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Uncertainty quantification is an integral part of the model validation process and is impor-
tant to take into account during the design of mechanical systems. Sources of uncertainty
are diverse but generally fall into two categories: aleatory due to random process and
epistemic resulting from a lack of knowledge. This work focuses on the behavior of solar
arrays in their stowed configuration. To avoid impacts during launch, snubbers are used
to prestress the panels. Since the mechanical properties of the snubbers and the associated
preload configurations are difficult to characterize precisely, an info-gap approach is pro-
posed to investigate the influence of such uncertainties on design configurations obtained
for different values of safety factors. This eventually allows to revise the typical values of
these factors and to reevaluate them with respect to a targeted robustness level. The pro-
posed methodology is illustrated using a simplified finite element model of a solar array.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the field of structural dynamics, the mathematical model depicting a real mechanical system must not only be vali-
dated against available test data, but also with respect to its final performance in the presence of uncertainties. Indeed,
the required performance may be drastically affected even by a small perturbation of the design hypotheses such as the
nominal model properties. Moreover, real environmental conditions and loads acting on a structure are usually unknown
and are generally not accurately reproduced during tests. It is thus necessary to take these uncertainties into account in
the design process.

This work focuses on the robust design of prestressed space structures such as solar arrays encountered on satellites
(Fig. 1). During the spacecraft launch phase these are stowed in their folded configuration to save space under the launch
vehicle fairing to reduce the risk of damage. Solithane snubbers (i.e. shock absorbers) are inserted between two adjacent
panels to introduce a prestress and to absorb vibrations. However, under high excitation loads, a loss of contact may occur
resulting in impacts which may damage both solar generators and fragile on-board equipment [1]. In practice, the specific
load configuration for which the separation of two neighboring panels occurs is difficult to determine precisely since the
exact level of prestress applied to the structure is uncertain.

Several classifications for the sources and types of uncertainties encountered in mechanical design problems can be found
in the literature (e.g. in [2,3]). It is common in structural dynamics to distinguish two classes of uncertainties. The first one,
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Fig. 1. Views of solar generators on satellites.
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called aleatory uncertainties, is due to the intrinsic randomness of the structure parameters such as the variability of its
physical properties (e.g. Young’s moduli, densities,. . .), of the manufacturing and assembling processes, of its service condi-
tions (e.g. temperature, hydrometry,. . .), but also the variability of the experimental measuring process. The second class per-
tains to epistemic uncertainties. These result from a lack of knowledge or erroneous assumptions such as unknown values of
junction equivalent stiffnesses, simplifying linearity hypothesis, omission of nonlinear or contact elements, unknown prob-
ability distributions of properties,. . .

It is common practice to use probabilistic methodologies [4] to quantify and to propagate aleatory uncertainties through
the system model. A classical approach consists in using a deterministic finite element model and further adding uncertain-
ties through either parametric or non-parametric methods. In parametric methods, the uncertain physical parameters are
characterized by their mean value, their standard deviation or by probability density functions (e.g. Gaussian or uniform dis-
tributions). In non-parametric methods, model uncertainties are handled by directly introducing the uncertainties via global
randomized matrices through dispersion parameters [5].

However, probabilistic approaches are not necessarily appropriate to treat all kinds of uncertainty. This is particularly
true for epistemic uncertainties where the important information is simply missing. Non-probabilistic methods have thus
been proposed including, for example, interval analysis [6,7], fuzzy sets theory [8,9] or lack-of-knowledge theory [10].
Ben-Haim initially proposed in [11] an approach dedicated to problems subjected to sever uncertainties, referred to as
the info-gap theory: its basic concept consists in investigating the degree of lack of knowledge that can be tolerated while
still satisfying a given critical level of performance.

