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Abstract It is widely accepted that the asynchronous parallel methods are
more suitable than the synchronous ones on a grid architecture. Indeed, they
outperform the synchronous methods because they overlap the communica-
tions of the synchronous methods with computations. However, they also usu-
ally execute more iterations than the synchronous ones and thus consume
more energy. To reduce the energy consumption of the CPUs executing such
methods, the Dynamic voltage and frequency scaling (DVFS) technique can be
used. It lowers the frequency of a CPU to reduce its energy consumption, but
it also decreases its computing power. Therefore, the frequency that gives the
best trade-off between energy consumption and performance must be selected.

This paper presents a new online frequency selecting algorithm for paral-
lel iterative asynchronous methods running over grids. It selects a vector of
frequencies that gives the best trade-off between energy consumption and per-
formance. New energy and performance models were used in this algorithm to
predict the execution time and the energy consumption of synchronous, asyn-
chronous or hybrid iterative applications running over grids. The proposed
algorithm was evaluated on the SimGrid simulator. The experiments showed
that synchronously applying the proposed algorithm to the asynchronous ver-
sion of the application reduces on average its energy consumption by 22% and
speeds it up by 5.72%. Finally, the proposed algorithm was also compared to
a method that uses the well known energy and delay product and the com-
parison results showed that it outperforms this method in terms of energy
consumption and performance.
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1 Introduction

Since the start of the digital revolution, the demand for computing power has
been growing exponentially to solve bigger and more complex problems. At
first, to meet these demands, the frequency of the CPUs was regularly in-
creased until reaching the thermal limit. Then, many parallel and distributed
architectures, such as multi-cores, clusters and grids, were implemented in
order to obtain more computing power. This approach consists in using si-
multaneously many computing nodes to solve a big problem that cannot be
solved on a single node. The computing nodes can collaborate by exchanging
data through shared memory or by sending messages synchronously or asyn-
chronously. Therefore, up to now the two most common approaches to get
more computing power have been increasing the frequency of the processor
and using more and more processors. Both approaches increase the energy
consumption of the resulting computing architecture. Indeed, the power con-
sumed by a processor polynomially increases when its frequency increases and
a platform consisting of N computing nodes consumes as much as the sum
of the power consumed by each computing node. Moreover, both approaches
increase the heat generated by the platform and therefore a cooling infrastruc-
ture [40] which also consumes a lot of energy, must be implemented to keep
the platform from overheating. High CPU’s temperatures can also drastically
increase its energy consumption, see [39] for more details.

Many techniques have been developed to reduce the energy consumption
of a CPU while computing. The DVFS is a widely used process to reduce the
energy consumption of a processor by lowering its frequency [31]. However,
reducing the frequency of a CPU reduces its computing power (FLOPS) and
thus the execution time of the applications running over it might be increased.
Therefore, the trade-off between the energy reduction and the degradation
in the execution time of the applications becomes an important optimization
problem. In [6] and [7], two frequency selecting algorithms were proposed to
reduce respectively the energy consumption of synchronous message passing
iterative applications running over homogeneous and heterogeneous platforms.
In this paper, a new frequency selecting algorithm for asynchronous iterative
message passing applications running over grids is presented. An adaptation
for hybrid methods, with synchronous and asynchronous communications, is
also proposed. The algorithm and its adaptation select the vector of frequen-
cies which simultaneously offers a maximum energy reduction and minimum
performance degradation ratio. The algorithm has a very small overhead and
works online without requiring any training nor any profiling.

This paper is organized as follows: Section 2 presents some related works
from other authors. Section 3 describes the characteristics of the considered
grid architecture. Models for predicting the performance and the energy con-
sumption of both synchronous and asynchronous message passing programs
running over a grid are explained in Section 4. Section 5 presents the ob-
jective function used to select the frequencies that maximize the reduction
of energy consumption while minimizing the performance degradation of the
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program. Section 6 details the proposed frequency selecting algorithm. The
iterative multi-splitting application which is a hybrid method and was used as
a benchmark to evaluate the efficiency of the proposed algorithm, is described
in Section 7. Section 8 presents the results of applying the algorithm on the
multi-splitting application and executing it on different grid scenarios. It also
shows the results of running three different power scenarios and comparing
them. Moreover, in the last subsection, the proposed algorithm is compared
to the energy and delay product (EDP) method. Finally, the paper ends with
a summary and some perspectives.

2 Related works

A message passing application is, in general, composed of two types of sections,
which are the computation and the communication sections. The communica-
tions can be done synchronously or asynchronously. In a synchronous message
passing application, when a process synchronously sends a message to another
node, it is blocked until the latter receives the message. During that time, there
is no computation on both nodes and that period is called slack time. On the
contrary, in an asynchronous message passing application, the asynchronous
communications are overlapped by computations, thus, there is no slack time.

Many techniques have been used to reduce the energy consumption of
message passing applications, such as scheduling, heuristics and DVFS. For
example, different scheduling techniques which switch off the idle nodes to
save their energy consumption, were presented in [35,12,25] and [11]. In [9] and
[4], a heuristic to manage the workloads between the computing resources of
the cluster and reduce their energy consumption, was published. However, the
dynamic voltage and frequency scaling (DVFS) is the most popular technique
to reduce the energy consumption of computing processors. In the next two
subsections, some works on using DVFS to reduce the energy consumption of
synchronous and asynchronous message passing applications, are presented.

2.1 Reducing the energy consumption of synchronous message passing
applications

Most of the works in this field target the synchronous message passing appli-
cations because they are more common than the asynchronous ones and easier
to work on. Some researchers have tried to reduce slack times in synchronous
applications running over homogeneous clusters. These slack times can happen
on such architectures if the distributed workloads over the computing nodes
are imbalanced. Many works [43,37,27] reduce the frequency of each proces-
sor with DVFS operations to adapt its computing power to the size of its
assigned task. In [6], we have presented a new energy model to predict the
energy consumed by the processors in a homogeneous cluster and proposed
an algorithm that selects the frequency providing the best tradeoff between
energy consumption and performance.
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Other works focus on reducing the energy consumption of synchronous
applications running over heterogeneous architectures such as heterogeneous
clusters or grids. When executing synchronous message passing applications
on these architectures, slack times are generated when fast nodes have to com-
municate with slower ones. Indeed, the fast nodes have to wait for the slower
ones to finish their computations to be able to communicate with them. In this
case, some energy was saved in [7,18,32] and [8] by reducing the frequencies of
the fast nodes with DVFS operations while minimizing slack times. The higher
the initial slack times are, the more energy can be saved. In [7] and [16], we
have adapted the work presented in [6] to the heterogeneity of the computing
platform. The new energy and performance models take into consideration
the heterogeneous characteristics of the processors and the frequency selection
algorithm selects a new frequency for each processor according to its charac-
teristics.

