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ABSTRACT
As motivated by the use of physical variables as Hamiltonian storage
functions, this article focuses on dissipative pseudo-Hamiltonian realiza-
tions of chemical reaction systems, but with a particular emphasis on the
continuous stirred tank reactor (CSTR) in order to further explore the
structural differences. More precisely, two different dissipative pseudo-
Hamiltonian representations are proposed to a given non-isothermal
CSTR dynamics thanks to a unified potential function that verifies a
thermodynamic evolution criterion. The first one with the singularity of
the structure matrix F (where F ¼ J� R) resulting from thermodynami-
cally inherent properties of the process, is obtained on the basis of
functional separability. Even though the amount of dissipation is expli-
citly derived and exactly exhibits the process irreversibility, the main
disadvantage of such a result is that the derivation of alternative
pseudo-Hamiltonian models is impossible. One way to circumvent this
inherent difficulty is to consider the Brayton–Moser form of the original
dynamics. On this basis, a solution required for the Brayton–Moser
formulation is first proposed. Interestingly, the proposed solution is
based on thermodynamic information only.
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1. Introduction

Port-Hamiltonian representation1 has been first considered for electromechanical systems [1]. Its
general form with dissipation allows us to emphasize the dissipative transformations of the system
dynamics [2,3]. From a physics-based viewpoint, the dissipation is strongly linked to the irrever-
sibility [4,5]. Briefly speaking, the dissipation characterizes the amount of the electrical and/or
mechanical energy lost due to the irreversible energy transformation from one domain to another
through resistive elements such as resistors and dampers, etc. [6–9]. The amount of the dissipa-
tion is non-negative along all trajectories of the dynamics, even when the system state reaches its
steady state. Such a property is very useful when we consider a Lyapunov-based approach [10] or
the passivity-based approach (PBA) [11] for both the stability analysis and control design as
indicated in electromechanical systems [2,3]. Indeed, in these cases, the total energy (i.e. the
electrical and/or mechanical energy) is chosen as storage function candidate and passivity is then
related to the energy dissipation due to resistance and/or friction. The control design that achieves
the control objective, e.g. stabilization at the desired state (or set-point), then consists in shaping
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the closed-loop energy, which admits a minimum at the set-point [12]. The transcription of
Lyapunov- and energy-based methods for the stability analysis and control of chemical reactive
systems is not very clearly understood at present [13,14]. The choice of storage function for
control design in the context of chemical processes seems to be more arbitrary and driven by a
specific application rather than general principles [5,15–17]. On the other hand, in the port-
Hamiltonian framework, a number of control design methodologies (such as CbI (Control by
Interconnection), EB-PBC (Energy Balancing Passivity Based Control) and IDA-PBC
(Interconnection and Damping Assignment Passivity Based Control)) have been developed to
deal with the purpose of the stabilization of the system dynamics at a desired set-point. Further
discussions on these control methodologies and their relationship can be found in [7,18,19]. In
[20–22], the (standard) IDA-PBC method [23] combined with generalized energetic arguments
provides a powerful control design methodology usable for chemical reaction systems. More
precisely, this method allows us to design controllers to stabilize an equilibrium by feedback
transformation when the system dynamics has been initially reformatted in a port-Hamiltonian
form.

It is shown from [20–22,24] that some physical systems whose dynamics are not naturally
written in the port-Hamiltonian representation can only be written in this form if the unforced
dynamics (i.e. without the control inputs u) fulfil a separability condition that allows us to express
internal motions as the product of some (interconnection and damping) structure matrices and
the gradient of the generalized Hamiltonian storage function with respect to the state variables.
From a mathematical point of view, this separability condition implies that a solution to a partial
differential equations (PDEs) system subject to a sign constraint (i.e. the negative semi-definite-
ness property of the symmetric part of the matrix function F with F ¼ J � R) has to be found. Up
to now, no general solution methodology has been provided to satisfy the separability condition.

Let us note that in contrast with electromechanical systems [2,3], the link of the passive
Hamiltonian theory with the energy and the dissipation of chemical process systems is difficult
to exhibit from a geometrical point of view [25,26]. This interesting topic has been an active
research area over the years and some progress is being made [5,15–17,20,27–30]. Indeed,
chemical process systems, and among them open reaction systems, belong to a special but
important class of thermodynamic systems where their dynamical trajectories are constrained
not only by the first law of thermodynamics (i.e. conserved total energy transformation), but also
by the second law of thermodynamics (i.e. non-conservative entropy transformation) together
with chemical reaction invariants [22,31,32]. Consequently, even if the separability condition
holds in some instances, no precise physical interpretation on the irreversibility and/or the
Hamiltonian storage function has been shown as seen in [20,21].

Due to the theoretical challenging issues mentioned above, the central objective of this work is
twofold: to provide an approach for the dissipative Hamiltonian realization of a large class of non-
linear dynamical systems (including also chemical process systems) with affine inputs where
physical variables are used as Hamiltonian storage functions and to describe, in the case of the
single-phase CSTR,2 how to explore the outcomes of the structural differences of the resulting
Hamiltonian representations. Note also that the use of the physical variables as Hamiltonian
storage functions was done in [27] for the case of isothermal closed reaction networks, and in
[33,34] for the CSTR with some restrictive conditions on thermodynamics or the reaction kinetic
constant. However, in these cases, the derivation of the dissipation term is not obvious and
therefore, it does not allow us to exhibit the irreversibility of the system (i.e. the irreversible
entropy production [4,5]3). The results proposed in [22] are of great interest, yet for instance paid
by losing some structural properties of the port-Hamiltonian representation (e.g. the singularity
property of the matrix function F where F ¼ J � R) due to strong non-linearity resulting from the
constitutive relations of thermodynamics (as chemical reaction kinetics and transport equa-
tions etc.).
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In this article, we show that a mathematical formulation based on the Brayton–Moser form
[35]4 appears to be a powerful tool to avoid the technical restrictions on the separability condition
and allows us to preserve the structural properties, and in particular the non-singularity property
of the matrix function F of the port-Hamiltonian-based modelling. Besides, this also allows us to
express explicitly the dissipation along the trajectories of the dynamics. The key advantage of such
a result is the possible derivation of alternative pseudo-Hamiltonian models for further investiga-
tion using the concepts proposed by Ortega and co-workers ([19,36] or more recently [37],). In
that respect, the article generalizes the results presented in [22,27,34,38,39] in the sense that
different thermodynamic variables (such as the opposite of entropy, the square of chemical
affinity and possibly the irreversible entropy production due to chemical reaction) are considered
as Hamiltonian storage functions via a unified potential function that verifies a thermodynamic
evolution criterion [31]. Furthermore, the developments in this work are proposed with the use of
less restrictive conditions on the system dynamics (i.e. for any reaction kinetic constant) and
thermodynamics (as initialized far from the equilibrium and under non-isothermal conditions).

