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Abstract: In highly competitive environment, manufacturing system availability has become
a critical issue. For this reason, predictive maintenance must be properly integrated in the
production scheduling in order to take into account the wear and tear of the equipment
to prevent it from the failure risk. In this context, we investigate the problem of a single
multifunctional machine subjected to predictive maintenance based on Prognostic Health
Management (PHM). We propose a new interpretation of PHM outputs to define the machine
degradation corresponding to the processing of every task. We design a genetic algorithm that
we called IPro-GA with the objective of minimizing the total interventions cost. Computational
results show the efficiency of our scheme with an average deviation of about 0.1% over a lower
bound.
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1. INTRODUCTION

As an important component of manufacturing industry,
production scheduling has been extensively studied. To
match the real world, this scheduling must take into ac-
count the unavailability of equipments due to breakdowns
or maintenance operations. Thus, a maintenance planning
has to be integrated in the production scheduling to bal-
ance resource availability and avoid conflictual situations.
This problem is known in the literature as “production
scheduling with availability constraints” or “integrated
maintenance and production scheduling” (Hadidi et al.,
2012). This problems for different machine configurations,
are strongly NP-hard, since for each separate criterion
(production and maintenance) the problem is strongly NP-
hard (Kubiak et al., 2002). For this reason, exhaustive
methods take a prohibitive execution time to find the best
solution.
Works were previously proposed to investigate these prob-
lems. Two cases of consideration about the unavailability
constraints can be found in the literature: (i) the de-
terministic case where intervals are known and fixed in
advance and often correspond to preventive maintenance
operations (Ma et al., 2010), (ii) the dynamic case where
unavailabilities periods are flexible and stand as decision
variables. This is the case for instance when information
about predictive maintenance are provided from a Prog-
nostic Health Management (PHM) module.
For the latter strategy, prognostic is recognized as a key
feature because it provides useful information to the main-
tenance decision process. It infers the current state and

predicts the future progression of failure to estimate the
time before a failure known as the Remaining Useful Life
(RUL). In brief, it relies on the usage of condition mon-
itoring (CM) data from operating equipment to obtain
useful features, next assesses the level of degradation, and
then predict the evolution of phenomena (Wang and Pecht
2011).
In this field, Ershun et al. (2012) proposed an inte-
grated prognostics-based-scheduling model incorporating
both production scheduling and predictive maintenance
planning for a single machine with the objective of min-
imizing the maximum tardiness. Predictive maintenance
operations are performed based on a new metric called
Remaining Maintenance Life (RML), proposed to set a
safety threshold before reaching the RUL. Considering
wind farms systems, Kovacs et al. (2011) investigated
the problem of optimizing the scheduling of maintenance
actions. A mixed-integer programming (MIP) formula-
tion is proposed to cover four categories of maintenance
tasks so as to minimize the total production loss of the
turbines. Varnier and Zerhouni (2012) proposed a mixed
integer programming model to optimally solve scheduling
production and predictive maintenance problem with the
objective of minimizing the makespan and maintenance
delays in flow-shop. In this study, machines are able to
switch between two production modes: nominal and a
sub-nominal one. The developed program allows finding
both the best control mode for each machine and the
best predictive maintenance policies. An interesting case
of parallel machines was studied by Herr et al. (2014).
Authors used PHM results to set a plateforme running