Heterogeneous platforms are not only composed of heterogeneous CPUs,
they can also use GPUs. Many papers have tackled the subject of reducing
the energy consumption of synchronous applications running on the latter ar-
chitecture, such as [21] and [14]. Their results showed that using architectures
mixing GPUs and CPUs and applying DVFS operations, is more energy ef-
ficient than only using CPUs. To reduce the energy consumption, all these
works used online methods which are executed during the runtime of the ap-
plication. However, some methods, such as those presented in [33] and [15],
require some training or information about the application before executing
the application and reducing its energy consumption.

2.2 Reducing the energy consumption of asynchronous message passing
applications

To our knowledge, no work has been conducted yet on the optimization of
the energy consumption of asynchronous message passing applications. Some
works use asynchronous communications when applying DVFS operations on
synchronous applications. For example, Hsu et al. [17] proposed an online
adaptive algorithm that divides the synchronous message passing application
into several time periods and selects the suitable frequency for each one. The
algorithm asynchronously applies the new computed frequencies to overlap the
multiple DVFS switching times with computation. Similarly, Zhu et al. [41]
studied the difference between a synchronous or an asynchronous application
of the frequency changing algorithm during the execution time of the program.
The comparison showed that the proposed asynchronous scheduler is more en-
ergy efficient than the synchronous one. In [36], Vishnu et al. presented an
energy efficient asynchronous agent that reduces slack times in a parallel pro-
gram to reduce energy consumption. They used asynchronous communications
in the proposed algorithm, which calls the DVFS algorithm many times during
the execution time of the program. The three previous presented works were
applied on applications running over homogeneous platforms.
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In [1], the energy consumption of an asynchronous iterative linear solver
running over a heterogeneous platform, is evaluated. The results showed that
the asynchronous version of the application had less execution time than the
synchronous one. Therefore, according to their energy model the asynchronous
method consumes less energy. However, in their model they do not consider
that during synchronous communications only static power which is signifi-
cantly lower than dynamic power, is consumed.

This paper presents the following contributions:

1. new models to predict the energy consumption and the execution time of
both synchronous and asynchronous iterative message passing applications
running over a grid platform.

2. a new online algorithm that selects a vector of frequencies which gives
the best trade-off between energy consumption and performance for asyn-
chronous iterative message passing applications running over a grid plat-
form. The algorithm has a very small overhead and does not require any
training or profiling. The new algorithm can be applied synchronously or
asynchronously on an iterative message passing application.

3 Characteristics of a grid architecture

A computing grid usually consists of many heterogeneous clusters which are
geographically distant. Therefore, the clusters are interconnected through long
distance networks with higher latency and lower bandwidth than the clusters’
local networks. Each cluster is composed of homogeneous computing nodes
interconnected via a fast local network. Nodes from two clusters can be het-
erogeneous with different computing power, memory and operating system.
Figure 1 is an example of a grid with four different clusters. Inside each clus-
ter, all the nodes are homogeneous but they have different specifications than
the nodes of the other clusters.

In this paper, we are interested in running asynchronous iterative message
passing applications on such platforms while reducing the energy consumption
of the CPUs during the execution. To reduce the energy consumption of these
applications while running on a grid, the heterogeneity of the clusters’ nodes,
such as nodes’ computing powers (FLOPS), energy consumptions and CPU’s
frequency ranges, must be taken into account. To reduce the complexity of
the experiments and focus on the heterogeneity of the nodes, the local net-
works of all the clusters are assumed to be identical, with the same latency
and bandwidth. The networks connecting the clusters are also assumed to be
homogeneous but they are slower than the local networks.
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Fig. 1: A grid platform composed of heterogeneous clusters

4 Performance and energy consumption prediction models

4.1 Execution time of iterative synchronous or asynchronous message passing
applications

An iterative application consists of a block of instructions that is repeatedly
executed until convergence. A distributed iterative application with interde-
pendent tasks requires, at each iteration, exchanging data between nodes to
compute the distributed tasks. The communications between the nodes can be
done synchronously or asynchronously.

In the synchronous model, each node has to wait to receive data from all
its neighbors to compute its next iteration, see Figure 2. Since the tasks are
synchronized, all the nodes execute the same number of iterations. Then, the
overall execution time of the synchronous iterative message passing program
is equal to the execution time of the slowest node which is the sum of all
the iteration times executed by that node. An iteration is composed of some
computations and some synchronous communications and its execution time
is the sum of the execution times of these two parts. The communication time
includes the slack time which is produced when the fast nodes have to wait
for the slower nodes to finish their computations. The overall communication
time for a synchronous application is the summation of periods of time that
begin with an MPI call for sending or receiving a message until the message
is synchronously sent or received. The overall execution time of an iterative
synchronous message passing application with balanced tasks, running on the
grid described above, is equal to the execution time of the slowest node in the
slowest cluster executing a task.

In the asynchronous model, the fast nodes do not have to wait for the slower
nodes to finish their computations to exchange data, see Figure 3. Therefore,
there are no idle times between successive iterations. Each node executes the
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Fig. 2: The synchronous tasks model
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Fig. 3: The asynchronous tasks model

computation of its next iteration with the last received data from its neigh-
bors and the asynchronous communications are overlapped by computations.
Since there is no synchronization between the nodes, they do not execute the
same number of iterations. The difference in the number of executed iterations
between the nodes depends on the heterogeneity of the computing power of
the nodes. The execution time of an asynchronous iterative message passing
application is not equal to the execution time of the slowest node as in the
synchronous mode because each node executes a different number of iterations.
Moreover, the overall execution time is directly dependent on the method used
to detect the global convergence of the asynchronous iterative application. The
global convergence detection method might be synchronous or asynchronous
and centralized or distributed. Therefore, in this paper the overall execution
time of a message passing asynchronous iterative application is computed as
the average of the execution time of all its parallel tasks.

