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Abstract—Maintenance is one of the main factors of 

production process. The aim of maintenance strategy is not just 

to repair and maintain equipment in a good condition, but to 

implement efficient maintenance solutions to ensure the good 

function while minimizing the cost and time of maintenance. 

Maintenance strategies start by collecting information from 

sensors, analyze this information to predict the malfunction or 

failure in the system. As a result, with this information, we try to 

find the optimal solution for maintenance. Prognostics Health 

Manager (PHM) offers significant benefits for maintenance. It 

predicts the future behavior of a system as well as its remaining 

useful life. However when factory have a large number of asset 

with mobile and stationary equipment in different geographically 

sites. Making decision and collecting information become difficult 

to be done. In this study we interested in stationary equipment 

geographically distributed; and we propose a decision post-

prognostics framework to help engineers to take the optimal 

decision for maintenance operation in order to minimize cost and 

time. In order to enhance the post-prognostics decision, we 

propose a framework based on Iot technology for real-time 

sensing to collect information from equipment and Cloud 

computing paradigm for resources management and information 

processing.  

Keywords— Decision post-pronostics, PHM, cloud 

computing, Internet of Things. 

I.  INTRODUCTION  

Manufactories face every day the challenge of keeping the 
machines available at the same time minimizing time and cost 
of maintenance. Corrective maintenance carried out after 
detection of a breakdown or when a machine needs to be 
refurbished, has gradually given way to the preventive 
maintenance. To reduce failure risk or performance 
degradation preventive maintenance plan maintenance 

operations in predetermined intervals [1]. With predictive 
maintenance, breakdown detection jumps to another level. The 
equipment is continuously controlled, Maintenance is carried 
out when certain indicators give the signaling that the 
equipment is deteriorating and the failure probability is 
increasing.  

Prognostics and Health Management (PHM) represent a 
great opportunity to detect upcoming failures [2] by predicting 
the future behavior of system as well as its remaining useful 
life [3] . The wear of the tools when it is not detected in time 
may lead to damage of the processing machine (or of the tool) 
and sometimes to accidents. Moreover, the tool wear can 
impact the reliability, the availability, the security and the 
quality of the final products [4]. PHM promises significant 
benefits through reducing maintenance operation coast and 
time. However, this benefits are related to decision-making 
based on prognostics information [5].  

In these days, industrial manufacturing systems are 
becoming more and more complex; a lot of them operate in 
multi-site. Managing maintenance over multiple sites has a set 
of challenges: Acquisition of data and the large volume of 
information. To avoid to this problem we propose in our work 
a post prognostics decision based on Cloud computing and 
Internet of Things. 

The remainder of the paper is organized as follow: In 
Section 2, we describe and discuss some of the related work 
about PHM, decision post-prognostics and Cloud Computing, 
Internet of things technologies. The decision post prognostics 
definition and challenges are developed in section 3. In section 
4 and 5 we describe Internet of things and cloud computing.  
Proposed framework is discussed in Section 6. Finally, the 
conclusion is in Section 7. 
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II. RELATED WORKS 

A. Decision post-prognostics 

A few works was interested to post prognostics decision, 
Chretien and al. [6]  propose a post-prognostics decision  
approach to optimize the commitment of Fuel Cell Systems. 
And Iyrs and al. [5] developed  a decision support system using 
decision post-prognostics. 

B. Cloud computing-based Prognostic and monitoring 

Lee and al. [7] implement  a PHM cloud-based platforms 
including developed models to real-world applications to serve 
the needs of industry.  Yang and al. [8]  propose a cloud-based 
prognostics system for providing a low-cost, easy-to-deploy 
solution for industrial big data collected in factory floors.  In 
order to address new design requirements or resolve potential 
weaknesses of the original design Xia and al. [9] developed 
framework for the closed-loop design evolution of engineering 
system is proposed through the use of a machine condition 
monitoring system assisted by IoT and CC. Hossain and al. 
[10] presents a Health IoT-enabled monitoring framework, 
where ECG and other healthcare data are collected by mobile 
devices and sensors and securely sent to the cloud for seamless 
access by healthcare professionals. 

C. Internet of Things and Cloud Computing (IoTCloud) 

Cloud computing and Internet of Things (IoT) are two very 
different technologies that are both already part of our life. 
Their adoption and use is expected to be more and more 
pervasive, making them important components of the Future 
Internet.  