This paper proposes to investigate the case of epistemic uncertainties due to lack of knowledge in the prestress level using
an info-gap approach, in order to determine a robust design for solar arrays in their stowed configuration. The remainder of
this article is organized as follows. In Section 2, a simplified finite element model of a solar array system is presented and its
dynamic behavior is described. In Section 3, the general framework of an info-gap analysis is given and each of the associated
components is further detailed within the scope of the previously described design problem. Finally, based on the derived
indicators, the robustness of different design configurations is compared and the impact of the applied safety factor is
investigated.
2. Simplified model of solar array system

As mentioned in the introduction, during the launch phase, spacecraft are subjected to a harsh dynamic environment.
When large solar arrays are in their stowed configuration, impacts are thus likely to occur between two adjacent panels.
In order to limit such phenomena and to avoid any resulting damage, dedicated snubbers are usually inserted between
the panels, leading to the following modifications: firstly, an increase of the local stiffness, thus limiting the relative displace-
ments; secondly, an induced prestress force, ensuring that contact is maintained between both panels. However, for high
input levels, loss of contact between the snubbers and the panels may arise and impacts may still occur.

2.1. Finite element model

A finite element model of a simplified solar array has been developed in MSC-NASTRAN to investigate this problem, as
depicted in Fig. 2. It consists in two plates (perpendicular to the z direction), meshed with 3072 elements (CQUAD4). The
three stacking points are modeled using beam elements (CBEAM) that are linked to the plates through rigid body elements
(RBE2). While neglecting the mass of these junctions, the masses associated with both upper hinges are taken into account
using concentrated mass elements (CONM2), also linked to the plates by rigid body elements.

The associated element properties are given in Table 1, where E; q; m; T; d and m represent the Young’s modulus, the
Poisson’s ratio coefficient, the plate thickness, the beam cross section and the concentrated mass values, respectively. Finally,
the snubbers’ dynamic behavior is modeled by two linear springs inserted between points 1–2 and 3–4, acting along the glo-
bal z-direction and whose stiffness values are initially equal to ks ¼ 1� 105 N m�1.



Fig. 2. Finite element model of a simplified solar array.

Table 1
Element properties of the model.

CQUAD4 E ¼ 6:52� 1010 Pa q ¼ 2:761 kg m�3 m ¼ 0:34 T ¼ 5� 10�3 m
CBAR E ¼ 5:18� 1010 Pa q ¼ 3:453 kg m�3 m ¼ 0:34 d ¼ 16� 10�3 m
CONM2 m ¼ 191� 10�3 kg
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2.2. Dynamic behavior

A sine excitation f ext of unitary amplitude is initially applied at node 5 (Fig. 2) in the z-direction. The corresponding
acceleration response function1 at node 1 along the z-direction is plotted in Fig. 3(a). Resonances can be observed, especially
at 62 Hz, 64 Hz, 89 Hz and 111 Hz corresponding the four first normal vibration modes, respectively. The associated deflection
fields are displayed in Fig. 4.

As seen in Fig. 4(a) and (b), the first two deflection fields correspond to in-phase modes of the plates. The following mode
shapes have out-of-phase relative displacements between opposite corners, implying a local strain of the interface stiff-
nesses. The generated local reaction force f reac at node 1 can be determined using the MPCF NASTRAN card, as displayed
in Fig. 3(b).
3. Info-gap analysis

3.1. General overview

The info-gap theory proposed by Ben-Haim aims to quantify the robustness of model-based decisions to lack of knowl-
edge in the systemmodel or the performance requirement from the system [12]. This approach provides a useful framework
to investigate the trade-off between performance and robustness but also to compare different candidate design solutions.
Considering the general formulation detailed below, it has been used in a variety of fields, and in particular in structural
dynamics concerning, for example, model updating [13,14], reliability analysis [15,16], optimal test design [17], robust
design in civil engineering regarding seismic activity [18].

An info-gap analysis aims to quantify the difference (i.e. the gap) between the information that is known, e.g. the nominal
value of a parameter, and the information that has to be known in order to ensure an a priori defined critical level of
performance. An info-gap analysis is based on the definition of four components:
1 The whole structure has been a priori submitted to a proportional damping assumption, i.e. C ¼ aK þ bM, where M;K and C correspond to the global
assembled mass, stiffness and damping matrices of the structure, respectively, and a ¼ 1� 10�5 and b ¼ 2.
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Fig. 3. Dynamic behavior of the structure at node 1.