4.2 Dynamic voltage and frequency scaling

Dynamic Voltage and Frequency Scaling (DVFS) is a process, implemented in
modern processors, that reduces the energy consumption of a CPU by scaling
down its voltage and frequency. Since DVFS lowers the frequency of a CPU
and, consequently, its computing power, the execution time of a program run-
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ning over that scaled down processor may increase, especially if the program
is compute bound. The frequency reduction process can be expressed by the
scaling factor S which is the ratio between the highest available frequency
(Fmax) for the CPU and the new frequency (Fnew) applied to the CPU, as in
Equation (1).

S =
Fmax

Fnew
(1)

The execution time of a compute bound sequential program increases propor-
tionally to the applied frequency scaling factor. On the other hand, only the
computation sections of a message passing iterative application increase pro-
portionally to the applied frequency scaling factor. The communications which
could be synchronous or asynchronous, are not affected when the frequency is
scaled down. Indeed, their execution times have not increased and the proces-
sors remain idle, for more details see [13]. However, since in the asynchronous
communications model the communications are overlapped by computations,
the frequency scaling factor affects the performance of the application during
the whole execution time.

4.3 Execution times of iterative message passing applications after applying
DVFS operations

In a grid, the nodes in each cluster have different characteristics, especially
different frequency gears. Therefore, when applying DVFS operations on these
nodes, they may get different scaling factors represented by a scaling vector:
(S11, S12, . . . , SNMi

) where Sij is the scaling factor of processor j in cluster
i. To be able to predict the execution time of synchronous iterative message
passing applications running over a grid, for different vectors of scaling factors,
the communication times and the computation times for all the tasks must be
measured during the first iteration before applying any DVFS operation. Then,
the execution time for one iteration of the synchronous application with any
vector of scaling factors can be predicted using Equation (2).

TNew = max
i=1,...N

j=1,...,Mi

(TcpOld ij · Sij) + min
i=1,...N

j=1,...,Mi

(Tcm ij) (2)

where N is the number of clusters in the grid,Mi is the number of nodes in
cluster i, TcpOld ij and Tcm ij are the computation time and the communication
time of processor j in cluster i during the first iteration. The execution time
for one iteration is equal to the sum of the maximum computation time for
all the nodes with the new scaling factors and the communication time of the
slowest node in the grid. The latter is equal to the minimum local and external
communication time which does not include any slack time. The overall exe-
cution time of the iterative application is equal to the execution time of one
iteration as in Equation (2) multiplied by the number of executed iterations.

The execution time of one iteration of an asynchronous iterative message
passing application, running on a grid, after applying the scaling factors is
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equal to the execution time of the synchronous application minus the commu-
nication times. Indeed, The communications are overlapped by computations.
The execution time for one iteration in the application can be estimated as in
Equation 3.

TNew =

∑N
i=1

∑Mi

j=1(TcpOld ij · Sij)

N ·Mi
(3)

In this work, a hybrid (synchronous/asynchronous) message passing appli-
cation [28] is being used. It is composed of two loops:

1. In the inner loop, at each iteration, the nodes in a cluster synchronously
exchange data between them. There is no communication between nodes
from different clusters.

2. In the outer loop, at each iteration, the nodes from different clusters asyn-
chronously exchange their data between them because the network inter-
connecting the clusters has a high latency.

Therefore, the execution time of one outer iteration of such a hybrid appli-
cation can be predicted by computing the average of the execution time of the
slowest node in each cluster. The overall execution time of the asynchronous
iterative applications can be predicted as follows:

TNew =

∑N
i=1(maxj=1,...,Mi(TcpOld ij · Sij) + minj=1,...,Mi(Ltcm ij))

N
(4)

In Equation (4), the communication times Ltcm ij are only the communica-
tions between the local nodes because the communications between the clusters
are asynchronous and overlapped by computations. Equations (2) and (4) are
based on the equation presented in [7] which predicts the execution time of a
message passing application running over a heterogeneous architecture.

4.4 Energy consumption model

The power consumed by a processor can be divided into two power metrics:
the static power and the dynamic power, for more details see [22,29,31,42].
While the static power is consumed as long as the computing unit is turned on,
the dynamic power is only consumed during computation times. The dynamic
power Pd is related to the switching activity α, the load capacitance CL, the
supply voltage V and the operational frequency F , as shown in Equation (5).

Pd = α · CL · V 2 · F (5)

The static power Ps captures the leakage power as follows:

Ps = V ·Ntrans ·Kdesign · Ileak (6)
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where V is the supply voltage, Ntrans is the number of transistors, Kdesign is
a design dependent parameter and Ileak is a technology dependent parame-
ter. The energy consumed by an individual processor to execute a sequential
program can be computed as follows:

Eind = Pd · Tcp + Ps · T (7)

where T is the execution time of the program, Tcp is the computation time
and Tcp ≤ T . Tcp may be equal to T if there is no communication and no
slack time.

The main objective of a DVFS operation is to reduce the overall energy
consumption [20]. The operational frequency F depends linearly on the supply
voltage V as follows:

V = β · F (8)

where β is a constant value. Equation (8) is used to study the change
of the dynamic voltage with respect to various frequency values in [29]. The
reduction process of the frequency can be expressed by the scaling factor S as
in Equation (1). The new frequency Fnew from Equation (1) can be calculated
as follows:

Fnew = S−1 · Fmax (9)

Replacing equation (8) in equation (5) gives the following equation for the
new dynamic power:

PdNew = α · CL · Vnew
2 · Fnew = α · CL · β2 · Fnew

3 (10)

Replacing Fnew in equation 10 as in equation 9 gives the following equation
for the new dynamic power consumption:

PdNew = α · CL · β2 · Fmax
3 · S−3

= α · CL · Vmax
2 · Fmax · S−3 = PdOld · S−3 (11)

where PdNew and PdOld are the dynamic power consumed with the new fre-
quency and the maximum frequency respectively.