using different operating conditions. The main goal is to
provide a prognostics-based schedule in order to reach
a given demand as long as possible. A single predictive
maintenance operation is considered. The objective is to
extend the useful life of the whole platform. A second
objective is to use machines’ full potential.
The recent tremendous emergence of mechatronics offers
exciting possibilities for the further evolution of machine
tools. Due to this progress, various kinds of powerful single
machine have been designed in the field of factory pro-
duction (e.g., intelligent machine tool). Instead of using
multiple specific-purpose machines, projects are nowadays
working on multifunctional machinery (Chameleon project
2011).
Many researches dealing with single machine scheduling
problem and investigating a vast set of problem specifica-
tions has been provided. Although most of these studies
seek to optimize some measures, they do not usually match
reality because they assume that machines are always
available during the planning horizon. Therefore, the issue
of integrating efficient maintenance strategy in production
scheduling is becoming a prime necessity for failure-prone
manufacturing systems (Wang and Liu, 2013).
With the advancements of sensor and intelligent prognos-
tic technologies, deterministic maintenance, which induces
excessive interventions and financial losses, is replaced by
a more sophisticated strategy based on the estimation of
RUL using a PHM system. In all previous studies, unique
RUL value (expressed in unit of time) was estimated and
used as a threshold to perform predictive maintenance
operations independently of tasks being processed. In our
paper, we propose a new interpretation of PHM results.
We assume that a single multifunctional machine is sub-
jected to many predictive maintenance interventions dur-
ing the planning horizon. This equipment is supposed to be
monitored continuously and a PHM module provides, due
to different stress that induce various degradation level, for
each kind of job the corresponding RUL. In our scheme, we
introduce a new metric to express the degradation of the
machine when processing each kind of job. In this context,
we develop an integrated prognostic based genetic algo-
rithm IPro-GA for scheduling production and predictive
maintenance with the objective of minimizing the total
maintenance cost.
The remaining content of the paper is organized as fol-
lows. In section 2, we present the scheduling problem. In
section 3, the proposed genetic algorithm is developed as
well as integrated genetic operators. Finally, experiments
results of the newly designed GA are discussed. A general
conclusion of the work and the perspectives considered are
given in the last section.

2. PROBLEM STATEMENT

We have to schedule simultaneously a set J of n produc-
tion tasks being processed by a machine subjected to pre-
dictive maintenance interventions. Thus, the resulted joint
scheduling integrates both production and maintenance
activities. This scheduling can be seen as a succession of
several task batches separated by predictive maintenance
operation, denoted by π = {B1,M1, . . . ,Ml−1,Bl}, where
Bi is the ith block of jobs, Mi is the ith maintenance
activity, l is the minimum number of bocks required to
process all jobs

⋃n
i=1 Bi = J . Each job Ji is included

strictly in one production block ∀i, j ∈ {1, . . . , n}, i 6= j :
Bi

⋂
Bj = ∅.

The problem consists then in determining the jobs assign-
ment for each block to minimize the total cost required to
process all maintenance operations. The job sequence must
be well arranged in order to make full use of the machine.
In this section, we remind first the single machine produc-
tion scheduling problem, and then we define both PHM
problem and predictive maintenance problem.

2.1 Production scheduling problem

In this paper, we address the problem of scheduling a set
of n independent non-resumable jobs J = {J1, J2, . . . , Jn}
on a single machine. There are several assumptions that
are commonly made regarding this problem (Merten and
Muller, 1972):

• All the jobs are available at time zero;
• Each job requires a given known, deterministic and

non negative processing time, denoted pi;
• Machine is not continuously available due to predic-

tive maintenance operations. When available, it can
only process one job at a time.

Hence, the production scheduling problem is how to effec-
tively arrange the sequence of tasks to be performed by
the single machine.

2.2 Prognostic Health Management problem

It is assumed that the machine is monitored continuously
by a PHM module. Sensors provide the most representa-
tive information of machine degradation. As diverse tasks
are processed on single multifunctional machine, this latter
is subjected to a deterioration process that depends on
the job being executed because every kind of job requires
specific functionalities that cause various levels of damage
for the equipment. Hence, under these conditions, each job
Ji has an associated remaining useful life value RULi.
We consider the following assumptions:

• A deteriorating prognosis system provides RULi of
the machine corresponding to a given Job Ji;

• The resulting RUL is assumed certain;
• We consider that no accidental failure can occurred

during the schedule horizon.

Using the PHM outputs, a degradation value δi is cal-
culated for every job Ji. δi ∈ ]0;1[ represents the wear
and tear of the machine when only job Ji is processed
during the processing time pi (0 means no degradation
committed, 1 a degradation of 100%). If we consider a ”
as good as new machine” , RULi is then the period during
which we could produce job Ji before a machine failure.
Hence, δi = f(pi) where f characterizes the evolution of
the machine degradation. We consider in our model that
f could be a linear function. For each job Ji, δi = α ∗ pi
where α = 1

RULi
, so δi =

pi
RULi

as shown in Fig. 1.

