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Abstract

A management of multi-stacks fuel cell systems is proposed to ex-
tend systems useful life in a Prognostics and Health Management (PHM )
framework. The problem consists in selecting at each time which fuel cell
stacks have to run and which output power has to be chosen for each of
them to satisfy a load demand as long as possible. Multi-stacks fuel cell
system useful life depends not only on each stack useful life, but also on
both the schedule and the operating conditions settings that define the
contribution of each stack over time. As the impact of variable operat-
ing conditions on fuel cell lifetime is not well-known, a simplified repre-
sentation of fuel cell behavior under wear and tear is used to estimate
the available outputs over time and their associated Remaining Useful
Lives (RUL). This health state prognostics model is configured to suit
to Proton-Exchange Membrane Fuel Cells (PEMFC) specific characteris-
tics. The proposed scheduling process makes use of an optimal approach
based on a Mixed Integer Linear Program (MILP). Efficiency of the asso-
ciated commitment strategy is assessed by comparison with basic intuitive
strategies, considering constant and piecewise constant load demand pro-
files.

Keywords: PHM , Decision making, Scheduling, Useful Life, Optimiza-
tion
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1 Introduction and related work

Fuel cells appear to be of growing interest for power conversion [1]. This tech-
nology offers indeed a potential alternative to conventional power systems and
is involved in many applications. Fuel cells are for instance increasingly being
used as backup systems in hybrid power supply systems composed of renew-
able energy sources [2], such as solar and wind generator. In fact, renewable
energy sources being intermittent by nature, they need to be combined with
other systems which can generate power on demand. In this context, fuel cells
are only used occasionally, during periods when the energy produced by re-
newable sources is not enough to meet the load demand. Azcarate et al. [3]
developed for instance a simulation model for a wind-H2 energy system and
proposed dynamic management policies based on the conversion of electricity
into hydrogen and the use of the stored hydrogen to produce electricity during
demand peaks using a hydrogen fuel cell. Bigdeli [4] proposed different optimal
techniques for the management of a hybrid electric power generation system
that consists of a photovoltaic array as primary energy source and of a fuel cell
and a battery as backup units. Load sharing among the available resources to
achieve optimal performance is addressed using several optimization approaches
(imperialist competitive algorithm, particle swarm optimization, quantum be-
haved swarm optimization, ant colony optimization and Cuckoo optimization
algorithm). Studies proposed in the literature considering fuel cells technology
in such power supply systems mainly focused on the evaluation of their perfor-
mance on life cycle cost, optimal sizing and hybridazation, rather than optimal
control [2]. For this latter purpose, Sichilalu et al. [2] developed an optimal con-
trol strategy model for an integrated grid system considering renewable energy
sources (wind and photovoltaic) and fuel cells. The proposed control strategy
avoids using the fuel cells at all times: they are used only during peak periods
or when the main power generation system is completely unavailable.

Combined with batteries, fuel cells are also being used in stand-alone appli-
cations, in which they mainly serve as indirect storage of energy and as stable
power sources. Lopez et al. [5] developed for instance two genetic algorithms
to find an optimal configuration of the components involved in a stand-alone
renewable energy hybrid system with hydrogen storage (power conversion being
performed by a fuel cell). First proposed genetic algorithm searches for possible
component configurations, whereas second one optimizes the strategy for each
of the configurations. Abadlia et al. [6] considered the power management of a
renewable energy source associated to an energy storage system composed of a
proton exchange membrane fuel cell (PEMFC) and batteries in a photovoltaic
system used in stand-alone. They proposed a fuzzy logic power management
strategy to ensure a good management of the power flow, which maximizes the
production of hydrogen and controls the charge/discharge mode operation of
the battery. In these stand-alone applications, as well as in the hybrid power
supply systems introduced previously, the main challenge is to properly control
the load power sharing among the main and the secondary power sources in
order to comply with the availability of the different energy sources considered
and with the variability of the load demand.

Fuel cells are also used as primary sources and coupled with batteries to
provide the necessary power for transportation applications. For such applica-
tions, fuel cell systems are considered as the best energy sources that reduce
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fuel consumption and CO2 emissions [7]. Some studies have considered the use
of fuel cells for electric vehicles. Aouzellag et al. [8] proposed a control strategy
to manage the power distribution among two energy sources (PEM fuel cell and
battery) for fuel cell hybrid electric vehicles. Neffati et al. [9] tackled also the
power management for a hybrid full electric vehicle with a fuel cell system as
main energy source and a super-capacitor as storage element. The considered
objective was to minimize the overall cost of hydrogen consumption for a given
power demand. This was performed by optimizing the power distribution on
the two sources considering availability, performance and state of charge con-
straints. An off-line optimization strategy for the energy management has been
proposed, in which dynamic programming has been used to provide a bench-
mark regarding the maximum potential fuel savings. An on-line strategy based
on fuzzy switching of fuzzy rules has also been proposed for a real-time energy
management taking into account the evolution over time of the state of charge
of the storage element.