According to Equation 11 the dynamic power is reduced by a factor of
S−3 when reducing the frequency by a factor of S [29]. Since the number of
FLOPS executed by a CPU is proportional to the frequency of that CPU, the
computation time is increased proportionally to S. The new dynamic energy
is the dynamic power multiplied by the new computation time and is given by
the following equation:

EdNew = PdOld · S−3 · (Tcp · S) = S−2 · PdOld · Tcp (12)

The static power is related to the power leakage of the CPU and is con-
sumed during computation and even when the processor is idle. As in [29,
42], the static power of a processor is considered as constant during idle and
computation periods, and for all its available frequencies. The static energy is
the static power multiplied by the execution time of the program. According
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to the execution time model for synchronous applications described in (2), the
execution time of the program is the sum of the computation and the communi-
cation times. The computation time is linearly related to the frequency scaling
factor, while this scaling factor does not affect the communication time. The
static energy of a processor after scaling its frequency is computed as follows:

ES = Ps · (Tcp · S + Tcm ) (13)

In the considered grid platform, each cluster may be composed of homoge-
neous nodes with processors that consume different dynamic and static pow-
ers, from the nodes of the other clusters. The dynamic and static powers for
each node j in cluster i are noted as Pd ij and Ps ij respectively, but in a ho-
mogeneous cluster all the nodes have the same dynamic and static powers.
Moreover, even though the tasks of the distributed message passing iterative
application are load balanced, the computation time of each CPU j of clus-
ter i, noted Tcp ij , may vary a little bit. Therefore, slightly different frequency
scaling factors may be computed for all the nodes of the cluster in order to
decrease the overall energy consumption of the application and reduce slack
times. The communication time of a processor j of cluster i is noted as Tcm ij

and could contain slack times when synchronously communicating with slower
nodes. In the same way, synchronous communications between clusters with
different characteristics could generate slack times, see Figure 2. Consequently,
all the nodes do not have equal communication times.

The overall energy consumption of a synchronous message passing appli-
cation executed over a grid platform during one iteration is equal to the sum
of the dynamic and static energies for each processor in each cluster. It can be
computed as follows:

E =

N∑
i=1

Mi∑
j=1

(S−2
ij · Pd ij · Tcp ij) +

N∑
i=1

Mi∑
j=1

(Ps ij ·

max
i=1,...N

j=1,...,Mi

(Tcp ij · Sij) + min
i=1,...N

j=1,...,Mi

(Tcm ij)) (14)

The energy consumption of an asynchronous application running over a
heterogeneous grid is the summation of the dynamic and static power of each
node multiplied by the computation time of that node as in Equation (15).
The computation time of each node is equal to the overall execution time of
the node because the asynchronous communications are overlapped by com-
putations.

E =

N∑
i=1

Mi∑
j=1

(S−2
ij · Tcp ij · (Pd ij + Ps ij)) (15)

It is common for distributed algorithms running over grids to have asyn-
chronous external communications between clusters and synchronous ones be-
tween the nodes of the same cluster. In this hybrid communication scheme,
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the dynamic energy consumption can be computed in the same way as for the
synchronous application with equation (12). However, since the nodes of dif-
ferent clusters are not synchronized and do not have the same execution time
as in the synchronous application, the static energy consumption is different
between them. The cluster’s execution time is equal to the execution time of
the slowest task in that cluster. The energy consumption of the asynchronous
iterative message passing application running on a heterogeneous grid platform
during one iteration can be computed as follows:

E =

N∑
i=1

Mi∑
j=1

(S−2
ij · Pd ij · Tcp ij) +

N∑
i=1

Mi∑
j=1

(Ps ij ·

( max
j=1,...,Mi

(Tcp ij · Sij) + min
j=1,...,Mi

(Ltcm ij))) (16)

Reducing the frequencies of the processors according to the vector of scal-
ing factors (S11, S12, . . . , SNMi

) may degrade the performance of the appli-
cation and thus, increase the static energy consumed because the execution
time is increased [19]. The overall energy consumption for the synchronous
iterative application is equal to the energy consumed by one iteration as in
(14) multiplied by the number of iterations of that application. While in the
asynchronous applications, the overall energy consumption for the application
can be computed by multiplying the energy consumption from one iteration
of each cluster by the number of the iterations of that cluster, Niter i, as in
equation (17).

E =

N∑
i=1

(

Mi∑
j=1

(S−2
ij · Pd ij · Tcp ij)) ·Niter i +

N∑
i=1

(

Mi∑
j=1

(Ps ij ·

( max
j=1,...,Mi

(Tcp ij · Sij) + min
j=1,...,Mi

(Ltcm ij)))) ·Niter i (17)

5 Energy and performance tradeoff optimization

The main goal behind using the DVFS technique is to lower the frequency
of the CPU dynamically so as to reduce the energy consumption of the CPU.
Modern operating systems automatically adjust the frequency of the processor
according to their needs using DVFS operations. However, the user can scale
down the frequency of the CPU using the on-demand governor [38]. To get the
best performance, the user should select the maximum frequency. Whereas,
to reduce the energy consumption of the CPU, the CPU’s frequency should
be reduced. However, the lowest frequency does not always give the optimal
energy consumption [30] because it increases the execution time and conse-
quently increases the static energy which is linearly related to the execution
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time. Therefore, it is hard to predict the scaling factor that gives the best
tradeoff between energy consumption and performance.

For a scaling factor S, computed as in equation (1), the overall energy
consumption of the iterative application is reduced according to the two energy
equations (14) and (16) and the execution time is increased as in equations
(2) and (4). The relation between the energy consumption and the execution
time is non linear and optimizing both terms is complex, for more details refer
to [13]. Moreover, the energy and the execution time are not measured using
the same metric. To solve this problem, the execution time of a synchronous
iterative application is normalized by computing the ratio between the new
execution time (after scaling down the frequencies of some processors) and the
initial one (with maximum frequency for all nodes) as follows:

TNorm =
TNew

TOld
(18)

where TNew is the new execution time computed as in equation (2) and TOld

is the old execution time without frequency scaling and computed as follows:

TOld = max
i=1,...N

j=1,...,Mi

(TcpOld ij) + min
i=1,...N

j=1,...,Mi

(Tcm ij) (19)

Equation 18 can also be used to normalize the execution time of asyn-
chronous iterative applications. However, TNew should be computed as in
Equation 4 and TOld computed as follows:

TOld =

∑N
i=1(maxj=1,...,Mi

(TcpOld ij) + minj=1,...,Mi
(Ltcm ij))

N
(20)

In the same way, the energy consumption for a synchronous or asyn-
chronous application is normalized by computing the ratio between the con-
sumed energy while scaling down the frequency and the consumed energy with
maximum frequency for all nodes:

ENorm =
EReduced

EOriginal
(21)

Where the reduced energy for synchronous and asynchronous applications,
EReduced , is computed as in Equations (14) and (16) respectively. While the
original energy consumption for synchronous and asynchronous applications,
EOriginal , is computed as in equations (22) and (23) respectively.