The article is organized as follows. Section 2 is dedicated to an overview of potential-based
modelling (including Port-Controlled Hamiltonian (PCH) representation and Brayton–Moser
(BM) formulation) for a large class of non-linear dynamical systems. A general connection to
port-Hamiltonian-based modelling on the basis of the Brayton–Moser formulation in order to
express the irreversibility of the system dynamics is developed in Section 3. Section 4 illustrates
the proposed developments for the case study of the non-isothermal CSTR involving one
reversible reaction in an irreversible thermodynamics framework. Some further discussions are
also included.

2. An overview of potential-based modelling

Let us consider non-linear dynamical systems that are affine in the control input u and whose
dynamics is given by the following set of ordinary differential equations (ODEs):

dx
dt

¼ f ðxÞ þ gðxÞu; xðt ¼ 0Þ ¼ x0 (1)

where x 2 D � R
n is the state vector, the vector-valued non-linear function f ðxÞ : D ! R

n and
the input-state map gðxÞ : D ! R

n � R
m are smooth, the vector u 2 R

m, m � n, is the input.

2.1. Port-controlled Hamiltonian (PCH) systems

The port-based modelling of the dynamics (1) leads to the so-called port-controlled Hamiltonian
(PCH) systems with dissipation given as follows [2,3]:

dx
dt ¼ J xð Þ � R xð Þ½ ��H xð Þ þ g xð Þu

y ¼ gT xð Þ�H xð Þ

8>><
>>: (2)

where u; y 2 R
m are the control input and the output, respectively, and are the conjugate port

variables; the smooth function HðxÞ : D ! R represents the Hamiltonian storage function (pos-
sibly equal to the total energy function for electromechanical systems [2,7] or the generalized
energy function for physicochemical systems [15,27])5; JðxÞ : D ! R

n � R
n and RðxÞ : D ! R

n �
R

n are called the structure matrix functions and correspond to interconnection and damping
elements, respectively. For such a representation, the following structural conditions hold [2,3]:
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J xð Þ ¼ �JT xð Þ

R xð Þ ¼ RT xð Þ � 0

8<
: (3)

The following energy balance immediately follows from (2):

dH xð Þ
dt

¼ ��H xð ÞTR xð Þ�H xð Þ þ uTy (4)

The system described by (2) is passive in the sense that the dissipation d defined as

d ¼ ��H xð ÞTR xð Þ�H xð Þ (5)

is negative semi-definite (i.e. d � 0) and the Hamiltonian HðxÞ is positive semi-definite (or
bounded from below) [8,11].6 The negative definiteness property of d can only be guaranteed if
the positive definiteness condition of the symmetric matrix R in (3) is met and �HðxÞ � 0. From
a physics-based viewpoint, if the Hamiltonian HðxÞ is equal to the (generalized) physical energy of
the system then the dissipation term d (5) may characterize the irreversibility (for instance, energy
lost due to friction/damping in mechanical systems or resistance in an RLC circuit of electrical
systems [2,3] or entropy production rate in chemical reaction network [22]). The following
inequality immediately follows from (4) and (5):

dH xð Þ
dt

� uTy (6)

Consequently, one obtains

H x t2ð Þ½ � � H x t1ð Þ½ �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{energy storage

�
ðt2
t1
u τð ÞTy τð Þdτ

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{energy supply

;"t1; t2; 0 � t1 < t2 (7)

From a physics-based viewpoint, (7) shows that due to the dissipated energy, a passive system
cannot store more energy than the one supplied to it from the environment. In other words, we
can only extract a finite amount of energy from a passive system since the energy supply is finite.
Under a zero state detectability condition [23,40], it follows that an explicit proportional static
output feedback law of the form u ¼ �Ky, with K ¼ KT > 0 a so-called damping injection gain
[7], renders the controlled system dissipative and therefore asymptotically stabilized [10]. Indeed,
from (7) we have

Hðxðt2ÞÞ � Hðxðt1ÞÞ � �
ðt2
t1
yðτÞTKyðτÞdτ < 0 (8)

since yTKy > 0 for y � 0. Hence the Hamiltonian HðxðtÞÞ is a candidate Lyapunov function since
HðxðtÞÞ is bounded from below7 and its controlled dynamics is (strictly) decreasing with respect
to time t.

In what follows, a different form of potential-based modelling through the use of the Brayton–
Moser formulation is briefly introduced. Thanks to the duality property [Jeltsema and Scherpen
(2003)], it allows us to derive a dissipative Hamiltonian representation of the dynamics (1) by
considering the inverse of some structural matrix and its decomposition into symmetric and
skew-symmetric parts.
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2.2. The Brayton–Moser (BM) formulation of the dynamics

The central core of the BM formulation [35] of the dynamics (1) is to find a non-singular square
matrix function QðxÞ : D ! R

n � R
n such that its symmetric part is negative semi-definite, i.e.

Q xð Þ þ Q xð ÞT � 0 (9)

In the BM formulation, the system dynamics are of the following form:

Q xð Þ dx
dt

¼ �P xð Þ þ G xð Þu (10)

where P xð Þ : D ! R is a scalar function of class C2 and the following relations hold:

G xð Þ ¼ Q xð Þg xð Þ
(11)

�P xð Þ ¼ Q xð Þf xð Þ (12)

It is shown that the scalar function PðxÞ is implicitly given in (12) on the basis of the matrix
QðxÞ subject to the sign constraint (9). Let us note that the sufficient and necessary condition for
the existence of the BM formulation (10) is the symmetry of the Hessian matrix of PðxÞ [34], i.e.