Contrary to a vast majority of contributions in the literature addressing
the use of fuel cell systems, such as those previously introduced, fuel cells are
considered in this article as the unique power source. All the auxiliary func-
tions necessary to guaranty a good functioning of fuel cells are moreover not
considered in this study and are supposed to be well managed by auxiliaries,
independently from the addressed decision process. For instance, the storage
of hydrogen or the management of the chemical reactions that lead to power
conversion are out of the scope of the proposed contribution, in which fuel cells
associated to their auxiliaries are seen as black boxes that deliver a certain power
output. In order to reach suitable power outputs, systems composed of several
fuel cell stacks are considered. Each stack is supposed to be independent but the
multi-stacks system has to globally deliver a given power output based on a need
of energy. At each time, this global output is determined by the sum of each
output of the stacks that are currently running. The scheduling of such systems
is addressed, with the maximization of their global useful life as objective. In
fact, the increase of fuel cells lifetime and reliability has been highlighted by
Borup et al. [10] to be an important challenge. Durability of fuel cells is indeed
not consistent with most applications. Then, we propose to contribute to this
challenge by defining an original management of a set of fuel cells stacks. Our
purpose is not to improve each fuel cell lifetime, but to propose a way to use
several fuel cells in parallel in an appropriate manner so as to globally increase
the whole system durability.

Considering a global needed power output, the multi-stacks system useful
life depends not only on each stack useful life, but also on both the schedule and
the operating condition settings that define the contribution of each stack over
time. Indeed, operating conditions have been shown by Borup et al. [10] to have
an impact on each fuel cell output and on their durability. The same statement
applies to batteries. The maximization of a battery charge used while constrain-
ing the probability of a shut off in flight has been studied by Saha et al. [11]
for electric unmanned aerial vehicles. Prognostics is used to predict remaining
battery life. Advantage is taken of this information to optimize mission plans
without exceeding the available battery charge. In a same way, fuel cell avail-
able outputs and their associated lifetime can be determined at each time by
a Prognostics and Health Management (PHM ) process based on both the past
and the future operating conditions [1]. Steps involved in a PHM process are
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depicted in Figure 1. It has been pointed out by Jouin et al. [1] that researches
in PHM dealing with fuel cells have been mainly focused on data acquisition
and data processing. Less attention has been paid to condition assessment and
diagnostics and few works addressed prognostics. Papers taking into account
decision making are even scarcer. In those papers, the decision part deals fur-
thermore only with corrective actions (see [12] and [13]), which tend to master
fuel cell operating conditions through the control of physical parameters. This
real-time control operates at timescales from nanoseconds to seconds. In the
decision process involved in this paper, larger timescales (hours to weeks) are
taken into consideration. Knowing this, the purpose is to select at each time
which fuel cell stacks have to run and which power output has to be chosen for
each of them to satisfy the load demand as long as possible.
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Figure 1: PHM process

A similar problem has been addressed in [14] and [15] considering machines
able to provide a discrete number of throughputs. It has been shown that
a schedule can be adapted to machines health state by considering prognos-
tics results in the form of RUL. The associated decision problem being NP-
complete [15], optimal solutions can be found in limited time for small size
problem instances only, considering very few machines, few different through-
put values and short production horizons. Many heuristics have been provided
to cope with the problem of maximizing a platform useful life under service
constraint for larger instances. Efficiency of these heuristics have been assessed
through exhaustive simulations, but the considered approach cannot be straight-
forwardly applied to fuel cell systems. In order to suit to fuel cells, one has in-
deed to consider outputs that can vary continuously and take any value within
a given interval. Furthermore, due to the aging, each maximal output is sup-
posed to be decreasing with time. A scheduling process taking into account
these fuel cells specific features is proposed in this article. As the impact of
variable operating conditions on fuel cell lifetime is up to now not well-known,
a simplified trend depicting the wear and tear behavior of fuel cells stacks is
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used to determine at each time the range of available power outputs and their
associated RUL.

The application framework and the decision problem are described in Sec-
tion 2. A simplified representation of fuel cell wear and tear behavior is proposed
in Section 3. The proposed health state prognostics model is detailed and com-
pliance with fuel cell characteristics is assessed. A commitment strategy making
use of an optimal approach based on a Mixed Integer Linear Program (MILP )
is then detailed in Section 4. This strategy can be used to cope with load
demands that are either constant over time or piecewise constant during the
production horizon. Simulation results showing the efficiency of the proposed
strategy are provided in Section 5 and the work is concluded in Section 6.

2 Problem statement

2.1 Application framework

The application addressed in this paper is based on a multi-stacks fuel cell sys-
tem composed of a set M of m Proton-Exchange Membrane Fuel Cell (PEMFC)
stacks Mj (1 6 j 6 m), with M = {M1, . . . ,Mj , . . . ,Mm}. Such a system is
supposed to meet energy requirements for domestic usage in a stationary power
generation framework, also known as micro combined heat and power (micro-
CHP). Cyclic variation of the load demand based on domestic needs in energy
is then taken into account. In this context, following assumptions are made on
the considered multi-stacks fuel cell system:
• each stack Mj , composed of many individual connected single cells, is

supposed to be able to deliver global power outputs Pj that can vary
continuously within a given power output interval. While the minimal
output is supposed to be constant over time, the maximal one decreases
with time when the stack is used. Then, the range of available outputs
depends on the time t: 0 6 Pminj 6 Pj(t) 6 Pmaxj(t) ;

• the management of auxiliary systems is not considered in this study:
– auxiliary systems are supposed to be configured and managed sepa-

rately so that fuel cell stacks are able to provide the needed power
outputs while being kept in operating conditions which do not accel-
erate the cells wear and tear ;

– all the stacks are supposed to be always supplied with all reactants
required for fuel cell internal chemical reactions leading to the power
conversion ;