Eoriginal =

N∑
i=1

Mi∑
j=1

(Pd ij · TcpOld ij) +
N∑
i=1

Mi∑
j=1

(Ps ij ·

max
i=1,...N

j=1,...,Mi

(TcpOld ij) + min
i=1,...N

j=1,...,Mi

(Tcm ij) (22)
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Fig. 4: The energy and performance relation

Eoriginal =

N∑
i=1

Mi∑
j=1

(Pd ij · TcpOld ij) +

N∑
i=1

Mi∑
j=1

(Ps ij ·

( max
j=1,...,Mi

(TcpOld ij) + min
j=1,...,Mi

(Ltcm ij))) (23)

The normalized energy and the normalized execution time curves do not
evolve (increase/decrease) in the same way. Indeed, according to Equations 21
and 18, the vector of frequency scaling factors (S11, S12, . . . , SNMi) reduces the
energy consumption but increases the execution time. To optimize both terms
at the same time, both curves should follow the same evolution. Therefore, the
normalized execution time is inverted which gives the normalized performance
equation, computed as follows:

PNorm =
TOld

TNew
(24)

Then, the objective function can be modeled as the maximum distance
between the normalized energy curve computed by Equation (21) and the
normalized performance curve computed by Equation (24) over all available
sets of scaling factors. The result of that objective function is the set of scaling
factors that gives both the minimum energy consumption and the minimum
execution time (maximum performance), see Figure 4. The objective function
has the following form:

MaxDist = max
i=1,...N

j=1,...,Mi

k=1,...,Fi

(

Maximize︷ ︸︸ ︷
PNorm(Sijk)−

Minimize︷ ︸︸ ︷
ENorm(Sijk)) (25)

where N is the number of clusters, Mi is the number of nodes in cluster i
and Fi is the number of available frequencies for each node in cluster i. The
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Fig. 5: Selecting the initial frequencies

objective function can work with any energy model or any power values for
each node (static and dynamic powers). However, the most important energy
reduction gain can be achieved when the energy curve has a convex form as
shown in [29,33,42].

6 Frequency selection algorithm

The frequency selection algorithm (1) works online during the first iteration
of the synchronous or asynchronous iterative message passing program run-
ning over a grid. The algorithm selects the set of frequency scaling factors
Sopt11, Sopt12, . . . , SoptNMi

which maximizes the distance, the tradeoff func-
tion (25), between the predicted normalized energy consumption and the nor-
malized performance of the program. The algorithm is called just once in the
iterative program and it uses information gathered at the first iteration to ap-
proximate the vector of frequency scaling factors that gives the best tradeoff.
According to the returned vector of scaling factors, the DVFS algorithm (2)
computes the new frequency for each node in the grid. It also shows where and
when the proposed scaling algorithm is called in the iterative message passing
program.

The proposed algorithm takes into account the heterogeneity of the nodes
in the grid when selecting the vector of frequency scaling factors. For syn-
chronous applications, it reduces slack times and for asynchronous applica-
tions, it balances the computing power between the nodes to reduce the dif-
ference in the number of computed iterations between them. At first, it selects
the initial frequency scaling factors Scp ij that increase the execution times of
fast nodes and minimize the differences between the computation times of fast
and slow nodes. The value of the initial frequency scaling factor for each node
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is inversely proportional to its computation time that was measured during
the first iteration. These initial frequency scaling factors are computed as a
ratio between the computation time of the slowest node in the grid and the
computation time of the node j in the cluster i as follows:

Scp ij =
maxi=1,2,...,N (maxj=1,2,...,Mi

Tcp ij)

Tcp ij

(26)

Using the initial frequency scaling factors computed in Equation (26), the
algorithm (1) computes the initial frequencies for all nodes in all clusters as
a ratio between the maximum frequency of node j in the cluster i and the
computation scaling factor Scp ij for that node as follows:

Fij =
Fmax ij

Scp ij

, i = 1, 2, . . . , N, j = 1, 2, . . . ,Mi (27)

If the computed initial frequency for a node is not available in the gears of that
node, it is replaced by the nearest available frequency. In Figure 5, the nodes
are sorted by their computing power in ascending order and the frequencies of
the faster nodes are scaled down according to the computed initial frequency
scaling factors. The resulting new frequencies are highlighted in Figure 5. This
set of frequencies can be considered as a higher bound for the search space of
the optimal vector of frequencies because selecting scaling factors higher than
the higher bound will not improve the performance of the application and it
will increase its overall energy consumption. Therefore the algorithm that se-
lects the frequency scaling factors starts the search method from these initial
frequencies and takes a downward search direction towards lower frequencies.
The algorithm iterates on all the remaining frequencies, from the higher bound
until all nodes reach their minimum frequencies or until the normalized com-
puted distance is less than zero (the lower bound). At each iteration, it lowers
the frequency of each node by one gear. Both the new overall energy consump-
tion and execution time are computed according to the new scaling factors.
The optimal set of frequency scaling factors is the set that provides the biggest
distance according to the objective function (25). The lower bound is used to
stop the algorithm when the computed distance is below 0, see Figure 4. A neg-
ative distance means that the normalized performance degradation is higher
than the normalized energy saving.

7 Iterative multi-splitting method

Multi-splitting algorithms have initially been studied to solve linear systems
of equations in parallel [24]. Thereafter, they were used to design non linear
iterative algorithms and asynchronous iterative algorithms [2]. The principle of
multi-splitting algorithms lies in splitting the system of equations, then solving
each sub-system using a direct or an iterative method and finally combining the
results in order to build a global solution. An iterative multi-splitting method
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Algorithm 1 The scaling factors selection algorithm
Require:

N number of clusters in the grid.
M number of nodes in each cluster.
Tcp ij array of all computation times for all nodes during one iteration and with the

highest frequency.
Tcm ij array of all communication times for all nodes during one iteration and with the

highest frequency.
Fmax ij array of the maximum frequencies for all nodes.
Pd ij array of the dynamic powers for all nodes.
Ps ij array of the static powers for all nodes.
Fdiffij

array of the differences between two successive frequencies for all nodes.
Ensure: Sopt11, Sopt12 . . . , SoptNMi

, a vector of scaling factors that gives the optimal
tradeoff between energy consumption and execution time

1: Scp ij ←
maxi=1,2,...,N (maxj=1,2,...,Mi

(Tcpij))

Tcpij

2: Fij ←
Fmax ij

Scpi
, i = 1, 2, · · · , N, j = 1, 2, . . . ,Mi.