H Pð Þ ¼ H Pð Þð ÞT (13)

The condition given by (13)8 can also be viewed as a particular case of the Poincaré Lemma [41].

Remark 1: In general, the key issue of the BM formulation is to find solutions to the partial
differential Equations (13) subject to the sign constraint (9). Extensive discussions on this issue are
given in [34,35].

3. A general connection of the BM formulation to the PCH systems

Let us first reformulate the results presented in [34] about the writing of the system dynamics
given by (1) into the BM form (10). More precisely, the results reproposed here exhibit the
conditions for the existence of the matrix QðxÞ fulfilling the sign constraint (9) and the equality in
(12) with some chosen potential PðxÞ. It is summarized in the following lemma.

Lemma 1: Let E ¼ f�x 2 Djf ð�xÞ ¼ 0g be the set of equilibrium of the unforced system dynamics (1)
(i.e. u ¼ 0). If the following conditions are met:

(i) The vector-valued non-linear function f ðxÞ is twice continuously differentiable (i.e. 2 C2);
(ii) A suitable a priori choice of a potential function PðxÞ 2 C2 has the following properties:

(a) �Pð�xÞ ¼ 0 for all �x 2 E;
(b) �PðxÞ � 0 for all x 2 D; x ‚ E;
(c) PðxÞ is non-increasing9 along the trajectories of the unforced systems, then there exists a

non-singular square matrix function QðxÞ that holds for (9) and (12) such that the
system dynamics (1) admits a BM form given by (10).

Proof. A systematic proof can be found completely in [34]. Let us note that the conditions
provided by (i), (a) and (b) guarantee the existence of the square non-singular matrix function
QðxÞ when the potential function PðxÞ is fixed. Finally, this matrix function fulfils the sign
constraint (9) due to the condition (c). □
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From a mathematical point of view, the conditions (a) and (b) of Lemma 1 show that the
potential function PðxÞ admits �x; �x 2 E, as extremum. Together with (c), all these conditions
provide guidelines to choose the potential function PðxÞ. The existence of the potential function
PðxÞ is not in general unique. In [34], such a potential function is chosen to meet the conditions
(a)–(c) on the basis of the physical observations. In [38], some different choices for PðxÞ are
proposed.

In what follows, we restate a result that is central to proving the main results of this work.

Lemma 2: Given a square matrix function Q xð Þ : D ! R
n � R

n. If the matrix Q xð Þ is non-
singular and its symmetric part fulfils the sign constraint (9), then there always exists the inverse
matrix Q xð Þ�1 such that:

Q xð Þ�1 þ Q xð Þ�T � 0 (14)

The following proposition proposes the way to derive a PCH representation of the system
dynamics (1). Preliminary but incomplete discussions on this issue can be found in [41,42] for the
particular case of non-linear RLC networks (see, e.g. Equation (2.36) in [42]).

Proposition 1: The system dynamics defined by (1) subject to the condition (i) and the requirement
(ii) as stated in Lemma 1 admits a PCH representation (2) with:

• The Hamiltonian storage function:

H xð Þ ¼ P xð Þ (15)

• The interconnection and damping structure elements given by

J xð Þ ¼ 1
2 Q xð Þ�1 � Q xð Þ�T
h i

¼ �J xð ÞT

R xð Þ ¼ � 1
2 Q xð Þ�1 þ Q xð Þ�T
h i

¼ R xð ÞT � 0

8><
>: (16)

Furthermore, the dissipation term (5) is given by

d ¼ �H xð ÞT Q xð Þ�1 þ Q xð Þ�T

2

" #
�H xð Þ � 0 (17)

Proof. Under conditions (i) and (ii) of Lemma 1, the system dynamics (1) can be written in a BM
form given by (10). Since the matrix function QðxÞ is non-singular, the BM form (10) has an
equivalent dynamics as follows:

dx
dt

¼ Q xð Þ�1�P xð Þ þ g xð Þu (18)

It is worth noting that any square matrix Q xð Þ�1 can be split into symmetric and skew-symmetric
parts given by

Q�1ðxÞ ¼ 1
2

Q xð Þ�1 � Q xð Þ�T
h i

þ 1
2

Q xð Þ�1 þ Q xð Þ�T
h i
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Consequently, one obtains from (18)

dx
dt

¼ 1
2

Q xð Þ�1 � Q xð Þ�T
h i

þ 1
2

Q xð Þ�1 þ Q xð Þ�T
h i� �

�P xð Þ þ g xð Þu (19)

Due to the sign constraint (9) of the matrix QðxÞ and as shown in Lemma 2, the symmetric part of
the inverse matrix QðxÞ�1 is negative semi-definite. The latter completes the proof. □

From a mathematical point of view, even though the (formal) results developed in Proposition
1 seem quite straightforward. However, its application to a specific system dynamics, that yields a
PCH representation, is difficult since this requires that an explicit solution to the BM formulation
has to be found first. In what follows, an illustrative example is given to show the application of
the theoretical developments. Contrary to electromechanical systems where the link between the
dissipation and energy is well established in the port-Hamiltonian framework [2,3,7], this example
focuses on an open reaction system where the dynamics and irreversibility are intrinsically
governed by thermodynamic constraints (for instance, the first and second laws of thermody-
namics) [4,32,43,44]. In particular, the heat effects in reaction systems have to be considered in
the energy function because the temperature is a major concern with the irreversibility. It is
shown that the energy of the reaction system is not always decreasing whenever irreversible
transformations are involved [5,15,31,33]. Consequently, we need another quantity to replace the
energy function and characterize more precisely the dissipative property of the system dynamics.

4. The CSTR case study

4.1. Thermodynamics-based view for CSTR

For the sake of illustration, let us consider a jacketed CSTR with one reversible reaction involving
2 chemical species denoted by A and B (with molar masses MA and MB, respectively) [31]. Such a
chemical reaction is characterized by the following properties that represent the stoichiometry and
the molar mass conservation of the reaction, respectively:

jνAjAÐ
rf

rr
νBB (20)

and

νAMA þ νBMB ¼ 0 (21)

where νA and νB are the suitable signed stoichiometric coefficients, i.e. νA < 0 and νB > 0 [32,45].