2.3 Predictive maintenance scheduling problem

Predictive maintenance operations reduce the risk of ma-
chine failures and restore the machine to “as good as new”
state. Let ∆ be the maximal authorized degradation of
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Fig. 2. Predictive maintenance cost model

machine. Beyond this threshold, a predictive maintenance
task should be planned. The accumulated degradation of
a set of jobs processed between two consecutive mainte-
nance operations must be smaller than this maximal value∑
Ji∈Block δi 61. In our case, we fix ∆ = 1. Considering

that, in general, the machine could not process all the
jobs before maintenance operation and then more than
one production batch should be programmed. The main-
tenance cost, is divided in two (2) parts : a fixed cost and
a variable one (Fig. 2):

• Cf : represents the optimal maintenance cost spent
when the machine reached a full degradation ∆ ;
• Cv(∆) : is a function of the level of machine degra-

dation reached at the maintenance time.

We consider the following assumptions:
- After a predictive maintenance operation, the machine
is recovered to be “as good as new”, i.e. the machine is
renewed and its accumulated degradation is set to 0.
- During the planning horizon, at least one predictive

maintenance operation is performed:
n∑
i=1

δi > ∆.

- No maintenance operation is performed after the pro-
cessing of last block of tasks.

3. IPRO-GA: INTEGRATED PROGNOSTIC BASED
GENETIC ALGORITHM

As introduced above, the problem studied is to create a
prognostic based joint scheduling of several jobs on a single
multifunctional machine with the objective of minimizing
the total maintenance cost. The planning horizon can be
divided on multiple cycles of production separated by pre-
dictive maintenance interventions. First, machine’s RUL is
estimated by the PHM module for each kind of production.
Then the degradation values corresponding to each job are
obtained. Next, with the obtained information, the first
block of tasks to be performed is generated respecting the
predetermined constraint of machine maximal capacity ∆.

At the end of the first block, a predictive maintenance is
scheduled to recover the machine to a “as good as new”
state. The cost of this latter intervention is calculated
based on the accumulated degradation of jobs included
in the first block. After that, given the rest of jobs, a
new block will be determined and launched and the new
maintenance cost is added to the total one. The same
procedure will be iterated till all jobs are scheduled.
An important factor in the studied problem is the integra-
tion of maintenance information based on PHM outputs.
To seek this goal, a new GA is designed. IPro-GA lays
emphasis on the best interpretation of PHM results. The
next subsections will describe the different genetic opera-
tors incorporated to our scheme.

3.1 Solutions encoding and decoding

The representation step specifies the mapping from the
individuals (candidate solutions) into a set of genotypes.
In our GA, a genotype is expressed by sequencing the job
sets for all the production batches. A set of jobs numbers
in one batch corresponds to a gene. For example, for an
instance of problem J = {J1, J2, . . . , J10}, a candidate
solution is π = {(5, 10)(2, 9, 1, 3)(6, 7, 8)(4)}. We decode
this representation by scheduling the jobs of the first
block (J5 and J10), then performing the first predictive
maintenance operation with a cost depending on assigned
jobs. Next, we iterate the same process for the rest of the
blocks one by one.

3.2 Fitness function

GA needs a fitness function to evaluate the quality of an
individual in the population. For our problem, giving a
candidate solution π = {B1,M1, . . . ,Ml−1,Bl}, the total
predictive maintenance cost is calculated from Fig. 2:

CostPM (π) =

l−1∑
k=1

(C0 + (C1 − C0)
∑
Ji∈Bk

δi) (1)

Therefore, the reciprocal of the total maintenance cost is
selected as the affinity function for our GA:
Affinity(π) = 1

CostPM (π)
. It can be noticed that the lower

the predictive maintenance cost is, the higher the affinity
value is and so the better the solution is.

3.3 Population initialization

Instead of starting with an initial population randomly
generated, it seems more efficient to use special techniques
to produce a higher quality initial population (Reeves
1995). Initial population of PopSize individuals is gen-
erated as follow:
- The first part of the initial population (α%PopSize) is
generated by a uniform distribution. Its purpose is to en-
sure diversity of the research. First, a random permutation
of all jobs is generated. Then First Fit heuristic (Coffman
et al., 1984) is applied to form a candidate solution.
- The remaining part ((100 − α)%PopSize) is generated
using the two common heuristics First Fit Decreasing
(FFD) and Best Fit Decreasing (BFD) heuristics (Coffman
et al., 1984). It exploits the characteristics of these good



solution to form other solutions by applying a series of
permutations between jobs. In this way, we ensure that
this part of the population is formed by fit members.