3: Round the computed initial frequencies Fi to the closest available frequency for each
node.

4: if (not the first frequency) then
5: Fij ← Fij + Fdiffij

, i = 1, . . . , N, j = 1, . . . ,Mi.

6: end if
7: TOld ← computed as in Equations (19) or (20).
8: EOriginal ← computed as in Equations (22) or (23).
9: Sopt ij ← 1, i = 1, . . . , N, j = 1, . . . ,Mi.
10: Dist ← 0
11: while (all nodes have not reached their minimum

frequency or PNorm − ENorm < 0) do
12: if (not the last frequency) then
13: Fij ← Fij − Fdiffij

, i = 1, . . . , N, j = 1, . . . ,Mi.

14: Sij ←
Fmax ij

Fij
, i = 1, . . . , N, j = 1, . . . ,Mi.

15: end if
16: TNew ← computed as in Equations (2) or (4).
17: EReduced ← computed as in Equations (14) or (16).
18: PNorm ← TOld

TNew

19: ENorm ← EReduced
EOriginal

20: if (PNorm − ENorm > Dist) then
21: Sopt ij ← Sij , i = 1, . . . , N, j = 1, . . . ,Mi.
22: Dist ← PNorm − ENorm

23: end if
24: end while
25: Return Sopt11, Sopt12, . . . , SoptNMi

repeatedly executes the same bloc of instructions until the global convergence
of the system to a good approximation of the system’s solution.

In this paper, we have used an asynchronous iterative multisplitting method
to solve a 3D Poisson problem as described in [28]. The problem is divided into
small 3D sub-problems and each one is solved by a parallel GMRES method.
For more information about multi-splitting algorithms, interested readers are
invited to consult the previous references.
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Algorithm 2 DVFS algorithm
1: for k = 1 to some iterations do
2: Computations section.
3: Communications section

(asynchronous or synchronous communications).
4: if (k = 1) then
5: Gather all times of computation and

communication from each node.
6: Call Algorithm 1.
7: Compute the new frequencies from the

returned optimal scaling factors.
8: Set the nodes to the new frequencies.
9: end if
10: end for

Table 1: The characteristics of the four types of nodes

node Simulated Max Min Diff. Dynamic Static
type GFLOPS Freq. Freq. Freq. power power

of one node GHz GHz GHz
A 40 2.50 1.20 0.100 20W 4W
B 50 2.66 1.60 0.133 25W 5W
C 60 2.90 1.20 0.100 30W 6W
D 70 3.40 1.60 0.133 35W 7W

8 Experiments

The heterogeneous scaling algorithm (HSA) (1) was applied to the parallel
iterative multi-splitting method and executed over the SimGrid/SMPI simu-
lator v3.10 [5] in order to evaluate its performance. The SimGrid simulator
offers flexible tools to create a grid architecture and run message passing ap-
plications over it. The grid used in the experiments has four different types of
nodes. Two types of nodes have different computing powers, frequency ranges,
static and dynamic powers. Table 1 presents the characteristics of the four
types of nodes. The specifications of the simulated nodes are similar to real
Intel processors. Many grid configurations have been used in the experiments
where the number of clusters and the number of nodes per cluster are equal to
4 or 8. For the grids composed of 8 clusters, two clusters of each type of nodes
were used. The number of nodes per cluster is the same for all the clusters in
a given grid.

The CPUs’ constructors do not specify the amount of static and dynamic
powers their CPUs consume. The maximum power consumption for each node’s
CPU was chosen to be proportional to its computing power (FLOPS). The dy-
namic power was assumed to represent 80% of the overall power consumption
while the remaining part is the static power. Similar assumptions were made
in [6,7,29]. The clusters of the grid are connected via a long distance Ether-
net network with 1Gbit/s bandwidth, while inside each cluster the nodes are
connected via a high-speed 10Gbit/s bandwidth local Ethernet network. The
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Table 2: The different experiment scenarios

Platform Clusters Number of nodes Vector Total number of
scenario number in cluster size nodes in grid

Grid.4*4.400 4 4 4003 16
Grid.4*8.400 4 8 4003 32
Grid.8*4.400 8 4 4003 32
Grid.8*8.400 8 8 4003 64
Grid.4*4.500 4 4 5003 16
Grid.4*8.500 4 8 5003 32
Grid.8*4.500 8 4 5003 32
Grid.8*8.500 8 8 5003 64

local networks have ten times less latency than the network connecting the
clusters.

8.1 Energy consumption and execution time of the multi-splitting application

The multi-splitting (MS) method solves a three dimensional problem of size
N = Nx ·Ny ·Nz. The problem is divided into equal subproblems which are dis-
tributed to the computing nodes of the grid and then solved. The experiments
were conducted on problems of size N = 4003 or N = 5003 that require more
than 12 and 24 Gigabyte of memory, respectively. Table 2 presents the differ-
ent experiment scenarios with different numbers of clusters, nodes per cluster
and problem sizes. A name, consisting in the values of these parameters was
given to each scenario.

This section focuses on the execution time and the energy consumed by
the MS application while running over the grid platform without using DVFS
operations. The energy consumption of the synchronous and asynchronous MS
was computed using the energy Equations 14 and 16 respectively. Figures 6a
and 6b show the energy consumption and the execution time, respectively,
of the multi-splitting application running over a heterogeneous grid with dif-
ferent numbers of clusters and nodes per cluster. The synchronous and the
asynchronous versions of the MS application were executed over all the sce-
narios described in Table 2. As shown in Figure 6a, the asynchronous MS
consumes more energy than the synchronous one. Indeed, the asynchronous
application overlaps the asynchronous communications with computations and
thus it executes more iterations than the synchronous one and has no slack
times. More computations result in more dynamic energy consumption by the
CPU in the asynchronous MS method. Since the dynamic power is chosen
to be four times higher than the static power, the asynchronous MS method
consumes more overall energy than the synchronous one. However, the execu-
tion times of the experiments, presented in Figure 6b, show that the execution
times of the asynchronous MS are smaller than the execution times of the
synchronous one. Indeed, in the asynchronous application, the fast nodes do
not have to wait for the slower ones to exchange data. So there are no slack
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Fig. 6: The energy consumption and the execution time of the multi-splitting
application without applying the HSA algorithm

times and more iterations are executed by the fast nodes which accelerates the
convergence to the final solution.

