(n)Σ(n−1), Σ(n)(pn−1)/(p−1)].

3.4. Unitary

The unitary class of simple groups is a very rich one. It defines many generalized quadrangles,
the hexagons GH(2, 2) associated with three-qubit contextuality (as shown in Section 2, Table 3), and
two near hexagons, including the largest of “slim dense” near hexagons on 891 points, as shown in
Table 8 [28]. Whether such configurations have a physical relevance is unknown at the present time.
Since unitary groups play a role as normalizers of Pauli groups, it may be expected that some of these
geometries occur in the context of quantum error correction and Clifford groups [3].

Let us feature the U3(4) configuration. One defines the three-dimensional unitary space U over
the field F16, the projective space P(U) and a nondegenerate Hermitian form (., .) on U. The space P(U)

consists of 65 isotropic points x satisfying (x, x) = 0, x 6= (0, 0, 0) and 208 non-isotropic points satisfying
(x, x) 6= 0. There exist 416 orthogonal bases, that is triples of mutually orthogonal non-isotropic points.
The resulting configuration [2086, 4163](5) has been shown to be related to a 3− (66, 16, 21) design used
to construct the Suzuki sporadic group Suz [32] (see also Table 12 below).

In passing, it is noticeable to feature the hyperplane structure of the U3(4) configuration. A basic
hyperplane is defined from the points of the collinearity graph that are either at minimum or maximal
distance from a selected vertex. There are 208 such hyperplanes. The other hyperplanes may be
easily built from Velkamp sums H ⊕ H′ of the basic hyperplanes H and H′, where the set theoretical
operation ⊕ means the complement of the symmetric difference (H ∪ H′) \ (H ∩ H′) (as in [33]).
One finds 10 distinct classes of hyperplanes totaling 216 hyperplanes.
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Table 8. The non-trivial configuration “stabilized” (bold) or “defined” by unitary groups with their
corresponding D signature. † Groups U4(3) and U6(2) define two large near hexagons of order (2, 14)
and of order (2, 20), respectively; see [28] for details about the notation.

Group D-Signature Geometry κ

U3(3)
(8, 24, 6, 0) [3628, 3363](4) -
(13, 39, 9, 2) [633](5): GH(2,2) 0.846
(15, 35, 9, 3) [633](4): GH(2,2) dual 0.820

U3(4) (70, 112, 16, 6) [2086, 4163](5): conf.over F16 [32] 0.970

U3(5) (10, 20, 8, 7) [507, 1752](3): Hoffman–Singleton -

U3(7) (703, 1075, 49, 141) [210721, 147493](8) 0.991

U4(2) S4(3) in Table 6 Table 6: GQ(2,4), GQ(3,3), etc. -

U4(3)
(24, 64, 16, 5) [11210, 2804](3): srg, GQ(3, 32) -
(30, 90, 24, 10) [162280, 151203](3): srg -
(101, 303, 81, 42) [56715, 28353](5): NH(2, 14; (2, 4)) † -

U4(4) (87, 165, 17, 29) [32517, 11055](3): srg, GQ(4, 42) -

U4(5) (204, 396, 84, 37) [75626, 32766](3): srg, GQ(5, 52) -

U5(2)
(33, 101, 15, 9) [1659, 2975](3): srg, GQ(4, 8) 0.950
(36, 112, 16, 7) [17640, 14085](3): srg 0.923
(61, 153, 27, 29) [2975, 1659](3): srg, GQ(8, 4) 0.953

U6(2)
(96, 416, 62, 50) [6721408, 1576966](3): srg, pg(11, 15, 3)? -
(99, 437, 63, 48) [69327, 89121](3): srg, pg(20, 8, 5)? -
(129, 459, 81, 112) [89121, 62373](4): NH(2, 20; 4) † -

3.5. Orthogonal

The geometries carried by orthogonal simple groups of a small index are listed in Table 9. It is
noticeable that some representations are associated with the non-intersection of maximum commuting
sets for three qubits [from O+

8 (2) : 2)] and three qutrits [from O7(3) or O+
8 (3)]. These geometries are

introduced in [1], Table 2. The srg’s are identified in [29].
Several of the configurations arising from simple orthogonal groups are of type Gi, for some i ≥ 1.