• fuel cell stacks can be used simultaneously and independently from each
other ;

• at each time, the global system outcome P tot is supposed to be the sum
of each stack power contribution ;

• during the whole production horizon H, the global output P tot has to
reach a given load demand σ(t). In the stationary power generation frame-
work considered, this demand is supposed to be piecewise constant over
time ;

• overproduction is authorized, but is lost. In fact, storage is not considered
in this study ;

• all the fuel cell stacks are not supposed to be in use at each time if a subset
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of them is enough to reach the demand. Fuel cells suffering from wear and
tear, some stacks can also be not available if their end of life (EOL) has
been reached ;

• no RUL overrun is allowed ;
• stop-and-start of stacks are not allowed. Stopping and restarting a fuel

cell can indeed induce considerable damage [10]. Then, when a stack has
been started up, it is used until its end of life.

This last assumption is very restrictive. Change of output is however still au-
thorized during the stacks lifetimes. This leads to a decision problem, detailed
in next section.

2.2 Decision problem

Considering the assumptions detailed in previous section, the point is to manage
the fuel cell system by defining at each time which fuel cell stacks have to be used
and their contribution to the global output so as to reach the load demand σ(t)
as long as possible. In fact, instant needed power values have to be determined
for each stack and provided to the control system over time during the whole
production horizon. One way to tackle the problem consists in discretizing the
time into periods ∆T . This approach is not so far from realistic constraints,
since one can imagine that one period could be one hour, one day or one week
in a real case. The production horizon H can then be expressed as follows:
H = K ×∆T , with K the number of periods for which the load demand σ(t)
is reached. Periods are supposed to be very small compared to RUL values
(∆T � RULj ∀ j = 1, . . . ,m).

Two cases are considered in this study. The demand can be constant during
the whole production horizon and is then called σ. A cyclic variation of the
demand can also be considered for a stationary application, for instance for
domestic usage in a micro-CHP context. In this case, the demand is supposed
to be piecewise constant and is denoted σ(t) = σk, with σk a constant value
within the period k such that (k − 1)∆T < t 6 k∆T and 1 6 k 6 K.

As pointed out in Section 1, post-prognostics scheduling strategies defined
so far cannot be applied as is on fuel cells. In order to suit the schedule process
to fuel cells specific characteristics and to their health state evolution over time,
some properties simulating their behavior under wear and tear have to be taken
into account. For each stack, available outputs and associated lifetimes are
determined using a fuel cell behavior representation described in Section 3.

3 Basic fuel cell wear and tear behavior

Each fuel cell lifetime depends on both its current power output and its pre-
vious use, in addition to environmental and operating conditions, cell design
and assembly and degradation mechanisms [1]. Even if operating conditions
are known to have an impact on fuel cells durability, the consideration of many
operating conditions during testing and data collecting is not yet mastered and
needs further research [10]. Up to now, the impact of variable operating con-
ditions on fuel cell lifetime is then not well-known and prognostics methods
are not consistent with dynamic conditions. A simplified model depicting the
behavior of fuel cells suffering from wear and tear and used with variable oper-
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ating conditions is then proposed in this section for PEMFC. This model can be
used to determine at each time the available power outputs and their associated
RUL. This representation is not an aging model that can be used for health
assessment or RUL prediction. In fact, it does not comply with all the fuel
cell physical characteristics. However, it respects fuel cell behaviors which are
useful to suit the scheduling process to fuel cell systems. Connection between
the real behavior of fuel cells and the representation used in this paper for the
scheduling process is shown in Figure 2.
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Figure 2: Connection between real behavior of fuel cells and its representation
used for the scheduling process – Uj : stack voltage, Ij : stack current solicitation

3.1 Health state prognostics model

The proposed representation allows to determine the range of outputs available
for a fuel cell stack Mj throughout its use. This health state prognostics model
has been based on the shape of the solid blue curve in Figure 3 which shows
the typical evolution of the estimated RUL in function of power for PEMFC.
Proposed model illustrated in Figure 4 depicts the behavior of PEM fuel cells
over time regarding their wear and tear. Some particular values can first be
defined:
• Pmaxj is the maximal output, typically decreasing with time. The straight

line depicting its decrease has equation Pmaxj(t) = ajt+Pmaxj(0), with
aj the speed of the output decline and Pmaxj(0) the maximal output
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available at the beginning of the scheduling process. Both coefficients of
this equation are fuel cell intrinsic characteristics ;

• Pminj is the minimal output, constant over time and defined as a per-
centage of the maximal one: Pminj = 0.15 · Pmaxj(0). For outputs
below this value, due to high voltage at the stack terminals, wear and
tear is supposed to be too constraining to be consistent with an effective
use. Pminj is associated to the minimal stack lifetime: RULj(Pminj) =
minPminj6Pj6Pmaxj

RULj(Pj) = RULminj ;
• Pnomj is the power level recommended by fuel cell manufacturers for a

nominal use of fuel cells, defined as Pnomj = 0.75 · Pmaxj(0);
• Poptj is the output inducing the minimal wear and tear and associated

to the maximal RUL. It corresponds to an optimal output considering
fuel cell lifetime maximization as objective. This optimal output value
being unknown, Poptj is approximated by 0.8 · Pnomj , which leads to
Poptj = 0.6 · Pmaxj(0) ;

• RULoptj = RULj(Poptj) is the maximal lifetime for the stack Mj , sup-
posed to be reached by a subset of power outputs defined as follows:
0.9Poptj 6 Pj 6 Poptj (see Figure 3).