Botta and al. [11] focus their attention on the integration of 
Cloud and IoT, which is called the Cloud IoT. Liu and al. [12] 
study on the architecture of cloud computing technology as the 
starting point, research on the application of cloud computing 
in the field of emergency material dispatch in the Internet of 
things. By introducing cloud computing technology, they make 
a full call to the storage resource pool and computing resource 
pool in the cloud computing architecture, and provide high 
reliability for emergency scheduling cloud storage service and 
efficient cloud computing services to users. Song and al. [13] 
proposed framework realized the cloud resources independent 
dynamic allocation and scheduling for the massive sensor data 
mining using kernel methods for reducing the computation of 
spatial data retrieval 

D. PHM for Geographically distributed systems 

Jin and al [14] proposes a comprehensive Prognostics and 
Health Management (PHM) framework for large fleets of 
geographically distributed assets 

III. DECISION POST-PROGNOSTICS  

A. Prognostics and Health Management (PHM) 

Prognostic and health management (PHM) could provide 
the ability of fault detection, fault isolation and estimation of 
remaining useful life (RUL). It enhances the effective 
reliability and availability of a system in its life-cycle 
conditions by detecting upcoming failures. PHM has emerged 
as a key enabling technology to provide an early warning of 
failure. Early warning may be used to forecast planned-

maintenance and avoid unanticipated operational problems 
leading to mission performance deficiencies, degradations or 
adverse effects on mission safety [2]. 

PHM architecture integrate five layers (Fig.1) described 
hereafter [2]. 

 
  

 

 
Fig. 1. PHM Architecture 

a) Data acquisition: Is the process of measuring an 
electrical or physical phenomenon using sensor. It provides the 
PHM application with digitized sensor or transducer data. 

b) Data analysis: It is generally necessary to analyze, 
filtered, interpreted, and archived the data sensor, in order to 
provide a useful infrastructure.  

c) Diagnostic: It determines if the conditions of the 
system have degraded, suggests fault possibilities and identify 
the component that has ceased to operate. 

d) Prognostic: It predicts the future reliability of a 
product by assessing the extent of deviation or degradation of 
the system from its expected normal operating conditions 

e)   Decision Recommend the optimal decision of 
maintenance action, how and when this action should be done. 

B. Decision post-prognostics 

Decision Post-prognostics is the process use the 
information from prognostics to making the decision of 
maintenance operation[5] [6] .  

C. Challenges 

The challenge of Decision post-prognostics not just how to 
utilize prognostics information in making decisions[15] or 
when should the maintenance action be done [16] to reduce 
global life cycle costs and increase availability. But also to 
have the good information where and when we need  to take 
the strategic decisions[17].  For instance: 

 Sensed data: Industrial manufacturing systems are 
becoming more complex and distributed; this 
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complexity introduces a large number of parameter to 
be monitored  [14].  

 Storage data: The large number  of information from 
different sources from different and geographically 
separated sites leads to a huge volume of data [9]. 

 Data analyze: Data is generated faster, and powerful 
computational resources are required to process this 
data. High Performance Computing is needed to satisfy 
such requirement [18]. 

 Manage and share decision: The system is monitored 
continuously.  The information obtained by the 
prognosis process changes following the monitoring 
data, the decision must be calculated and shared through 
all the logistics infrastructure before the information 
changes  [5]. 

IV. INTERNET OF THINGS  

The Internet of Things (IoT) provides information 
exchange and communication for device-to-device, device-to-
people and device-to-environment. The IoT is a network 
system that connects equipped with minuscule identifying 
devices such as RFID, sensors and smart objects with the 
Internet according to the information shared by the sensing 
devices and the agreed protocols to realize quick, reliable and 
real-time information exchange and communication, achieving 
intelligent identification, location, tracking, monitoring and 
management [19].  

The interconnected objects are inexhaustible sources of 
information, it create vast amount of data which need 
communication infrastructure, computational and processing 
unit to convert this data into useful information to enable real 

time decision making. This infrastructure is placed generally in 
cloud [20]. 