3.4 Selection operator

For the sake of simplicity, we have chosen classical selection
scheme, 2-tournament selection (Michalewicz 1996). It
consists on randomly choosing two members from the
current population and selects the fittest one.

3.5 Crossover operator

Since the considered objective is the minimizing of main-
tenance cost, by analyzing the cost evolution model we
deduct that ideally, a preventive maintenance operation
is planned when the machine degradation value reaches
the maximal threshold ∆. Thus, it is clear that we should
make full use of the machine and then build as full as
possible production bins. To seek this goal, we modified
the crossover operator used by Rohlfshagen and Bullinaria
(2010). This crossover was applied to a Bin Packing prob-
lem and produced a single offspring by copying the fullest
bins from parents.
In our case, with a probability equals to CrossProb, the
proposed crossover operator produces two offspring. In
the first phase, starting from an empty offspring, we copy
the fullest non-overlapping blocks from parents. In other
words, blocks from both parents are sorted in the order
of non-increasing size (degradation) and then each block
is copied in offspring only if it contains no duplicated job.
In the second phase, we need to represent the parents as
job sequence (permutation of jobs). We scan the sequence
of the first parent, respectively the second, from left to
right, skipping jobs that are already contained and as-
sign the rest jobs to the first offspring, respectively the
second, using the First Fit rule. Our crossover naturally
avoids generating infeasible solutions, where the capacity
constraint is violated because the sum of jobs degradation
in a block exceeds the maximum capacity ∆. This can be
explained by the use of FF heuristic. This eliminates the
time that would be spent cutting down infeasibilities.

3.6 Mutation operator

We chose a simple mutation method inspired from the clas-
sical SWAP mutation (Michalewicz 1996). It consists on
randomly swapping, if possible, two selected jobs from two
different blocks. We only allow mutations that guarantee
the feasibility of the obtained solutions. Thus, the maximal
capacity ∆ must be respected for each block. The mutation
probability is set to MutProb. The number of permutation
is randomly fixed between a low and a high limit.

3.7 Replacement

Individuals of the next generation are selected from the
whole population formed by parents and newly created
children. β% from the worst individuals are directly in-
serted in the new population. Then, we complete the rest
of the population by the fittest members from parents
and children. However, a common problem is that the
population could sometimes stall around a local optimum.

To avoid that, we apply a restart mechanism in our GA
based on the scheme used by Ruiz et al. (2006). If the
best solution found doesnt improve after MaxImprovGen
generations, we should update the current population so
as to improve its diversity. The best γ% of the population
are skipped, 50% from the remaining individuals suffer
a mutation and the rest are replaced by newly random
created members using the First Fit ordering.

3.8 Stopping criteria

In traditional GA, either computation time or the number
of generations is selected as termination criterion. Our
algorithm terminates after MaxGen generations.

4. COMPUTATIONAL RESULTS

In this section, we present the results of series of computa-
tional experiments, conducted to test the newly proposed
GA. They were tested on a PC with Intel R© CoreTM i3-
2330M CPU @ 2.20 GHz and 2.00 Go RAM. The heuristic
algorithms are coded in C + +.

4.1 Data generation

We generate a variety of random testing instances where:
- Size of problem instances n ∈ [20, 300];
- Processing time of jobs is selected from a uniform
distribution pi ∈ U [1, 50];
- RUL of each job is selected from a uniform distribution
RULi ∈ U [100, 150] for n ∈ [20, 100], RULi ∈ U [100, 200]
for n ∈]100, 200], RULi ∈ U [100, 250] for n ∈]200, 300];
- Maintenance costs are set C1 = 100, C0 = 1000.
10 instances are generated and tested for each problem
size. We run 10 independent replicates of each instance in
order to have a better picture of the results. We average
the results for all the given instances.
We proceed with the analysis of the results of pilot
experiments generated randomly from a factorial design,
and then we fix every factor to the most interesting
level. We set: PopSize = 200, α =85, β = 20, γ = 25,
MaxGen = 300, and MaxImprovGen = 20. For operators
probabilities: CrossProb = 0.7, and MutProb = 0.015.