Remark 2: As the chemical reaction (20) is reversible, it can also be characterized by the net
reaction rate r as follows [25,31]:

r ¼ rf � rrð Þ (22)

where rf and rr are the forward and reverse reaction rates, respectively.
The following modelling hypotheses are made:

(H1) The fluid mixture is ideal, incompressible and under isobaric conditions.
(H2) In the inlet, the reactor is fed by the species A and B at a given temperature TI .
(H3) The heat flow rate _QJ coming from the jacket is modelled by the following relation10:

_QJ ¼ λ TJ � Tð Þ (23)
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where λ > 0 is the heat exchange coefficient. The reactor temperature and jacket temperature are
denoted by T and TJ , respectively.

We assume that the heat flow rate _QJ and inlet molar flow rates FAI ; FBIð Þ are used as
manipulated process inputs.

In thermodynamics, the system variables are split into extensive variables (such as the internal
energy U, the entropy S, the volume V and the molar number Ni) and intensive ones (such as the
temperature T, the pressure P and the chemical potential μi). When isobaric conditions are
considered, the variation of the internal energy U is equal to that of the enthalpy H ¼ U þ PV ,
given by considering Gibbs’ equation [43]:

dH ¼ μAdNA þ μBdNB þ TdS (24)

From (24), we equivalently have:

dS ¼ �μA
T

dNA þ�μB
T

dNB þ
1
T
dH (25)

since the absolute temperature T > 0. As the entropy S is also an extensive variable, it is a
homogeneous function of degree 1 of NA;NB;Hð Þ.11 From Euler’s theorem for homogeneous
functions [43], we get:

S NA;NB;Hð Þ ¼ �μA
T

NA þ�μB
T

NB þ
1
T
H (26)

Equation (25) can be rewritten in a compact form as follows:

dS ¼ wTdx ) w xð ÞT ¼ @S xð Þ
@x

(27)

where

w xð Þ ¼ �μA
T ;

�μB
T ; 1T

� �T
; x ¼ NA;NB;Hð ÞT (28)

As a consequence, wðxÞ is a homogeneous function of degree 0 of x. We refer the reader to
[4,5,16], and references therein, for further information on thermodynamic concepts (for exam-
ple, the thermodynamic availability).

Thanks to the energy and material balance equations and we hold the total liquid mass
constant,12 the non-isothermal system dynamics is then given by the following set of ODEs (1)
(see also [13,14,16,33] for more details) with:

x ¼
NA

NB

H

0
@

1
A; u ¼

FAI
FBI
_QJ

0
@

1
A; f ðxÞ ¼

νArV
νBrV
0

0
@

1
A (29)

gðxÞ ¼

1� NAMA
mt

� �
� NAMB

mt
0

� NBMA
mt

1� NBMB
mt

� �
0

hAI � MAH
mt

h i
hBI � MBH

mt

h i
1

0
BBB@

1
CCCA (30)

where mt is the total liquid mass inside the reactor, NA;NBð Þ is the molar numbers vector and
hAI; hBIð Þ is the inlet molar enthalpies vector.
In the previous works [31], we have shown that there exists a thermodynamic potential function

P NA;NB;Hð Þ associated with the reaction mixture (20) and this potential function fulfills13:
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@P
@NA

� 0;
@P
@NB

� 0;
@P
@H

� 0 (31)

lim
r!0

νA @P
@NA

þ νB @P
@NB

� �
rV

< 1 (32)

�νA
@P
@NA

� νB
@P
@NB

	 

rV > 0 (33)

Equality in (33) holds only when the system reaches its thermodynamic equilibrium. It is worth
noting that the states of an open reaction system are generally non-equilibrium states due to the
exchanges with the surrounding medium, and in particular only its steady states can be (thermo-
dynamic) equilibrium ones when the appropriate operating and/or boundary conditions (for
example, no process inputs are activated or the CSTR is isolated) which are imposed on the
system are justified [32]. Note that (33) always holds for any chemical kinetic constant. Inequality
(33) generalizes the positive definiteness property of the irreversible entropy production.
Therefore, it is called the thermodynamic evolution criterion of the mixture with chemical
transformations [31].

Remark 3: Since irreversible processes generate entropy [32] and as an extension of the con-
cavity property of the entropy function applied to single phase reaction systems [5,43], it follows
that both the square of the chemical affinity 1

2A
2 � 0 (where the chemical affinity is given by

A ¼ �νA
μA
T � νB

μB
T [28,32,34]) or � S � 0) satisfy (31)–(33). From a mathematical point of

view, the arguments of all proofs can be found in [31]. For some other particular cases where
the reaction kinetics is such that νA @rV

@NA
þ νB @rV

@NB
� 0 (see, e.g. Equation (4.2) and Assumption 2

in [34]) then the irreversible entropy production due to chemical reaction, which denoted by
σreacs , σreacs ¼ ArV � 0 [32,34], is decreasing along the system trajectories, it follows that σreacs
meets (33). In other words, the thermodynamic potential function P fulfilling (33) can be chosen
to be equal to 1

2A
2, � S or σreacs .

Remark 4: As the entropy of an isolated system (i.e. an unforced system) never decreases, because
isolated systems spontaneously evolve towards thermodynamic equilibrium which is the state of
maximum entropy as stated in the second law of thermodynamics [43], from the mathematical point
of view it is straightforward to show that the thermodynamic potential function P (31)–(33) of the
reaction mixture (20) fulfils the condition (ii) of Lemma 1 [31,34].

In what follows, we shall see that the thermodynamic evolution criterion (33) gives us some
guidelines to derive a dissipative PCH representation on the basis of the BM formulation of the
system dynamics given by (1, 22, 29) and (30). Furthermore, the dissipation term is strongly
linked to the process irreversibility.