Pj0

RULj(Pj)

Pminj 0.9Poptj Poptj Pnomj Pmaxj

maximal RUL

RULoptj

RUL(Pnomj)

RULminj

RUL evolution

Approximation

Figure 3: Approximation of the RUL evolution of a fuel cell stack Mj with
power output

Associated RUL for each output can be deduced from the representation
in Figure 4, in which bold lines represent the availability limit for outputs Pj
between Pminj and Pmaxj . Three particular cases and two different behaviors
regarding stack end of life can be distinguished:
• Poptj 6 Pj 6 Pmaxj : Pj useful life is limited by the decrease of Pmaxj

of equation Pmaxj(t) = ajt + bj , with bj = Pmaxj(0), and depicted by
a dashed green line in Figure 4. In this output range, even if Pj is not
available anymore, the stack can still be used with lower outputs ;

In this first case, the limit represented by the dashed green line stands for
a partial RUL, associated to a particular power output value. Reaching this
value does not mean that the stack cannot be used anymore. For outputs
Pj 6 Poptj , the limit represented by a solid red line in Figure 4 defines a global
RUL corresponding to the stack end of life.
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time0

Pj(t) Pmaxj(0)

Pminj 15%

Pmaxj(0) 100%

Pmaxj(t) = ajt+ Pmaxj(0)

RULoptj

Poptj 60%

0.9Poptj 54%

Pj(t) = αjt− 1.1Poptj

RULminj

Pnomj 75%

RUL(Pnomj)

Pmaxj

decrease

Stack End

of Life

Figure 4: Characteristics evolution of a PEM fuel cell stack Mj with time

• 0.9Poptj 6 Pj 6 Poptj : Pj useful life is supposed to be maximal and to
reach RULoptj ;

• Pminj 6 Pj 6 0.9Poptj : Pj useful life is penalized by the cut depicted
by line of equation P (t) = αjt + βj , with βj = −1.1Poptj . In fact, low
outputs are associated to a greater wear and tear than Poptj .

All these properties taken into account in the health state prognostics model
allow to fit it to fuel cell characteristics which are important for the addressed
scheduling application.

3.2 Compliance with fuel cell characteristics

The model developed in previous section does not observe precisely the real
characteristics of fuel cells. It respects however most important fuel cell behavior
over time and particularly the influence of the past stack usage on its health
state. The impact is different whether the outputs are chosen in the upper
part of the model (Poptj 6 Pj 6 Pmaxj) or in the bottom part (Pminj 6
Pj 6 Poptj). Compliance with an asymmetric behavior is first showed to be
respected for power outputs greater than Poptj . A time equivalence is then
proposed to comply with an appropriate health state evolution when a sequence
of power outputs lower than Poptj is defined in the schedule.

3.2.1 Asymmetric behavior for Poptj 6 Pj 6 Pmaxj

The asymmetric behavior regarding the outputs when Pj > Poptj is well ob-
served. In a schedule defining the contribution over time of a fuel cell stack, two
successive outputs cannot always be permuted. Availability of outputs is in fact
function of the past stack usage. As illustrated in Figure 5, the horizon reached
by a stack depends on the output order over time. If the considered stack is
first used with a high output, P1, during a time t1 and then with a smaller one,
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P2, during a time t2, the associated horizon is named H(P1, P2). If the output
order is reversed, P2 can still be used during t2, but after this, availability of P1

is not enough to allow its use during t1. Then, H(P2, P1) < H(P1, P2).

time0

Pj(t)

Pminj

Pmaxj(0)

Poptj

RULoptj

P1

t1

P2

t2

H(P1, P2)
time0

Pj(t)

P1

P2

(a) First scenario: P1 during t1,
then P2 during t2

time0

Pj(t)

Pminj

Pmaxj(0)

Poptj

RULoptj

P2

t2
P1

t′1 < t1

H(P1, P2)

H(P2, P1) < H(P1, P2)
time0

Pj(t)

P1

P2

(b) Second scenario: P2 during t2,
then P1 during t′1

Figure 5: Illustration of the asymmetric property of fuel cell behavior for
Poptj 6 Pj 6 Pmaxj

3.2.2 Time equivalence for Pminj 6 Pj 6 Poptj

For power outputs in the bottom part of the model (Pminj 6 Pj 6 Poptj),
reaching of the limit represented by a line of equation P (t) = αjt − 1.1Poptj
(see the solid red line in Figure 4) corresponds to the stack end of life. A time
equivalence is defined to comply with the fact that using a power output P1

during a time t1 does not involve the same wear and tear than using an other
power output P2 during the same time t1. The point is then to define a quantity
that can be used to compare the state of health of a stack after the use of any
power output during a certain time. This quantity, named X, is defined as
follows: considering an initial value X = 0 (corresponding to a wear and tear of
0%), if the stack is used with an output P1 during a time t1, then the reached
wear and tear is X = t1�RUL(P1). After the use of P1, if the stack has to be
used with an other output P2, X allows to find the time associated to the wear
and tear that would have been reached if the stack had been used with P2 during
t1. This time is defined by: t1,2 = X × RUL(P2) = t1RUL(P2)�RUL(P1). t1,2
is the time at which the use of the stack with P2 will begin after an use of P1

during t1 (see Figure 6).
Equivalent times can be found for all the power outputs following the straight

line of equation Pj(t) = α′jt+ β′j , with α′j = αj�X (see Figure 6).
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time0