(a) 62 Hz (b) 64 Hz (c) 89 Hz (d) 111 Hz

Fig. 4. Deflection fields of the first normal modes.
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� The system model, denoted SðqÞ, depending on various unknown parameters q, and defining the relation between the
system inputs and outputs. In the case of structural dynamics, it usually comes down to the equation of motion, linking
the external loads to the system responses (displacements, velocities, or accelerations) via the finite element model.

� The uncertainty model, denoted Uðq0;hÞ, representing the uncertainty associated with the variable q. It consists in a
collection of nested sets of uncertain events centered on q0 whose size is controlled by a parameter h, also referred to
as the horizon of uncertainty: the larger this horizon, the more inclusive the uncertainty model.
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� The performance requirement, corresponding to the specification of a critical level, denoted Pcrit , of the system performance
PðSðqÞÞ (e.g. a maximum tolerable displacement or stress in the structure), such as:
PðSðqÞÞ 6 Pcrit: ð1Þ

� The robustness-to-uncertainty function, denoted ĥ, defining the greatest value of the uncertainty parameter h for which the
critical performance requirement is still ensured. This can be expressed by:
ĥ ¼ max h j max
q2Uðq0 ;hÞ

PðSðqÞÞ
� �

6 Pcrit

� �
: ð2Þ

In the following subsections, these components are explicitly derived within the scope of the design of prestressed solar
panels, based on the finite element model described in Section 2.
3.2. Performance requirement

The performance requirement of interest in this study consists in ensuring that the panels remain in contact in order to
avoid potentially damaging impacts. The associated condition on the local interface forces can be expressed as:
jf reacj 6 f ps
f ps > 0

(
; ð3Þ
where f ps represents the considered static prestress load (assumed as positive while ensuring contact) that the reaction force
of the snubber on the panel, f reac , must not exceed. The three thresholds that will be studied are indicated in Fig. 3(b) where it
is seen that the resonances at 89 Hz and 111 Hz may lead to the performance failure. This study will focus on the first res-
onance, with the highest amplitude. However, the extension to a frequency band containing several eigenmodes can be read-
ily made.

It must be noticed that the non-linear dynamic response of the prestressed structure to corner impacts is not taken into
account as the computations stop as soon as a loss of contact at the interface is reached. The physical system is thus reduced
to a linear one.

All the reaction forces f reac that verify the previous performance criterion can be determined as a function of the frequency
and the amplitude of the dynamic input force. This set, denoted Vðf psÞ,
Vðf psÞ ¼ ðx; f extÞ j jf reacðx; f extÞj ¼ f ps
� �

: ð4Þ
is bounded by curves that can be graphically obtained using Fig. 5(a), leading to Fig. 5(b). It can be observed that, for a given
prestress load, the failure point corresponding to the lowest dynamic force f ext , for which the panels separate, occurs at the
resonance frequency. Indeed, with the increasing relative displacement of the corners, the reaction force increases and
exceeds the prestress threshold value. Moreover, as expected, the higher the prestress load, the narrower Vðf psÞ and thus
the smaller the opportunity of failure.
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Fig. 5. Separation zone Vðf psÞ associated with the performance requirement.
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Fig. 6. Evolution of the failure point with uncertainty for ~f ps = (–) 2 N, (--) 4 N, (� � �) 6 N.
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Finally, to handle the various sources and types of uncertainty detailed in the introduction and to comply with interna-
tional standards, a common practice in the aerospace industry consists in adding safety factors at each step of the design
process of a structure. Accordingly, the performance requirement criterion could be re-expressed as
2 For
jf reacj 6 sf � f ps; ð5Þ

where sf is a safety factor, typically ranging from 1.05 to 1.2. It must be emphasized that the design procedure still remains
deterministic while increasing the performance requirement: the larger the value of the safety factor, the safer the design.
However, at this stage, it does not ensure any robustness of the targeted design to uncertainties. Unless otherwise indicated,
this factor will remain equal to 1.