4.2. Dissipative pseudo-Hamiltonian realization of the CSTR dynamics

4.2.1. A pseudo-Hamiltonian representation with singularity
Let us first apply the methodology proposed in [22] to the system dynamics given by (1), (22),
(29) and (30) in order to derive a PCH representation. It is stated in the following
proposition.

Proposition 2: The non-isothermal system dynamics described by (1), (22), (29) and (30) admits a
thermodynamic port-controlled pseudo-Hamiltonian representation (2) defined as follows:
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• Its Hamiltonian storage function is

H ¼ P (34)

where P fulfils (31)–(33) and is explicitly given in Remark 3.
• The interconnection and damping structure matrices are:

J ¼ 1
2

0 �VArrV 1
@P
@NB

� VArrV 1
@P
@NA

0

VArrV 1
@P
@NA

0 0

0 0 0

0
B@

1
CA (35)

and

R ¼ 1
2

2VArfV 1
@P
@NA

�VArrV 1
@P
@NB

� VArfV 1
@P
@NA

0

�VArrV 1
@P
@NB

þ VBrfV 1
@P
@NA

�2VArrV 1
@P
@NB

0

0 0 0

0
B@

1
CA (36)

• The control input u and input-state map g are given in (29) and (30).
• The conjugate output y is given as follows:

y ¼
1� NAMA

mt

� �
@P
@NA

� NBMA
mt

@P
@NB

þ hAI � MAH
mt

h i
@P
@H

� NAMB
mt

@P
@NA

þ 1� NBMB
mt

� �
@P
@NB

þ hBI � MBH
mt

h i
@P
@H

0
@

1
A (37)

Finally, the dissipation term d (5) is

d ¼ νA
@P
@NA

þ νB
@P
@NB

	 

rV < 0 (38)

Proof. The non-isothermal system dynamics given by (1), (22), (29) and (30) is rewritten as follows:

dx
dt ¼ gðxÞuþ

νArf V � νArrV

νBrf V � νBrrV

0

0
BBBB@

1
CCCCA (39)

Since (31) holds for any evolution, (39) is then rewritten as follows:

d
dt

NA

NB

H

0
@

1
A ¼ gðxÞuþM

@P
@NA
@P
@NB
@P
@H

0
B@

1
CA (40)

where

M ¼
νArf V 1

@P
@NA

�νArrV 1
@P
@NB

0

νBrf V 1
@P
@NA

�νBrrV 1
@P
@NB

0

0 0 0

0
B@

1
CA:

The matrix M can be decomposed into symmetric and skew-symmetric parts as follows:
M ¼ J � R, with J ¼ M�MT

2 as expressed in (35) and R ¼ �MþMT

2

� �
defined in (36). The
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control input u and conjugate output y are then given as in (29) and (37). Finally, we can check
easily from the definition (5) that the dissipation term d equals νA @P

@NA
þ νB @P

@NB

� �
rV , which is

negative due to the property (33). The latter completes the proof. □
Remark 5: As shown in (35) and (36), the structure matrices depend not only on the state variables
x but also the co-state variables �H (i.e. J ¼ J x;�Hð Þ and R ¼ R x;�Hð Þ). The resulting repre-
sentation together with this property define the so-called pseudo-Hamiltonian models [15,22,26,45].
From a PCH modelling-based viewpoint, it suffices to recognize that the quadratic form of the
matrix � R x;�Hð Þ defined on the basis of the co-state variables �H (that yields the dissipation
term as seen in (5) and (38)) is negative definite and exactly exhibits the process irreversibility
thanks to the thermodynamic constraint (33).

Although the result of Proposition 2 is useful for the control design using IDA-PBC method as
shown in the previous works (see, e.g. [22,23],), it is important to note that the matrix function
F x;�Hð Þ ¼ J x;�Hð Þ � R x;�Hð Þ is singular since its determinant is equal to 0. In other words,
this matrix violates the rank condition that is instrumental in deriving the alternative pseudo-
Hamiltonian models usable for further investigation thanks to the concepts proposed by Ortega and
co-workers [19,36,37]. To circumvent this challenge, a structure preserving pseudo-Hamiltonian
representation of the dynamics described by (1), (22), (29) and (30) has to be found. In what
follows, we shall show that such a representation is obtained through the support of the BM
formulation as previously stated in Proposition 1. Interestingly, we show that an explicit solution
to the BM formulation is proposed by considering physical insights only and in particular, the
thermodynamic evolution criterion (31)–(33) instead of (purely) mathematical considerations.

4.2.2. A pseudo-Hamiltonian representation with non-singularity
Let us state the following proposition.

Proposition 3: The reaction system dynamics described by (1), (22), (29) and (30) associated with the
potential P given in (31)–(33) is expressed as a port (pseudo) Hamiltonian representation (2) with:

• The Hamiltonian storage function is

H ¼ P (41)

where P fulfils (31)–(33) and is explicitly given in Remark 3.
• The interconnection and damping structure matrices are:

J ¼ 1
2Δ

1
νArV

	 
2

0
�4αb

νA
νB
�2c

� �
βe2

4ð1�αÞb �4αbe νA
νB

� �2
� �4αb

νA
νB
�2c

� �
βe2

4ð1�αÞb 0 ec

4αbe νA
νB

� �2
�ec 0

0
BBBBBBBBB@

1
CCCCCCCCCA

(42)

and

R ¼ � 1
2Δ

1
νArV

	 
2

2αβe2
νA
νB

� �2

ð1�αÞ
αβe2

νA
νB

ð1�αÞ 4αbe νA
νB

� �2
αβe2

νA
νB

ð1�αÞ
βe2

2ð1�αÞ �ec

4αbe νA
νB

� �2
�ec 2 4αb b νA

νB

� �2
þ c νAνB

	 

þ c2

� �

0
BBBBBBBB@

1
CCCCCCCCA

(43)
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where 0 < α < 1 and β > 1 and with:

b ¼ νB
νA

@P
@NB

þ @P
@NA

c ¼ � @P
@NB

e ¼ � @P
@H

Δ ¼ αβe2

ð1�αÞ b νA
νB

� �2
þ c νAνB

	 

þ βe2c2

4ð1�αÞb

� �
1

νArV

� �3
� 0

8>>>>><
>>>>>:

(44)

• The control input, input-state map and output are u, g and y given by (29), (30) and (37),
respectively.