Pj(t)

Pminj

Pmaxj(0)

Poptj

RULoptj

P1

t1

RUL(P1)

P2

t2

RUL(P2)t1,2

Pj(t) = α′jt+ β′j

=
αj

X t+ β′j

Figure 6: Illustration of the time equivalence for Pminj 6 Pj 6 Poptj

4 Resolution

Proposed resolution method makes use of many successive sub-problem resolu-
tions to cope with the decision problem defined in previous section. A Mixed
Integer Linear Programming (MILP) approach, detailed in Section 4.1, is used
to find the optimal assignment of stacks considering the initial health state of
fuel cells, the load demand and the objective.

Horizons of solutions obtained with each MILP are limited either by the
minimal RUL of selected stacks with selected outputs or by the time during
which the demand remains constant. Supposing that all the stacks are not
necessary to reach the demand or that the limiting stack can still be used with
a lower output, many MILP may be launched one after the other until the
system remaining maximal global output gets below the demand. As the change
of output during each stack lifetime is not managed by the MILP approach, a
global resolution, proposed in Section 4.2, is needed to exploit all the system
potential.

4.1 Mixed Integer Linear Programming approach

A mathematical program is used to find the optimal subset of fuel cell stacks and
their configuration to reach a constant demand σ during the maximal amount
of time. Let xj (1 6 j 6 m) be the binary decision variables such that xj = 1
if fuel cell stack Mj is used in the solution and xj = 0 otherwise. Let Pj
(1 6 j 6 m) be the real variables defining each stack contribution to the global
output. Values taken by Pj (1 6 j 6 m) are constrained between a minimal
output, Pminj , and a maximal one, Pmaxj . These bounds express the range
of available outputs for each fuel cell stack.

Main part of the objective function expressed in Equation (1) is the max-
imization of the production horizon H. For each solution, this horizon is
limited by the minimal RUL of selected stacks with selected power outputs:
H = minj|xj=1 (RULj). This corresponds to a max-min problem. A particu-
lar constraint is then defined in Equation (2) to limit the production horizon
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depending on the mathematical program solution.

max H − λ
( m∑
j=1

xj .Pj − σ
)

(1)

H 6 RULj ∀ j = 1, . . . ,m (2)

Second part of the objective function defined in Equation (1) is the overpro-
duction minimization. No storage being made, restriction of the overproduction
allows to minimize losses, which can be due either to wasted power or to an
excessive need in chemical reactants. It results also in the minimization of the
number of stacks used simultaneously to reach the load demand. This allows
to maximize the global remaining potential of the set of stacks and may in-
crease the global production horizon. This secondary objective is weighted with
a multiplying factor, λ, allowing to grant it more or less importance.

Some constraints have to be taken into account in the linear program to
comply with fuel cell intrinsic characteristics and requirements linked with the
decision problem considered. Limited availability of each power output over
time is expressed by Equations (3), (4) and (5). Each of these sets of con-
straints corresponds to one part of the RUL limitation illustrated in Figure 4.
Equation (3) stands for the Pmaxj decrease depicted by a dashed green line
in Figure 4 and applies for power outputs Pj > Poptj . Equation (4) applies
for 0.9Poptj 6 Pj 6 Poptj and Equation (5) for Pj 6 0.9Poptj . They stand
for the stack end of life depicted by a red line in Figure 4. The shape of the
RUL evolution as a function of power output being concave (see Figure 3) and
the three equations defining upper bounds for RUL values, the simultaneous
consideration of these equations allows to link the output value Pj with the ap-
propriate RULj . The term C(1−xj) has been added to arbitrarily overestimate
the RUL of machines that are not used in the solution (when xj = 0), with
C > maxj (RULoptj), so that the solution horizon H is not constrained by the
RUL of a stack which is not used (see Equation (2)).

0 6 RULj 6
Pj − bj
aj

xj + C(1− xj) ∀ j = 1, . . . ,m (3)

0 6 RULj 6 RULoptj .xj + C(1− xj) ∀ j = 1, . . . ,m (4)

0 6 RULj 6
Pj − βj
αj

xj + C(1− xj) ∀ j = 1, . . . ,m (5)

Reaching of the target global output value σ is finally ensured by the con-
straint expressed in Equation (6).

m∑
j=1

xj .Pj > σ (6)

The mathematical program defined by the previous equations for a constant
load demand (σ(t) = σ) can be used to cope with a load demand piecewise
constant over time (σ(t) = σk). Solutions provided by this program could
simply be truncated to the time during which the demand remains constant,
but a better assignment of stacks may be found for a shorter horizon. In order
to find the optimal assignment for the considered load demand σk during the
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associated limited time tmax = tk, an additional constraint limiting the solution
horizon H can be considered as defined in Equation (7).

H 6 tmax (7)

When the load demand is constant during the whole production horizon, tmax
is overestimated such that tmax > maxj(RULoptj). This allows to find the
solution having the maximal horizon whatever the situation, that is whether
the solution horizon is limited by the RUL of a limiting stack or by the time
during which the load demand remains constant. Considering this, the objective
function remains the same for a piecewise constant demand, as well as the sets
of constraints previously defined.