This includes the configurations attached to polar (strongly regular) graphs of O−8 (2) (on 119 points),
O−8 (3) (on 1066 points) and O−10(2) (on 495 points).

Table 9. The non-trivial configuration “defined” by orthogonal groups with their corresponding
D signature. The notation 3QB∗ (resp. 3QT∗) means that we are dealing with the geometry associated
with the non-intersection of the maximum commuting sets built with the three-qubit (resp. three-qutrit)
observables. Several configurations are of type Gi. The near hexagon O−8 (2) on 765 points is described
in the text.

Group D-Signature Geometry κ

O7(3)

(51, 239, 27, 18) [351567, 284317](3), srg, NO−(7, 3) -
(28, 58, 24, 238) [36440, 112013](3), srg, G4, W5(3), 3QT -
(54, 252, 30, 22) [3783159, 1990176](3), srg, pg(13, 8, 4)? -
(156, 540, 84, 151) [108028431, 38381858](3), srg, NO+(8, 3) -
(160, 560, 88, 157) [112013, 36404](4), srg, DQ(6, 3), 3QT∗ -

O+
8 (2) : 2

(12, 92, 12, 3) [12028, 11203](3), srg, NO+(8, 2), pg(7, 8, 4) 0.817
(15, 99, 11, 6) [13564, 9609](3), srg, G4, pg(8, 7, 4), 3QB∗ 0.770
(96, 624, 72, 85) [96036, 43208](4) 0.923
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Table 9. Cont.

Group D-Signature Geometry κ

O−8 (2)

(41, 63, 7, 5) [11945, 7657](3), O−8 (2) polar srg, G3, pg(6, 8, 3)? -
(46, 72, 8, 6) [136135, 22958](3), srg, NO−(8, 2) -

(267, 389, 45, 33) [7657, 10715](4), G1: NH(4, 6) -
(552, 832, 96, 77) [1632280, 1523203](5) -

O+
8 (3)

(216, 604, 84, 89) as for O7(3), index 1080 -
(224, 616, 88, 97) as for O7(3), index 1120 -

O−8 (3) (274, 598, 26, 85) [1066280, 2296013](3), O−8 (3) polar srg, G4, pg(12, 27, 4)? -

O+
10(2)

(38, 376, 16, 34) index 496, srg, NO+(10, 2), pg(15, 16, 8) 0.836
(45, 391, 15, 39) index 527, srg, pg(16, 15, 8) 0.759

(135, 1335, 117, 355) index 2295, rank 3, 4QB∗ -

O−10(2)
(99, 303, 15, 40) [495765, 2524515](3), O−10(2) polar srg, G7, pg(14, 16, 7) -
(108, 336, 16, 35) [5282295, 7573516](3), srg, G8, NO−(10, 2) -

3.5.1. The Near Hexagon O−8 (2)

There exists a near polygon (thus of type G1) built from O−8 (2) (on 765 points) that seems to have
been unnoticed. The configuration is of the type [7657, 10715](4) with a collinearity graph of spectrum
[281, 1184, 1476,−7204] and an incidence graph of diameter six and girth eight corresponding to a near
hexagon of order (4, 6). Since the permutation representation is a subgroup of the modular group
Γ = PSL(2,Z), it is possible to see the dessinD as an hyperbolic polygonDH . As in [11,13], the genus g
of D equals that of the hyperbolic polygon DH ; a face of D corresponds to a cusp of DH ; the number of
black points (resp. of white points) of D is B = f + ν3− 1 (resp. W = n+ 2− 2g− B− c), where f is the
number of fractions; c is the number of cusps; ν2 and ν3 are the number of elliptic points of order two
and three of DH , respectively. In the present case, the polygon DH is associated with a non-congruence
subgroup of level 17 of Γ and (n, g, ν2, ν3, c, f ) = (765, 33, 13, 18, 45, 250). A schematic of DH is shown
in Figure 4.