3.3. Uncertainty model

As mentioned at the end of Section 1, the considered source of epistemic uncertainty is the prestress load value f ps.
Indeed, it is assumed here that the level of prestress induced by the snubbers is difficult to assess due to structural uncer-

tainties (e.g. geometric defects, interface stiffness,. . .). Let ~f ps be the best estimate of f ps (assumed as positive). This quantity is
a known but perhaps unreliable estimate of the corresponding value. Moreover, the extent to which it may be wrongly esti-
mated is unknown. Such uncertainty can be modeled using a fractional error info-gap model, defined by
Uð~f ps;hÞ ¼ f ps j jf ps � ~f psj
~f ps

6 h

( )
; h P 0: ð6Þ
The inequality states that the fractional error of the estimate is bounded by the horizon of uncertainty h: when h ¼ 0,
there is no uncertainty and the estimation is correct; as h increases the uncertainty set becomes more and more inclusive.
Since no realistic worst case is a priori known, h is unbounded. The info-gapmodel is thus an unbounded family of nested sets
representing possible realizations of f ps.

Fig. 6 plots the evolution of the failure point in an uncertainty vs dynamic force diagram. At h ¼ 0, the f ext value is the
nominal one and the failure point corresponds to the inflexion point observed in Fig. 5(b). For each prestress load, two dis-
tinct curves originate from the initial estimate due to the absolute value in the uncertainty model, Eq. (6): the left branch

pertains to the minimal value of f ext and the right branch pertains to the maximal one. As an example, for ~f ps ¼ 2 N and
h ¼ 0:2, the critical points can be obtained using the additional gray curves (labeled �20%) Fig. 5(b) and following the blue2

dotted arrow lines.
From an engineering point of view the decreasing curves Fig. 6 correspond to the worst case of performance failure since

the separation occurs for an input amplitude lower than the expected one. From a mathematical point of view, these curves
represent the performance criterion given Eq. (5) where the unknown prestress load f ps has been replaced by its expression
as a function of its best estimate and the horizon of uncertainty. Based on the chosen info-gap uncertainty model given
Eq. (6),
ð1� hÞ~f ps 6 f ps 6 ð1þ hÞ~f ps; ð7Þ
interpretation of color in Fig. 5, the reader is referred to the web version of this article.
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looking for the lower input amplitude amounts to considering the left-hand side equality. This finally implies decreasing
levels of prestress load as the uncertainty increases. Therefore this study focuses on the left-hand parts of the curves.

These curves can also be a useful tool to investigate the tolerable level of uncertainty that sill avoids failure. For example,
if the system is excited with a dynamic force f ext ¼ 0:17 N, no uncertainty is tolerable if the prestress load is equal to 2 N.

Thus, the prestress force value must be exactly known. However, if ~f ps ¼ 4 N, a 0.5 uncertainty level is now tolerable and

even 0.68 in the last case, ~f ps ¼ 6 N.

3.4. Robustness definition

The robustness of the systemmodel considering uncertainty in the prestress load value can now be defined. This function,

denoted ĥ, is the greatest horizon of uncertainty h up to which the performance requirement is satisfied for all realizations of
the uncertainty model:
ĥ ¼ max h j max
f ps2Uð~f ps ;hÞ

jf reacj � sf :f ps
� 	 !

6 0

( )
: ð8Þ
Considering the previous computations, representing this robustness function as a function of the reaction force would
lead to the same plot as in Fig. 6, because of the linearity of the system model. Moreover, as previously highlighted, from

an engineering point of view the worst case is reached for a minimal prestress value (~f ps ¼ 2 N), zero uncertainty (h ¼ 0)
and a maximum value of the input force (f ext ¼ 0:17 N), cf. Fig. 6. The idea is therefore to study the influence of various safety
factors on the robustness of this limit state.

The derived robustness curve is displayed in Fig. 7, in solid line. First, in agreement with the info-gap theory, it is con-
firmed that for sf < 1 the robustness remains null meaning that the performance requirement is not satisfied. However, from
an engineering point of view, such values tend not to be considered as they would lead to underestimating the design con-
straint limit.