Linear optimization is proposed to cope with the maximization problem.
The term xj .Pj being the product of a binary variable and a real one, the math-
ematical program defined by the previous equations is not linear. Linearization
is then mandatory and is made following the properties defined in set of Equa-
tions (8).

∀x ∈ {0, 1}, ∀ y ∈ [0, U(y)] and ∀ e ∈ R, e = xy if and only if:
e 6 xU(y) (8a)

e 6 y (8b)

e > y − (1− x)U(y) (8c)

e > 0 (8d)

The linearized formulation of the Mixed Integer Linear Program is given in set
of Equations (9), with ej = xj .Pj ∀ j = 1, . . . ,m. This MILP allows to find
an optimal configuration, i.e., an optimal power output value for each available
fuel cell stack, that maximizes the solution horizon. This program can be used
whether the demand is constant over time or piecewise constant.
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

max H − λ
( m∑
j=1

ej − σ
)

(9a)

H 6 RULj ∀ j = 1, . . . ,m (9b)

H 6 tmax (9c)
m∑
j=1

ej > σ (9d)

ej 6 xjPmaxj ∀ j = 1, . . . ,m (9e)

s.t. ej 6 Pj ∀ j = 1, . . . ,m (9f)

ej > Pj − (1− xj)Pmaxj ∀ j = 1, . . . ,m (9g)

ej > 0 ∀ j = 1, . . . ,m (9h)

0 6 RULj 6
ej
aj
− bj
aj
· xj + C(1− xj) ∀ j = 1, . . . ,m (9i)

0 6 RULj 6 RULoptj · xj + C(1− xj) ∀ j = 1, . . . ,m (9j)

0 6 RULj 6
ej
αj
− βj
αj
· xj + C(1− xj) ∀ j = 1, . . . ,m (9k)

with Pj > Pminj > 0 ∀ j = 1, . . . ,m (9l)

0 6 Pj 6 Pmaxj ∀ j = 1, . . . ,m (9m)

xj ∈ {0, 1} ∀ j = 1, . . . ,m (9n)

4.2 Resolution algorithm

Succession of MILP and update of fuel cell stacks characteristics between each
launch of Linear Program is detailed in Algorithm 1. In comparison with a
constant load demand, the load value taken into account by the linear program,
as well as the associated duration, change over time when considering a variable
demand. In this case, an additional step has to be performed to update these
values during the resolution process.

Global lifetime of the multi-stacks fuel cell system,H, corresponds to the sum
of horizons reached by all the successive MILP solutions. Solutions provided by
each Linear Program are optimal considering the health state of stacks at the
beginning of each MILP, but global schedules obtained with the succession of
many MILP are not necessarily optimal.

5 Simulation results

Simulations have been conducted to evaluate the approach proposed in the
previous section. After a description of the problem generation, efficiency of
the approach is assessed for a constant load demand as well as for a demand
piecewise constant over time. This is consistent with the considered application
framework, in which PEM fuel cell systems are used to meet energy requirements
for stationary applications (e.g. domestic usage).

When considering a constant load demand profile, the strategy proposed in
Section 4 for the management of fuel cell stacks is compared to basic strate-
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Algorithm 1: Resolution algorithm

Initialization of fuel cell stacks characteristics
(Pmaxj , Pminj , Poptj ,RULoptj , aj , αj , βj , ∀ j = 1, . . . ,m)

Definition of a load demand profile σ(t) reachable with the set of fuel cell stacks
if the demand is variable then

Initialization of the load demand σ and of the associated duration tmax

H ← 0
Launch of the MILP
repeat

Recording of the solution with horizon H
Update of each fuel cell stack RUL and maximal output reachable,
depending on their use in the solution
if the demand is variable then

Update of the load demand value σ and of the associated duration
tmax, depending on the load demand profile and on the global horizon
H reached so far

Setting of binary variables xj values for each stack Mj as follows:
xj = 0 if Mj reached its EOL ;
xj = 1 if Mj is used in the solution and didn’t reach its EOL ;
xj is let indeterminate otherwise.

H ← H+H
Launch of the MILP

until the MILP has a solution with a horizon H > 1

return Global lifetime H (sum of each horizon H reached with all the

successive MILP)

gies defining intuitive rules for the choice of output values. Robustness of the
approach is then assessed on variable load demand profiles.

5.1 Problem generation

Random problem configurations have been generated using a simulator and con-
figured with parameters such as the number of fuel cell stacks considered, m,
and intrinsic characteristics of PEMFC (maximal output and its decrease rate,
minimal output, etc. - see Figure 4 -). These latter characteristics have been
defined on the basis of fuel cell manufacturer specifications and studies con-
ducted to evaluate fuel cells behavior under wear and tear. Power values taken
into account for simulations are the following for each stack Mj : Pmaxj(0) =
500W ±5% ; Pminj = 0.15 ·Pmaxj(0) ; Poptj = 0.8 ·Pnomj = 0.6 ·Pmaxj(0).
A multi-stacks fuel cell system may include stacks with same output character-
istics, but these can be differentiated by their RUL set by the slope depicting
the maximal output decrease over time (aj). It is indeed assumed that stacks
can have different states of health at the beginning of the scheduling process.
Values for each slope aj have been determined considering a maximal lifetime
RULoptj = 1500 hours ±20% for each stack. Then, aj ∈ [−0.08,−0.13]W.h−1.