Finally, the dissipation term d defined as (5)(17) is given by

d ¼ νA
@P
@NA

þ νB
@P
@NB

	 

rV<0 (45)

Proof. The first part of the proof is based on Lemma 1 to derive the BM formulation of the system
dynamics described by (1), (22), (29) and (30). Let us consider Q on the form:

Q ¼

q11 q12 q13

q21 q22 q23

q31 q32 q33

0
BBBB@

1
CCCCA (46)

From (12), we obtain the following linear system:

ðνAq11 þ νBq12ÞrV ¼ @P
@NA

) q11 ¼ 1
νA

�νBq12 þ @P
@NA

1
rV

� �
ðνAq21 þ νBq22ÞrV ¼ @P

@NB
) q21 ¼ 1

νA
�νBq22 þ @P

@NB

1
rV

� �
ðνAq31 þ νBq32ÞrV ¼ @P

@H ) q31 ¼ 1
νA

�νBq32 þ @P
@H

1
rV

� �

8>>>>>><
>>>>>>:

(47)

Thanks to inequality (33) and after some simple mathematical manipulations, we therefore derive
(see Appendix 6 for more details)14:

Q ¼ 1
νArV

b c 0

�4αb νA
νB
� c 4αb νA

νB

� �2
0

�e 0 βe2

4ð1�αÞb

0
BBBB@

1
CCCCA (48)

where 0 < α < 1 and β > 1 and b, c and e are given by (44).
Let us complete the proof by considering Proposition 1. Indeed, we have from (48):

Q�1 ¼ 1
Δ

1
νArV

	 
2

αβe2
νA
νB

� �2

ð1�αÞ
�βe2c

4ð1�αÞb 0

� �4αb
νA
νB
�c

� �
βe2

4ð1�αÞb
βe2

4ð1�αÞ 0

4αbe νA
νB

� �2
�ec 4αb b νA

νB

� �2
þ c νAνB

	 

þ c2

0
BBBBBBBBB@

1
CCCCCCCCCA

(49)
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with the determinant Δ given in (44). The nonzero value of Δ is ensured since the symmetric part
of the matrix � Q is positive definite thanks to (A3)-(A5). Finally, with the matrix R (43) and

�H ¼ bþ νB
νA
c

� �
;�c;�e

� �T
derived from (A14), we obtain for the dissipation term d (5):

d ¼ 1
Δ

1
νArV

	 
2 αβe2

ð1� αÞ b2ðνA
νB
Þ
2
þ cb

νA
νB

� �
þ βe2c2

4ð1� αÞ

� �
(50)

(50) is equivalent to

d ¼ b
Δ

1
νArV

	 
2 αβe2

ð1� αÞ bðνA
νB
Þ
2
þ c

νA
νB

� �
þ βe2

4ð1� αÞb c
2

� �
(51)

By considering (44) for Δ and b, (45) immediately follows from (51). Its negative definiteness
holds thanks to the thermodynamic constraint (33). The latter completes the proof. □

Remark 6: Up to some factor related to the flow variable (or reaction rate), it follows that the
matrix Q (48) explicitly depends on the effort variables.15 Indeed, those effort variables are derived
from the gradient of the thermodynamic potential P with respect to x ¼ NA;NB;Hð ÞT as seen
through the expressions of b, c and e given in (44). Besides, unlike electrical or electromechanical
systems [41,46], the selection of dual variables considered in irreversible processes for the port-
Hamiltonian-based modelling [15] is not obvious even with the use of the BM formulation because
of thermodynamically inherent non-linear properties.

Remark 7: Contrary to the previous results of Proposition 2, the non-singularity property of the
matrix function F x;�Hð Þ ¼ J x;�Hð Þ � R x;�Hð Þ ; Q�1 of Proposition 3 holds since Q is non-
singular thanks to the requirement of the BM formulation. We shall show in the next subsection this
property offers some advantages using the concepts proposed by Ortega and co-workers [19,36,37].

The result of Proposition 3 exhibits a dissipative pseudo-Hamiltonian realization of the non-
isothermal CSTR dynamics described by (1), (22), (29) and (30) on the basis of the unified
thermodynamic potential function P. It follows from Remark 3 that the ectropy, the square of the
chemical affinity and the irreversible entropy production can be used as Hamiltonian storage
functions. Furthermore, the dissipation term given by (5) and (45) is strongly related to the
process irreversibility (33). Hence, Proposition 3 generalizes the previous results (see, e.g.
[27,34,38],) with the use of different thermodynamic variables as Hamiltonian storage functions.
Furthermore, the non-singularity property of the structured representation proposed is central to
obtain alternative pseudo-Hamiltonian models as discussed in the next subsection.

Remark 8: Let us note that the same expression of the dissipation as given in the previous singular
case (see Equations (5) and (38)) is derived here. This result is straightforward since these two
(pseudo) Hamiltonian representations differ from each other only in the structure matrices J and R.
Those structural differences have to be compensated through the quadratic form of the damping
matrices defined on the basis of the co-state variables in order to keep the time derivative of H (or
the balance Equation (4)) identically. Indeed, one can rewrite for the CSTR dynamics described by
(1), (22), (29) and (30) as follows:

dx
dt ¼ J1 x;�Hð Þ � R1 x;�Hð Þ½ ��H xð Þ þ g xð Þu

y ¼ gT xð Þ�H xð Þ

8>><
>>: (52)

Or
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dx
dt ¼ J2 x;�Hð Þ � R2 x;�Hð Þ½ ��H xð Þ þ g xð Þu

y ¼ gT xð Þ�H xð Þ

8>><
>>: (53)

where the subscripts 1 and 2 refer to the singular and non-singular cases, respectively. For both cases,
it follows immediately from (4) and (5) that:

d ¼ ��H xð ÞTR1 x;�Hð Þ�H xð Þ ; � �H xð ÞTR2 x;�Hð Þ�H xð Þ (54)

In [31], the numerical simulations were carried out using Matlab & Simulink software to show the
validity of the thermodynamic evolution criterion (33) for different scenarios. Consequently, this allows us
to verify the negative definiteness property of the dissipation d (54) which is given explicitly by (38) or (45)
with the Hamiltonian storage function H being either the ectropy or the square of the chemical affinity.