V. CLOUD COMPUTING 

Despite only a few years of emergence, cloud computing 
(CC) as a new information technology (IT) paradigm has 
already started to dramatically change the IT ecosystem as well 
as other industries by introducing new business models, 
software development strategies, and research opportunities. 
The main thrust of Cloud computing is to provide on-demand 
computing services with high reliability, scalability and 
availability in a distributed environment. In cloud computing 
distributed resources are encapsulated into cloud services, SaaS 
(Software as a Service), PaaS (Platform as a Service) and IaaS 
(Infrastructure as a Service). These services define a layered 
system structure for cloud computing and managed in a 
centralized way[21]. At the Infrastructure layer, processing, 
storage, networks, and other fundamental computing resources 
are defined as standardized. Clients can use cloud services 
according to their requirements. Cloud users can request 
services ranging from product design, manufacturing, testing, 
management, and all other stages of a product life cycle [22]. 
Cloud computing can provide a powerful, secure and easy way 
to storage massive data  and processing infrastructure to 
perform both online and offline analysis and mining of the 
heterogeneous sensor data streams [8].  

The salient characteristics of cloud computing based on the 
definitions provided by the National Institute of Standards and 
Terminology (NIST) are outlined below: 

A. On-demand self-service  

Users are able to provision cloud computing resources, 
such as server time and network storage.  These resources are 

Fig. 2. Main architecture 



 

 

accessed without the need for human intervention from a client 
or the service provider. 

B. Broad network access 

Cloud computing resources are accessible over the network, 
supporting heterogeneous client platforms such as mobile 
phones, tablets, laptops, and workstations. 

C. Resource pooling 

Computer resources of provider offer a pool of computing 
resources that can be dynamically assigned to a large number 
of simultaneous users. The system dynamically allocates these 
resources (storage, processing, memory, and network 
bandwidth) according to customer requirements. The users 
themselves have no control over the physical parameters. 

D. Rapid elasticity 

Capabilities can be elastically provisioned and released on-
demand and/or automatically. This will make consumer 
application have exactly the capacity it needs at any point of 
time. 

E. Measured service 

Cloud systems automatically control and optimize 
necessary resources depending on the needs of users and 
required types of services (e.g., storage, processing, bandwidth, 
and active user accounts). All these services are measurable 
and their usage is transparent, both for the provider and clients 

VI. DECISION POST-PROGNOSTICS USING CC AND IOT 

A. Architechture  

The increasing number of cell phone users and the usage 
of cell phones have demanded the network service providers to 
increase the number cell tower and extend it to all places.  A 
cell tower, also referred as a cell site, is a tower or long vertical 
pole includes radios, antennas for receiving and transmitting 
RF (radio frequency) signals, computerized switching control 
equipment, GPS receivers, power sources and protective cover.  

Cell site maintenance activities help network service 
providers to leverage their key infrastructural assets and 
promise high quality uninterrupted services to their 
consumers.  

These cell sites are geographically distributed and a lot of 
them in remote areas. The maintenance teams are also in 
different sites. To maintaining these cell sites in work will 
minimize the cost of maintenance, a predictive maintenance 
using PHM is applied.  The first step is to collect and analysis 
data from cells sites, then the prognostics process predict the 
remaining useful life (RUL) of each cell site, based on these 
RULs a decision of maintenance operation is made.  

The IoT collect, sort, synchronize and organize the data in 
real time from the different equipment in the different sites, the 
application of IoT brings a huge number of data from whole 
components. In order to process the continuously changing 
sensor data streams, the IoT application system terminal 
equipment must implement the massive sensor data storage and 
the powerful computing ability for real-time collection, 
dissemination and extracting of sensor data to users and 
administrators anytime and from anywhere. 

By introducing cloud computing technology and it 
characteristics (on-demand self-service, broad network access, 
resource pooling and rapid elasticity), we can make a call to the 
storage and computing resource in the cloud computing 
architecture (Fig. 2). 

B. Problem statement 

The system is composed of a set of 
machines {M1, M2, … , Mm}, these machines are geographically 
distributed (Fig.3). Each machine 𝑀𝑖 is described by her 
position (𝑥𝑖 , 𝑦𝑖), 𝑅𝑢𝑙𝑖 the remaining useful life and 𝐷𝑖  the 
duration of maintenance of this machine. We suppose that 
these machines are stationaries equipment, her position don’t 
change. And it can be used simultaneously and independently 
from each other. 