When considering a load demand constant over time, only one demand value
σ has been associated to each problem configuration, but many demands cor-
responding to different configurations have been tested. Many loads δ have
been defined such that σ = δ · Pnomtot, with Pnomtot =

∑m
j=1 Pnomj , the

nominal total output reachable with the considered set of fuel cell stacks and
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30% 6 δ 6 90%. Each result is the average of 20 random instances correspond-
ing to one problem configuration as defined before. In the following figures,
results are represented as a function of the load δ.

Robustness of the commitment strategy is then proposed to be assessed on
a variable load demand profile. The variable demand being supposed to be
piecewise constant for the considered micro-CHP context, the demand profile
is divided into k time periods, each of them being associated to a certain load
demand value σk. The instant demand σk is supposed to fluctuate over time
around a mean load demand value σmean. As for the case considering a con-
stant load demand, many instances of the decision problem are considered, with
σmean = δ ·Pnomtot and 30% 6 δ 6 90%. For each problem instance, σk is sup-
posed to take successively a minimal value, σmin = σmean−∆σ, and a maximal
one, σmax = σmean + ∆σ (see Figure 7). Two standard load demand profiles
are considered. First one begins with the minimal demand value, σmin (see
Figure 7a). Second one begins with the maximal value, σmax (see Figure 7b).

time0

σ(t)

σmean

σmin

σmax

∆σ

∆σ

τ

(a) Demand profile type 1

time0

σ(t)

σmean

σmax

σmin

∆σ

∆σ

τ

(b) Demand profile type 2

Figure 7: Variable load profiles considered for simulations

5.2 Results

Results do not vary significantly with the number of stacks considered. For
the results proposed hereafter, the parameter m has been set to 20. This value
is consistent with the considered stationary application. Production horizons
reached by solutions provided by each MILP have been rounded down to the
lower integer. Supposing that RUL values are given in hours or days units,
this avoids applying solutions to fractions of these units. Parameter λ in the
objective function has been set to 2 for each MILP. This value allows to avoid
overproduction and to reach greater production horizons than with λ < 2. For
readability reasons, points associated to the different results shown in following
figures have been scattered around the corresponding load value on the abscissa.

5.2.1 Constant load demand

Efficiency of the proposed commitment strategy defined in Section 4, named S1,
is first assessed through a comparison with two basic intuitive strategies, con-
sidering a load demand constant over time during the whole production horizon:
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σ(t) = σ. First one, S2, conforms to fuel cell manufacturers recommendations
and constraints the use of stacks at their nominal output Pnomj during their
whole lifetime. This strategy corresponds to a classical usage of fuel cell sys-
tems. Strategy S3 limits the selection of power output in the range associated
to the maximal RUL, [0.9Poptj , Poptj ] (see Figure 4). For all the strategies, a
continuous use of fuel cell stacks is observed. In accordance with the assumption
detailed in Section 2.1, no stop-and-start is then allowed during the scheduling
process.

Figure 8 shows the production horizons (in hours) reached with all the con-
sidered strategies as a function of the load δ. Evolution of an upper bound
for the production horizon is also depicted. Considering a constant demand
σ and a set of fuel cell stacks, this upper bound, denoted UB and defined in
Equation (10), corresponds to the theoretical maximal time during which the
load demand can be reached. It can be geometrically defined as the sum for
each stack of the surface below the curve depicting the maximal output de-
crease with time, divided by the load demand. As this simplified expression
does not take into account the lifetime cut-off defined in the MILP formulation
by Equation (9k) for power outputs Pj 6 0.9Poptj , this upper bound is never
reachable.

UB =

 m∑
j=1

1

2
(1.6Pmaxj − 2Pminj).RULoptj�σ

 (10)
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Figure 8: Comparison of production horizons reached with several commitment
strategies

One can see in Figure 8 that strategy S2, setting each fuel cell contribution
to its nominal output, decreases with the load δ. No power output choice is
performed and lifetime of each stack Mj is limited by the lifetime associated
to Pnomj . Only the number of parallel machines needed to reach the demand
σ varies in function of the load. When the load increases, the number of ma-
chines needed in each period of time increases. Less group of parallel machines
can then be constituted, which implies a decrease of the horizon H. Strategy
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S3, limiting the selection of outputs in the range [0.9Poptj , Poptj ], is more
efficient, but not reliable for high loads. The tested demands σ being defined
as a percentage of the nominal total output reachable with the considered set
of fuel cell stacks, Pnomtot, and knowing that Poptj = 0.8 · Pnomj for each
stack Mj , a load δ = 90% is not reachable with strategy S3. A load δ = 80%
is also not always reachable, due to rounding of numbers for the determination
of Pnomtot. Greater production horizons are reached with strategy S1. Results
provided by this strategy being not so far from the upper bound, they are close
to the optimal.

Same behavior can be observed in Figure 9, which shows the distance of pro-
duction horizons obtained with all the considered strategies to the theoretical
upper bound, UB, defined in Equation (10). This upper bound being not reach-
able, results are actually better than showed in this Figure. Strategy S2 allows
to reach a mean relative horizon of around 55%. With strategy S3, this mean
relative horizon reaches 51%, but is close to 0% for high loads. Best results are
obtained with the strategy S1, which allows to reach relative horizons between
78% and 97% of the upper bound UB and 86% on average.
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Figure 9: Distance to a theoretical upper bound of production horizons reached
with several commitment strategies

When considering a constant load demand, the proposed strategy S1 al-
lowing to choose power outputs in the whole available output range [Pminj ,
Pmaxj(t)] allows then to extend the multi-stacks fuel cell system lifetime in
comparison with basic strategies limiting the output range.