4.2.3. Some further discussions
From Remark 7, it is important to show that the matrix function F x;�Hð Þ is full rank, i.e.

rank F ¼ 3 (55)

An interesting result that can be obtained from (55) is that it allows us to generate novel classes
of passive outputs denoted by �ðu;yPSÞ and �ðu;~yÞ for further investigation using the concepts
proposed by Ortega and co-workers.16 Indeed under the rank condition (55), it follows that the
matrix F x;�Hð Þ is invertible. Consequently, two simple classes of new passive outputs for the
pseudo-Hamiltonian system of Proposition 3 are derived as follows17:

� u;yPSð Þ

dx
dt ¼ F x;�Hð Þ�H xð Þ þ g xð Þu

yPS ¼ �gT xð ÞF x;�Hð Þ�T F x;�Hð Þ�H xð Þ þ g xð Þu½ �

8>><
>>: (56)

or

� u;~yð Þ

dx
dt ¼ F x;�Hð Þ�H xð Þ þ g xð Þu

~y ¼ g xð Þ þ 2T x;�Hð Þ½ �T�H xð Þ þ D x;�Hð Þ þ S x;�Hð Þ½ �u

8>><
>>: (57)

for any T x;�Hð Þ;D x;�Hð Þ and S x;�Hð Þ 2 R
3 � R

3, where:

D x;�Hð Þ ¼ �D x;�Hð ÞT

S x;�Hð Þ ¼ S x;�Hð ÞT � 0

8<
: (58)

The idea of the proofs for (56), (57) and (58) consists in showing that the passivity inequality
holds [19,37].

On the other hand, we can check easily that � u;~yð Þ reduces to � u;yPSð Þ (i.e. ~y;yPS) by setting
[19,37],

T x;�Hð Þ ¼ R x;�Hð ÞF x;�Hð Þ�1g xð Þ

D x;�Hð Þ ¼ �g xð ÞTF x;�Hð Þ�TJ xð ÞF x;�Hð Þ�1g xð Þ

S x;�Hð Þ ¼ g xð ÞTF x;�Hð Þ�TR x;�Hð ÞF x;�Hð Þ�1g xð Þ

8>>>><
>>>>:

(59)
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where for the system we are concerned with here, gðxÞ defined in (30), Fðx;�HÞ ¼ Jðx;�HÞ �
Rðx;�HÞ with Jðx;�HÞ and Rðx;�HÞ given in (42) and (43), respectively. It is worth noting that
Dðx;�HÞ and Sðx;�HÞ expressed in (59) fulfil all the conditions mentioned above (see (58)).
Note also that the expressions given in (56) and (59) are well-defined thanks to (55).

Let us now focus on the dissipation nature of the alternative pseudo-Hamiltonian models. For
that purpose, we derive by considering (56):

dx
dt

T

F x;�Hð Þ�1 dx
dt

¼ dx
dt

T

�H xð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
dH xð Þ
dt

þ dx
dt

T

F x;�Hð Þ�1g xð Þu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�yTPSu

(60)

Hence, the dissipation of the alternative pseudo-Hamiltonian model (56) (or (57) and (58) with

(59)) is given by dx
dt
T
F x;�Hð Þ�1 dx

dt . It follows that the amount of dissipation is negative thanks to
Lemma 2 and the negative definiteness property of the symmetric part of the matrix function F.
However, it is not identical to the previous case (see (45)) since the outputs are different from
each other (i.e. yPS � y). So far, the physical interpretations of the dissipation of the alternative
pseudo-Hamiltonian models are not obvious in these cases. Nevertheless, the use of these two
novel classes, � u;yPSð Þ and � u;~yð Þ may give additional degrees of freedom for the further studies and
in particular, for the control design whenever a serious constraint on the dissipation structure
(see, e.g. the dissipation obstacle) is shown similarly to that of the non-linear RLC circuits [7,47].
As a matter of illustration, if the control design of the pseudo-Hamiltonian system of Proposition
3 via energy balancing passivity based control (EB-PBC) method (see, e.g. Proposition 1 in [7]) is
no longer possible since the power at any nonzero equilibrium is nonzero (i.e. the infinite
dissipation problem), then the (new) EB-PBC or the control by interconnection (CbI) can be
considered for the alternative pseudo-Hamiltonian models � u;yPSð Þ or � u;~yð Þ. More details on this
application can be found in [19,37].

5. Conclusion

In this work, an approach has been developed for the dissipative Hamiltonian realization of non-
linear dynamical systems on the basis of the BM formulation in order to express the irreversibility
along the trajectories. More precisely, when a suitable a priori choice of the potential function
fulfilling the required conditions is made, the existence of the transformation matrix QðxÞ of the
BM formulation is guaranteed. Consequently, it allows us to obtain a dissipative pseudo-
Hamiltonian representation of the dynamics.

Contrary to previous work, which focused mostly on examples from electrical or electrome-
chanical systems, we have presented a case study from chemical engineering, namely the non-
isothermal CSTR. In this context, two different pseudo-Hamiltonian representations of the same
CSTR dynamics are proposed to emphasize the structural differences. Both cases extend the
results presented in [22,27,34,38,39] in the sense that different thermodynamic variables (as the
opposite of entropy, the square of chemical affinity and possibly the irreversible entropy produc-
tion) are considered as Hamiltonian storage functions with less restrictive conditions on the
reaction dynamics and thermodynamics thanks to a unified potential that verifies a thermody-
namic evolution criterion. The first one with the singularity of the matrix function F where
F ¼ J � R, is realized on the basis of the functional separation thanks to the methodology
developed in [22]. The disadvantage of such a result is that the derivation of alternative
pseudo-Hamiltonian models is impossible for further investigation using the concepts proposed
by Ortega and co-workers. To circumvent this inherent difficulty, the second pseudo-Hamiltonian
representation is proposed through the use of the BM formulation where a solution to the
transformation matrix Q is found based on thermodynamic information only.
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Future work will aim at characterizing the dynamical properties, in terms of stability and
stabilization and the adaptation of the IDA-PBC method [14,41,47] to the potential-based
representations (including also the alternative pseudo-Hamiltonian models) as well as their
application to the control of the reaction system at any desired operating point. First results on
the control design of a simple CSTR is given in [39] using the pseudo-Hamiltonian representation
resulted from Proposition 3, IDA-PBC method together with the thermodynamic availability as
closed loop Hamiltonian storage function. An open important matter is the choice of the closed
loop Hamiltonian storage function among all possible ones [48], which should be adopted
preferably to give better closed loop performance. In addition, an extension to modelling and
control of chemical process networks as suggested by [17,49] has to be studied.