The Team of maintenance experts {𝐸1, 𝐸2, … , 𝐸𝑒} have the 
same expertise.  They are in different sites. 

The decision post-prognostics process must provide the 
maintenance plan specifying who will do what and when. In 
condition that the maintenances of each machine must be done 
in the instance 𝑡 before broken down time: 𝑡 < 𝑅𝑈𝐿.  

 

 

Fig. 3. Machines and maintenance experts positions 

 

C. Implementation 

The first step is to assign a set of machine for each expert; 
each machine is assigned to the closer expert using the 
Euclidian distance. A machine 𝑀𝑖 is assigned to the expert 𝐸𝑗  

if: 

  𝑑𝑖𝑠 (𝑀𝑖, 𝐸𝑗) = min[𝑑𝑖𝑠(𝑀𝑖 , 𝐸𝑘)]                             (1) 

∀ 𝑘, 1 < 𝑘 < 𝑒 𝑎𝑛𝑑 𝑘 ≠ 𝑗  
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Fig. 4 Assigned machines to experts 

 

The next step is to set up the schedule of the maintenance 
tasks for each expert. We use the genetic algorithm to 
minimize the distance crossed by every maintenance expert. 

1. Generate an initial random population of 
chromosomes 

2. Test fitness of population 

3. Select parents 

4. Reproduce from selected parents to produce a new 
population (crossover and mutation operators) 

5. Correct and validate the new solutions 

6. Evaluation 

7. Repeat 3 to 6 until termination criterion is met. 

A chromosome or solution represents the order of 
machines; the first step generates 𝑁 random solution. A 
solution is accepted if the start time of the maintenance of each 
machine doesn’t exceed her RUL. New population is generated 
by the crossover and mutation of selected best parents. The 
new solutions are corrected, the duplicate machine in the same 
solution are replaced by missed ones. If the solution satisfies 
the condition of RUL then this solution is accepted. In the last 
step the best solutions from old and new population represent 
the population used in the next iteration.  

 Fig.5 represents the order of maintenance operation of 
machines in the zone 2. The maintenance operation of the first 
machine starts in the instance  𝑡0 = 0 the next ones in the 
instance: 

𝑡𝑖 = 𝑡0 + ∑ 𝐷𝑗
𝑖−1
𝑗=0            (2) 

 

To compare the proposed method, we use the intuitive 
affectation of maintenance operation to expert, we start by the 
machine which has the smallest RUL and assigned the 
available closer expert (Fig.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distance crossed by each expert is shown below (Fig. 
7)  

 

 

Fig. 6. Crossed distance by each expert 
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The results of the both methods are compared in the table 
below; the distance crossed by each expert is widely optimized. 
The total distance crossed by the maintenance team is 
decreased from 1577.62 to 687.12. 

TABLE I.  DISTANCE CROSSED BY EACH EXPERT 

 

Min RUL Proposed method 

Machines 

number 
Distance 

Machines 

number 
Distance 

Expert 1 16 490,76 12 178,11 

Expert 2 12 498,11 14 212,44 

Expert 3 10 268,05 10 115,96 

Expert 4 12 320,70 14 180,61 

Total 50 1577,62 50 687,12 

 

VII. CONCLUSION  

 
PHM can be defined as a technology to enhance the 

effective reliability and availability of a system in its life-cycle 
conditions by detecting upcoming failures. It aims at predicting 
and protecting the integrity of equipment and complex systems. 
The prognostics predicted the useful life reaming; according to 
this RUL a decision of maintenance must be planned a decision 
post-prognostics process must be integrated. The industry 
system in our days are more complex and distributed in 
different sites, this need more resources to storage data and 
availability in a distributed environment. 

Collaboration, Internet of things and cloud have been used 
in this paper to collect information from machine, analyze and 
storage this data to provide a decision post prognostics solution 
as a cloud service, we proposed a method for the planning of 
maintenance using genetic algorithm to minimize the distance 
crossed by maintenance team to ensure that the maintenance 
operations are done before broken down time of machines.  

As future work, we wish to take into consideration the 
expertise of maintenance team, cost and availability of 
replacement part. We also wish to integrate the production 
schedule to choose the best time of maintenance operations. 
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