The synchronous and asynchronous MS methods scale well. The execution
times of both methods decrease linearly with the increase of the number of
computing nodes in the grid, whereas the energy consumption is approximately
the same when the number of computing nodes increases. Therefore, the en-
ergy consumption of this application is not directly related to the number of
computing nodes.
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8.2 Experimental results of applying the scaling factor selection algorithm

The scaling factor selection algorithm 1 was applied to both synchronous and
asynchronous MS applications which were executed over the 8 possible scenar-
ios presented in table 2. The DVFS algorithm 2 needs to send and receive some
information before calling the scaling factor selection algorithm algorithm 1.
The communications of the DVFS algorithm can be applied synchronously
or asynchronously which results in four different versions of the application:
synchronous or asynchronous MS with synchronous or asynchronous DVFS
communications. Figures 7a and 7b present the energy consumption and the
execution time for the four different versions of the application running on all
the scenarios in Table 2.

Figure 7a shows that the energy consumption of all four versions of the
method, running over the 8 grid scenarios described in Table 2, are not af-
fected by the increase in the number of computing nodes. The MS method
without DVFS had the same behavior. On the other hand, Figure 7b shows
that the execution time of the MS application with DVFS operations decreases
in inverse proportion to the number of nodes. Moreover, it can be noticed that
the asynchronous MS with synchronous DVFS consumes less energy than the
other versions of the method. Two reasons explain this energy consumption
reduction:

1. The asynchronous MS with synchronous DVFS version uses synchronous
DVFS communications which allow it to apply the new computed frequen-
cies at the begining of the second iteration. Thus, reducing the consumption
of dynamic energy by the application from the second iteration until the
end of the application. Whereas in asynchronous DVFS versions where the
DVFS communications are asynchronous, the new frequencies cannot be
computed at the end of the first iteration and consequently cannot be ap-
plied at the beginning of the second iteration. Indeed, since the performance
information gathered during the first iteration is not sent synchronously at
the end of the first iteration, fast nodes might execute many iterations be-
fore receiving the new computed frequencies, based on this information, and
applying them. Therefore, many iterations might be computed by CPUs
running on their highest frequency and consuming more dynamic energy
than scaled down processors.

2. As shown in Figure 6b, the execution time of the asynchronous MS version
is lower than the execution time of the synchronous MS version because
there is no idle time in the asynchronous version and the communications
are overlapped by computations. Since the consumption of static energy is
proportional to the execution time, the asynchronous MS version consumes
less static energy than the synchronous version.

The energy saving percentage is the ratio between the reduced energy con-
sumption after applying the HSA algorithm and the original energy consump-
tion of the synchronous MS method without DVFS. Whereas, the performance
degradation percentage is the ratio between the original execution time of the
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Fig. 7: The energy consumption and the execution time of different versions
of the multi-splitting application after applying the HSA algorithm

synchronous MS method without DVFS and the new execution time after
applying the HSA algorithm. Therefore, in this section, the synchronous MS
method without DVFS serves as a reference for comparison with the other
methods for the following terms: energy saving, performance degradation and
the distance between both previous terms.

In Figure 8, the energy saving is computed for the four versions of the
MS method which are the synchronous or asynchronous MS that apply syn-
chronously or asynchronously the HSA algorithm. The fifth version is the
asynchronous MS without any DVFS operations. Figure 8 shows that some
versions have positive or negative energy saving percentages which means that



Energy Consumption Reduction for Asynchronous Message Passing Applications 23

−20

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

G
rid

.4
*4

.4
00

G
rid

.4
*8

.4
00

G
rid

.8
*4

.4
00

G
rid

.8
*8

.4
00

G
rid

.4
*4

.5
00

G
rid

.4
*8

.5
00

G
rid

.8
*4

.5
00

G
rid

.8
*8

.5
00

E
n

e
rg

y
 S

a
v
in

g
 %

Platform scenarios

Sync MS with Sync DVFS 
Async MS without DVFS

Async MS with Sync DVFS
Async MS with Async DVFS
Sync MS with Async DVFS

Fig. 8: The energy saving percentages after applying the HSA algorithm to
the different versions and scenarios
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Fig. 9: The results of the performance degradation

the corresponding version respectively consumes less or more energy than the
reference method. As in Figure 7a and for the same reasons presented above,
the asynchronous MS with synchronous DVFS version gives the best energy
saving percentage when compared to the other versions.

Figure 9 shows that some versions have negative performance degradation
percentages which means that the new execution time of a given version of
the application is less than the execution time of the synchronous MS without
DVFS. Therefore, the version with the smallest negative performance degra-
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Fig. 10: The results of the tradeoff distance

dation percentage has actually the best speed up when compared to the other
versions. The version that gives the best execution time is the asynchronous
MS without DVFS which on average outperforms the synchronous MS with-
out DVFS version by 16.9%. While the worst case scenario is the synchronous
MS with synchronous DVFS where the performance is on average degraded
by 2.9% when compared to the reference method.

The energy consumption and performance tradeoff between these five ver-
sions is presented in Figure 10. These distance values are computed as the
differences between the energy saving and the performance degradation per-
centages as in the optimization function (25). Thus, the best MS version is the
one that has the maximum distance between the energy saving and perfor-
mance degradation. The distance can be negative if the energy saving percent-
age is inferior to the performance degradation percentage. The asynchronous
MS, applying the HSA algorithm synchronously, gives the best distance which
is on average equal to 27.72%. This version saves, on average, up to 22% of
energy and, on average, speeds up the application by 5.72%. This overall im-
provement is due to combining asynchronous computing and the synchronous
application of the HSA algorithm.