Figure 4. A schematic of the hyperbolic polygon on 765 tiles corresponding to the near polygon
arising from the permutation group of O−8 (2). Pairs of edges of the same color have to be identified.
The drawing is performed by using the software Sage that allows one to visualize (in the hyperbolic
half-plane) the permutation representation of a subgroup of PSL(2,Z) ([13], p. 752).
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3.6. Exceptional

A few exceptional groups of low index and low rank are defining well-known generalized
polygons GH(2, 2) and its dual, GH(4, 4) and its dual, GH(2, 8), the Ree–Tits octagon GO(2, 4), as well
as two extra G1 geometries [coming from Sz(8)]. This is summarized in Table 10.

Table 10. Small non-trivial configurations “defined” by exceptional groups of the Lie type. The most
remarkable configurations are generalized hexagons, their duals and generalized octagon GO(2, 4).

Group D-Signature Geometry κ

G2(2)′ U3(3) in table 8 srg, [633]; GH(2, 2), GH(2, 2) dual 0.846, 0.820

G2(4)
(88, 224, 32, 37) [4168400, 6988305](3): srg, part of Suz graph -

(273, 725, 105, 132) [13655](4): GH(4, 4) -
(277, 693, 105, 146) [13655](4): GH(4, 4) dual -

2F4(2)′ (585, 923, 135, 57) [17555, 29253](5): GO(2, 4) (Ree–Tits) 0.988

Sz(8) (146,288,112,8) [56013, 18204](17) 0.971
(370,736,292,30) [14565, 18204](79) 0.980

3D4(2) (95,419,63,122) [8199, 24573](4): GH(2, 8) -

3.7. Sporadic

Finally, small index representations of small sporadic groups lead to geometries of various
types. The results are split into three tables: configurations arising from Mathieu groups in Table 11,
from Leech lattice groups in Table 12 and the remaining ones—small sections of the Monster group
and pariahs—in Table 13. Noticeable geometries arising from sporadic groups are the M24 near
hexagon NH(2, 14) on 759 points, the J2 near octagon NO(2, 4) on 315 points and Tits generalized
octagon GO(2, 4) on 1755 points. Another remarkable geometry is the one built from the McLgraph on
275 points, which is found to be of type G2; see also https://www.win.tue.nl/∼aeb/graphs/McL.html
for details about the McL graph.

Table 11. Small non-trivial configurations “defined” by Mathieu groups. A noticeable geometry is the
M24 near hexagon on 759 points.

Group D-Signature Geometry κ

M11

(17, 31, 5, 2) [559, 1653](3): srg, T(11) -
(20, 38, 6, 2) [6615, 4952](4) -
(45, 89, 15, 9) [1654, 2203](8) -

M12 (22, 38, 6, 1) srg, [6610, 2203](3): T(12) -

M22

(25, 45, 7, 1) srg, [7716, 6162](3): srg, S(3, 6, 22) 0.891
(48, 96, 16, 9) [176210, 93204](3): srg, S(4, 7, 23) \ S(3, 6, 22) [29] 0.953
(65, 127, 21, 10) [23110, 3307](4): srg, M22 graph [29] 0.955
(92, 178, 30, 16) [33077, 11552](5) 0.961
(162, 320, 56, 40) [6162, 7716](5) 0.973

M23

(73, 141, 11, 15) [25321, 17713](3): srg, T(23) 0.971
(140, 274, 22, 36) [50615, 37952](4) 0.984
(338, 672, 56, 112) [1288165, 1062602](4) 0.993
(469, 931, 77, 148) [177120, 177102](8) 0.992

M24

(102, 144, 12, 10) [27622, 20243](3): srg, T(24) 0.972
(267, 387, 33, 37) [75915, 37953](4): NH(2, 14; 2) 0.990
(436, 668, 56, 65) index 1288: srg, pg(22, 35, 14)? 0.994
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This closes our investigation between simple groups and finite geometries. The contextuality
parameter κ, when it is known, is the highest (exceeding 0.97) for graphs associated with standard
representations of L2(32), U3(4), U3(7), exceptional groups 2F′4(2) and Sz(8) and sporadic groups,
such M23, M24, Co2, McL, He, Fi22, T, etc.

Table 12. Small non-trivial configurations “defined” by Leech lattice groups. Noticeable geometries
are the J2 near octagon on 315 points and the Co2 geometry that is locally the U6(2) near hexagon.
Another remarkable configuration of type G2 is attached to the permutation representation on 275 points
of the McLgroup.