Secondly, higher safety factors imply higher degrees of robustness. The other two curves correspond to different esti-

mated initial prestress values ~f ps but still pertain to the previous limit state. These confirm that, for a given safety factor,

the higher the prestress value, the greater the robustness. Moreover, as observed for ~f ps ¼ 6 N, the robustness curves tend
to depict two different behaviors. For sf < 0:8, the slope is quite steep, indicating that a small increase of the safety factor
implies an important gain in robustness. Conversely, for sf > 0:8, the slope becomes flat and there is no added value in fur-
ther increasing the safety factor.

By restraining sf values to a typical industrial range (blue-shaded zone), it can be noted that the slope of the robustness

curve is more important for ~f ps ¼ 2 N. This confirms the fact that decreasing the safety factor as the design process progresses

has more impact on the robustness when the structure is designed with tight performance margins (here for ~f ps ¼ 2 N). More

interestingly, by fixing the desired robustness level, e.g. to 0.3, these curves show that: for ~f ps ¼ 2 N, this amounts to consider

a high safey factor (sf ¼ 1:43); for ~f ps ¼ 2 N or 6 N, this robustness level is reached for all safety factor sf > 1. Hence, it is now
Fig. 7. Robustness of the performance requirement vs safety factor for ~f ps = (–) 2 N, (- -) 4 N, (� � �) 6 N.
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possible using such plots to derive the right value of the safety factor allowing to reach a chosen level of robustness: this may
eventually lead to revise the aforementioned typical industrial range of safety factors.
3.5. Comparison of different snubber stiffnesses

In this last section, the stiffness of the snubbers is introduced as a third varying parameter. The associated reaction forces
are computed for four different values of ks : 1� 104; 1� 105; 1� 106 and 1� 107 N m�1. As expected, softening or stiffen-
ing effects are observed, as shown in Fig. 8.

The same procedure as described below is successively applied to derive the robustness of the different designs. The
obtained curves, displayed in Fig. 9, exhibit the same shape, which allows their respective robustness levels to be compared
directly. Hence, it appears that, in this specific example, the stiffer case leads to the most robust design. However, a greater
stiffness does not necessarily correspond to more robustness, as shown by the comparison between the ks ¼ 1� 104 N m�1

and the ks ¼ 1� 105 N m�1 configurations. This is mainly due to a modification of the global dynamic behavior of the struc-
ture with the snubber stiffness.
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Fig. 8. Comparison of the reaction force at node 1 for different values of the snubber stiffness ks = ( ) 1� 104 N m�1, (–) 1� 105 N m�1, ( ) 1� 106 N m�1
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Fig. 9. Comparison of the robustness curves for different values of the snubber stiffness ks ¼ ( ) 1� 104 N m�1, (–) 1� 105 N m�1, ( ) 1� 106 N m�1 and
(–) 1� 107 N m�1; and ~f ps = (–) 2 N, (- -) 4 N, (� � �) 6 N.
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4. Conclusion

A model-based indicator has been proposed in this paper to assess the robustness of the design of a prestressed structure
representing solar arrays of satellites in their stowed configuration. Given the presence of severe uncertainty on the nominal
prestress values, induced by the introduction of dedicated snubbers, an info-gap approach has been used to study the robust-
ness of the critical design performance (i.e. non-separation of the panels) to lack of knowledge in the prestress. The influence
of various parameters has been investigated and it has been shown that the proposed methods allow different design con-
figurations to be compared and ranked, based on robustness considerations.

Another point addressed in this paper is the relationship between the safety factor and the level of robustness. Using the
proposed methodology, it is now possible to relate the engineer’s standard design margin parameter, or safety factor, to the
concept of robustness. This also makes it possible to assess and/or to revise the considered values of these factors depending
on the design process progress, the uncertainty level associated to the remaining design parameters and the targeted level of
robustness.

Although straightforward, the application of this methodology to industrial structures would benefit from more detailed
finite element models. By taking into account more realistic dynamic behaviors (e.g. prestressed, non-linear) the correspond-
ing robustness curves might exhibit different shapes and several competing robust configurations could exist, depending on
the assumed uncertainty level. Moreover, dedicated experiments could be performed to help define more accurately the
uncertainty model, which remains the key component of the info-gap approach.
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