4.2 Performance analysis of the proposed GA

In Table 1, we can see a comparison of the execution
time CPU (in ms), the total cost CostPM between our
GA and the best known heuristic BFD (Coffman et al.,
1984), and then percentage of cost reduction is calcu-
lated (CostPM%↘). These results are the average of 10
instances for each problem size. It is clear that our GA
is the slowest to solve problem instances. Its execution
time is much more greater than BFD heuristic since it
manipulates a large set of individuals on which it applies
greedy genetic operators during the whole process. In the
other hand, there is a significant difference between the
cost obtained by our GA and by BFD. The proposed GA
offers better solutions in all cases.

4.3 Lower bound

Since no optimal solutions are known for the studied prob-
lem, we compare our GA results against a lower bound,



Table 1. Comparison of CPU and CostPM

between BFD and IPro−GA

n BFD IPro−GA CostPM

CPU(ms) CostPM CPU(ms) CostPM %↘
20 0.1026 317.56 2509 270.17 14.92

40 0.2673 713.11 3840 650.23 8.82

60 0.3193 1052.97 5732 1021.11 3.03

80 0.6208 1456.49 6584 1402.53 3.70

100 0.6620 1750.42 7118 1692.47 3.31

120 0.9759 2130.01 8160 2072.06 2.72

140 0.9775 2489.72 7226 2443.98 1.84

160 0.9882 2713.33 6746 2662.57 1.87

180 1.1573 3134.46 7323 3083.03 1.64

200 1.7568 3547.92 7545 3493.15 1.54

250 2.8641 4419.74 7726 4354.08 1.49

300 4.0524 5726.34 7754 5615.45 1.94

denoted CostPMlow . We note llow the smallest number of
blocks of capacity ∆ required to process all jobs. In other
words, if we suppose that all job blocks are completely full,

i.e. their degradation is equal to ∆, then llow = d 1
∆

n∑
i=1

δie,

and thus the total maintenance cost for all production
batch, except the last one, will be fixed to cost C1. Then,
the low bound can be estimated as CostPMlow = (llow−1)C1.
Table 2 shows the comparison between the maintenance
cost CostPM generated by our GA and the lower bound
CostPMlow . One can easily observe that IPro-GA yields a
very small deviation from the lower bound. In worst cases,
predictive maintenance costs increase by less than 0.2%.
Moreover, in several cases, this deviation is less than 0.1%.
That confirms the efficiency of our GA to generate best
solutions for all problem instances. This is argued by the
correct parameters setting and the choice of appropriate
genetic operators, especially the crossover that preserves
good characteristics of parents and transfers them to off-
spring.

5. CONCLUSION

In this paper we have proposed a new genetic algorithm
IPro-GA to solve the integrated production and predic-
tive maintenance scheduling on a single machine under

Table 2. Comparison of CostPM between the
LowerBound and IPro−GA

n IPro−GA CostPM
low %↗

CostPM CostPM

20 270.1702 270 0.0630

40 650.2275 650 0.0350

60 1021.105 1020 0.1083

80 1402.533 1400 0.1809

100 1692.468 1690 0.1460

120 2072.060 2070 0.0995

140 2443.977 2440 0.1629

160 2662.571 2660 0.0966

180 3083.025 3080 0.0982

200 3493.147 3490 0.0902

250 4354.084 4350 0.0939

300 5615.446 5610 0.0971

the total cost minimization criterion. Since each kind of
production requires specific machine functionalities, we
have assumed that a PHM system provides the RUL cor-
responding to each kind of production and then a relative
degradation value is calculated. A predictive intervention
is scheduled whenever the maximal authorized threshold
is reached. The proposed algorithm include carefully de-
signed operators in order to enhance the quality of the ob-
tained solutions. We have conducted various experiments
that showed the efficiency of the proposed algorithm.
Further topics would be continued with regards to this
results. The proposed integrated scheduling model can
be extended to manage other typologies of production
systems. Another work can deal with the multi-objective
character of the investigated optimization problem.
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