Notes

1. Port-Hamiltonian formulation is related to the existence of a geometric interconnection structure, namely
the Dirac structure. We shall not elaborate any further on the Dirac structure concept here and refer the
reader to [50] for more information. In particular, this linear structure implies [2,3] that there exist a
storage function H, some structure matrices J and R which depend only on the state variables. Furthermore,
the matrix R verifies the positive semi-definite condition, i.e. "v�0; vTRv � 0.

2. Continuous Stirred Tank Reactor.
3. Recently, the formulation of the thermodynamic properties using contact geometry by the so-called

Thermodynamic Phase Space which generalizes port-Hamiltonian systems to port contact systems has
been proposed to represent simultaneously the energy conservation and the entropy production of
irreversible processes [45,51].

4. The Brayton-Moser form is central for the power shaping control theory [47]. It was first applied to the
structural modelling of electrical systems where ‘easily’ measurable quantities, that is, the inductor currents
and capacitor voltages, are used instead of fluxes and charges [41].

5. �H xð Þ ¼ @H xð Þ
@x is the gradient of the storage function H xð Þ with respect to x.

6. We bring to the reader’s attention the important fact that if H xð Þ is not positive semi-definite (nor bounded
from below), then the system (2) is called cyclo-passive. It follows that every passive system is cyclo-passive [19].

7. As defined up to a constant, we can equivalently say that H x tð Þð Þ is non-negative.
8. Since QðxÞf ðxÞ is assigned to the gradient of the potential function P xð Þ with respect to X (12), hence (13) is

equivalent to the following condition:

JðQðxÞf ðxÞÞ ¼ ðJðQðxÞf ðxÞÞÞT

where J is the Jacobian matrix.
9. If such a potential function candidate is decreasing, then it necessarily implies that the sign constraint (9)

holds with strict inequality, i.e. QðxÞ þ QðxÞT<0 [34].
10. Thus this relation allows us to characterize the heat transfer between the reaction process at temperature T

and the cooling water at temperature TJ with a heat exchange coefficient λ. From the thermodynamic point
of view, this relation necessarily guarantees the positive semi-definite property of the irreversible entropy
production due to heat transfer [28,31,32]. On the other hand, when the temperature T is assumed to be
available on-line, then the process input _QJ can change by settling the cooling jacket temperature TJ under
different values (this is what is really involved in practice [52]).

11. Let ζ : Rn ! R , the function ζ is said to be homogeneous of degree k if "x 2 R
n and γ 2 R

?
þ, ζðγxÞ ¼

γkζðxÞ [43].
12. This is insured by adjusting the outlet molar flow rates as a function of the inlet molar flow rates of the

liquid phase CSTR [22,34].
13. In [31], it is shown that such a potential function always exists but is not in general unique.
14. The approach to the solution Q (48) is motivated by the developments proposed in [34], which proceeded

from simpler considerations. Indeed, the expression of the solution Q (48) when setting νA ¼ �1 and P ¼
σreacs is similar to that of the results given in [34]. The key distinctions here are that the solution Q (48) is
proposed to different possible choices for P via a unified potential that is governed by the thermodynamic
evolution criterion (31)–(33).

15. For the sake of illustration with P ¼ �S, the efforts are strongly related to the intensive variables (such as
the temperature, the pressure and the chemical potentials of species). In general, the Bond graph repre-
sentation of physical systems combines the effort variables with the flow variables (or the generalized efforts
with the generalized flows) through junctions [25,53].
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16. We refer the reader to [19,36,37], and references therein, for more details on these alternative models.
17. For the sake of brevity, the arguments of all proofs are not included here. The explicit expansions are

omitted.
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Appendix A

Let us choose q13 ¼ q23 ¼ q32 ¼ 0, (46) therefore becomes using (47):

Q ¼
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From this, we derive
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The symmetric matrix Qþ QT (A2) is negative definite if and only if � ðQþ QTÞ is positive definite. Equivalently,
it implies that all of the principal minors determinants of � ðQþ QTÞ are positive, i.e.
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Calculation for q12. Let us choose,

q12 ¼ � 1
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Consequently, (A3) holds since 2 1
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¼ 2 1
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rV is negative thanks to the thermo-

dynamic constraint (33).
Calculation for q22. By using (A6), (A4) can be rewritten as follows:
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Since 1
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rV þ @P
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1
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� �
< 0 as seen in the previous calculations and let us note that the left side of (A7) is the

quadratic polynomial with respect to q22, the sign constraint of (A7) holds only if:
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Let us choose from (A8):
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where the scalar α fulfils 0 < α < 1.
Calculation for q33. Let us rewrite (A5) by considering q12 (A6):
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We therefore obtain:
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where the equivalent form of (A9) given by
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has been used.
Since q22 < 0 (see (A9)) and note also that the left side of (A11) is a linear function with respect to q33, the sign

constraint of (A11) holds only if:
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We choose:
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with β > 1.
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It is straightforward to show that q12 (A6), q22 (A9) and q33 (A13) are well defined in the limit r ! 0 thanks to
(31) and (32).

For the sake of simplicity, let us denote:

@P
@NA

¼ bþ νB
νA
c

@P
@NB

¼ �c

@P
@H ¼ �e

8>>>><
>>>>:

(A14)

where the notations b, c and e are given in (44). Finally, the square matrix Q is explicitly given in (48) by using
(A6), (A9) and (A13).
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