Group D-Signature Geometry κ

HS (20, 60, 10, 6) [10022, 11002](3): srg 0.903
(220, 580, 100, 101) [11002, 1022](5) -

J2

(36, 50, 16, 0) [100336, 84004](3): srg, Hall–Janko graph 0.930
(196, 146, 40, 0) [28012, 8404](4): srg -
(105, 165, 45, 1) [3155, 5253](6): NO(2, 4) [34] -
(179, 265, 75, 4) [5253, 3155](6) -
(286, 428, 120, 4) [8405, 10504](7) -
(336, 522, 144, 4) [10086, 20163](11) -
(604, 910, 258, 15) [180070, 420003](18) -

Co2 (460, 1292, 96, 227) srg(2300, 891, 378, 324)[35] 0.992

McL (55, 155, 25, 21) [275280, 154005](3): srg, G2 [36] 0.974
(405, 1065, 185, 186) [20251155, 7796253](4) -

Suz (594, 912, 138, 70) [17821365, 4054056](3): srg [32,37] -

Table 13. Non-trivial configurations “defined” by small sections of the Monster group, the Pariah
groups J1 and Ru and Tits group T.

Group D-Signature Geometry κ

He (294, 1106, 122, 269) [20584896, 33586563](5) 0.984

Fi22 (270, 2102, 320, 410) [3510891, 14215522](3): srg 0.997
Fi23 (10575, 16183, 1163, 1876) srg, index 31671 -
Fi′24 (102312, 155224, 10584, 19409) srg, index 306936 -

J1

(92, 138, 38, 0) [26611, 14632](5): Livingstone graph -
(355, 525, 151, 8) [10458, 41802](11) -
(491, 747, 209, 9) [14636, 29263](22) -
(780, 520, 220, 11) [154019, 146302](21) -
(532, 804, 228, 17) [159611, 87782](19) -

Ru (1054, 2030, 316, 331) srg, index 4060 -

T=2F4(2)′
(585, 923, 135, 57) [17555, 29253](5): GO(2, 4) [26] 0.988
(774, 1152, 180, 100) [230426, 149764](7) 0.988

4. Conclusions

We explored two-generator permutation representations of simple groups, as listed in the Atlas [9],
with the viewpoint of Grothendieck’s dessins d’enfants and the finite geometries associated with them,
as started in our earlier work. A strong motivation for this work is the understanding of commutation
structures in quantum information and their contextuality [10–13,30,31]. A wealth of known and new
point-line configurations G and, as much as possible, their contextuality parameter κ are defined from
permutation representations P and their corresponding dessin D, using the methodology described in
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Section 2. It is intriguing that the concept of a near polygon, defined in Section 2.3, may be usefully
expanded to that of a geometry of type Gi (i > 1) to qualify some of the new configurations we found.
Looking at the unitary groups of Table 8, one observes that most configurations we obtained are of the
near polygon type (that is of type G1) or have a strongly regular collinearity graph. However, we do
not know how to unify both aspects. To some extent, orthogonal simple groups, as well as exceptional
groups of the Lie type, have this common feature (as shown in Tables 9 and 10, respectively).

It is much more involved to recognize the regularities of geometries defined from (small) sporadic
groups (see Tables 11–13). Many sporadic groups (including the Monster) are subgroups of the modular
group or even of the Hurwitz group G =

〈
a, b|a2 = b3 = (ab)7〉 [38]. It is a challenging question to

relate the symmetric genus of such structures to the (much smaller) genus of the corresponding
dessin d’enfant (and modular polygon) [13]. Our down-to-earth approach of understanding quantum
commutation and contextuality from representations of some simple groups is of course far from
the concept of a VOA (vertex operator algebra), which is related to string theory and generalized
moonshine [39]. Let us mention F. J.Dyson again: So far as we know, the physical universe would
look and function just as it does whether or not the sporadic groups existed. But we should not be
too sure that there is no connection · · · We have strong evidence that the creator of the universe loves
symmetry, and if he loves symmetry, what lovelier symmetry could he find than the symmetry of the
Monster? [40].
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