Computation time1 increases with the load and with the number of machines,
but solutions are found in less than 1 minute for all the tested configurations.

5.2.2 Piecewise constant load demand

Robustness of the strategy producing best results for a load demand constant
over time, S1, is assessed for variable load demand profiles, σ(t) = σk. For the

1Simulations have been launched using MATLABR© and the solver for linear programming
GurobiR© (Computation parameters: Processor Intel CoreTM i5-3550 CPU 3.30GHz×4, 15.6
Gio, 64 bits)
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results proposed hereafter, time periods are supposed to be of equal duration
with τ = UB� k, UB being the upper bound for the production horizon and k
the number of periods considered (see Figure 7). As the mean load demand over
the profile horizon equals σmean, the upper bound remains the same as the one
defined in Equation (10) for a constant load demand. Load demand profiles have
been divided into 10 time periods. Three different amplitudes for the demand
variations ∆σ are compared. First one considers a variation rate of the load
δ ± 10%, such that σmin = 0.9δ · Pnomtot and σmax = 1.1δ · Pnomtot. Second
one considers δ±20% and the third one δ±30%. As σmin = 0 when considering
δ−30% with δ = 30%, results for loads δ = 30% are not represented in following
figures. The strategy S1, giving best results for a constant load demand, is used
to compare results obtained with these three demand variations.

One can see in Figure 10 that efficiency of the commitment strategy de-
creases when the load variation rate increases, whatever the demand profile
type considered. Reached production horizons decrease also when the load de-
mand δ increases. Depending on the order of the different values taken by the
load demand during the profile horizon, reached production horizons are not the
same. In fact, different results are obtained with the profile type 1 which begins
with a low demand value, σmin, and with a profile type 2 beginning with σmax.
The global need in power output being different, a different number of stacks
may be involved depending on the first part of the profile. Because a continuous
use of stacks is observed once they have been started, decisions taken for the
first part of the profile impact the following ones and, by extension, impact also
the production horizon. This can be seen in Figure 10: for the same demand
variation rate, production horizons reached with the standard profile type 2 are
less than those reached with standard profile type 1. Differences increase with
the load demand variability. Anyway, results remain promising since they reach
at least 71% (resp. 64%) of the theoretical maximal horizon for a mean load
demand δ = 50% with profile type 1 (resp. profile type 2). The resolution
method proposed for a constant load demand can then be used for piecewise
constant demand profiles.
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Figure 10: Distance to a theoretical upper bound of production horizons reached
with commitment strategy S1, considering variable load demands

Considering a piecewise constant load demand, computation time1 increases

19



with the load and with the number of machines. As for a constant load demand,
the method remains all the same time-efficient. In fact, solutions are found in
less than 1 minute for all the tested configurations. The load demand being
considered constant over time or piecewise constant, the proposed resolution
method is then consistent with the mid-term decision level considered for the
application (decision frequencies from hours to weeks).

6 Conclusion

A management of multi-stacks fuel cell systems has been proposed in a PHM
framework. The maximization of such systems lifetime has been addressed using
fuel cell stacks RUL information. As the determination of such RUL values still
needs deep studying in the prognostics domain, a simplified representation of
the fuel cell stacks behavior under wear and tear has been proposed. This health
state prognostics model has been configured to suit to PEM Fuel Cells. The
estimation of stacks available outputs and their associated RUL evolution with
time deduced from this representation has been used to define a scheduling
of stacks in power. The proposed method, making use of successive optimal
resolutions obtained with a mixed integer linear program, allows to extend a
multi-stacks fuel cell system useful life under constant power need. In fact, the
proposed strategy, which allows to choose power outputs in the whole output
range ([Pminj , Pmaxj ]) for each stack, has been shown to be more efficient than
a constant control of stacks with the nominal power output, Pnom, or with the
one associated to the longest RUL, Popt. Comparison between strategies has
been made considering a constant load demand. Robustness of the best strategy
has then been assessed for variable load demands. Definition of considered
piecewise load demand profiles has been based on a cyclic variation of the load
between a minimal value and a maximal one, which is a typical characteristic
of a micro-CHP application. Results show that the approach is consistent with
a real usage of fuel cells in domestic applications.

A particular strategy can however be developed for variable load demand
profiles to propose a better assignment of stacks and improve the reached pro-
duction horizons. In fact, due to the constraint allowing no stop-and-start of
stacks, all the stacks used to deal with a high load demand are still used when
the load demand decreases if they did not reach their end of life. One can how-
ever imagine that less stacks would be enough to reach the lower load demand.
Relaxation of the constraint imposing a non-interrupted use of stacks will be
addressed. Some stop-and-start will then be allowed during the stacks use. Re-
sulting damage to the cells will be taken into account through a certain RUL
decrease for affected stacks. Future work will also include the search for a better
objective function for the MILP formulation. Enhancement of the model defin-
ing the available outputs over time and their associated RUL will be studied as
well by considering a quadratic function to depict the maximal output decrease
with time. This will allow to suit even more the model to the real behavior of
fuel cells. Reuse of overproduction will finally be addressed by the study of a
storage management.
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