Both platform scenarios, Grid 4*8 and Grid 8*4, use the same total number
of computing nodes but give different trade-off results. The versions applying
the HSA algorithm and running over the Grid 4*8 platform, give higher dis-
tance percentages than those running on the Grid 8*4 platform. In the Grid
8*4 platform scenario more clusters are used than in the Grid 4*8 platform
and thus the global system is divided into 8 small subsystems instead of 4.
Indeed, each subsystem is assigned to a cluster and synchronously solved by
the nodes of that cluster. Dividing the global system into smaller subsystems
increases the number of outer iterations required for the global convergence
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of the system because the more the multi-splitting decomposes the system
the higher the spectral radius is. For example, the asynchronous MS method,
applying synchronously the HSA algorithm, requires on average 135 outer it-
erations when running over the Grid 4*8 platform and 148 outer iterations
when running over the Grid 8*4 platform. The increase in the number of ex-
ecuted iterations over the Grid 8*4 platform justifies the increase in energy
consumption by applications running over that platform.

8.3 Comparing the number of iterations executed by the different MS versions

The heterogeneity in the computing power of the nodes has a direct effect on
the number of iterations executed by the nodes when running an asynchronous
iterative message passing method. The fast nodes execute more iterations than
the slower ones because the iterations are not synchronized. On the other hand,
in the synchronous versions, all the nodes have the same number of iterations
and have to wait for the slowest node to finish its iteration before starting the
next iteration because the iterations are synchronized.

When the fast nodes asynchronously execute more iterations than the
slower ones, they consume more energy without significantly improving the
global convergence of the system. Reducing the frequency of the fast nodes
will decrease the number of iterations executed by them. If all the nodes,
the fast and the slow ones, execute almost the same number of iterations,
the asynchronous application will consume less energy and its performance
will not be significantly affected. Therefore, applying the HSA algorithm over
asynchronous applications is very promising. In this section, the number of
iterations executed by the asynchronous MS method, while solving a 3D prob-
lem of size 4003 with and without applying the HSA algorithm, is evaluated.
In Table 3, the standard deviation of the number of iterations executed by the
asynchronous application over all the grid platform scenarios, is presented.

Table 3: The standard deviation of the numbers of iterations for different
asynchronous MS versions running over different grid platforms

Grid
platform

Standard deviation
Asyn. MS without
HSA

Asyn. MS with
Asyn. HSA

Asyn. MS with
Syn. HSA

Grid.4*4.400 60.43 13.86 1.12
Grid.4*8.400 58.06 27.43 1.22
Grid.8*4.400 50.97 20.76 1.15
Grid.8*8.400 52.46 48.40 2.38

A small standard deviation value means that there is a very small difference
between the numbers of iterations executed by the nodes. This also means
that fast nodes did not uselessly execute more iterations than the slower ones
and the application does not waste a lot of energy. As shown in Table 3, the
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asynchronous MS that applies synchronously the HSA algorithm has the best
standard deviation value when compared to the other versions. Two reasons
explain the advantage of this method:

1. The applied HSA algorithm selects new frequencies that reduce the com-
putation power of the fast nodes while maintaining the computation power
of the slower nodes. Therefore, it tries to balance the computation powers
of the heterogeneous nodes as much as possible.

2. Applying the HSA algorithm synchronously scales down the frequencies of
the CPUs at the end of the first iteration of the application. Therefore the
computation power of all the nodes is balanced as much as possible since the
beginning of the application. On the other hand, applying the HSA algo-
rithm asynchronously onto the asynchronous MS application only changes
the frequencies of the nodes after executing many iterations. Therefore,
before the frequencies are scaled down, the fast nodes have enough time
to execute many more iterations than the slower ones and consequently
increase the overall energy consumption of the application.

Finally, the asynchronous MS version that does not apply the HSA algo-
rithm gives the worst standard deviation values because there is a big differ-
ence between the numbers of iterations executed by the heterogeneous nodes.
Therefore, this version consumes more energy than the other versions as shown
in Figure 8.

8.4 Comparing different power scenarios

In the previous sections, all the results were obtained by assuming that the
dynamic and the static powers are respectively equal to 80% and 20% of the
total power consumed by a CPU while computing at its highest frequency.
The goal of this section is to evaluate the proposed frequency selection algo-
rithm when these two power ratios are changed. Two new power scenarios are
proposed in this section:

1. The dynamic and the static power are respectively equal to 90% and 10%
of the total power consumed by a CPU while computing at its highest
frequency.

2. The dynamic and the static power are respectively equal to 70% and 30%
of the total power consumed by a CPU while computing at its highest
frequency.

The asynchronous MS method was executed over two platform scenarios, the
Grid 4*4 and Grid 8*4. Two versions of the asynchronous MS method, with
synchronous or asynchronous application of the HSA algorithm, were evaluated
on each platform scenario. The energy saving, performance degradation and
distance percentages for both versions over both platform scenarios and with
the three power scenarios are presented in figures 11a and 11b.

The displayed results are the average of the percentages obtained from
multiple runs. Both figures show that the 90%-10% power scenario gives the
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Fig. 11: The results of the three power scenarios

Selected frequency scaling factors for Grid 4-4

70%-30%
Scenario 

90%-10%
Scenario

80%-20%
Scenario

1 1 1.25 1.251 1 1.25 1.25 1.45 1.45 1.75 1.751.45 1.45 1.75 1.75

1 1 1.25 1.251 1 1.25 1.25 1.52 1.52 1.75 1.751.52 1.52 1.75 1.75

1.04 1.04 1.33 1.331.04 1.04 1.33 1.33 1.61 1.61 1.88 1.881.61 1.61 1.88 1.88

Fig. 12: Comparison of the selected frequency scaling factors by the HSA
algorithm for the three power scenarios

biggest energy saving percentages. The high dynamic power ratio pushes the
HSA algorithm to select bigger scaling factors which decreases significantly
the dynamic energy consumption. Figure 12 shows that the HSA algorithm
selects in the 90%-10% power scenario higher frequency scaling factors than
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in the other power scenarios for the same application. Moreover, the 90%-10%
power scenario has the smallest static power consumption per CPU which re-
duces the effect of the performance degradation, due to the scaling down of
the frequencies of the CPUs, on the total energy consumption of the applica-
tion. Finally, the 90%-10% power scenario gives higher distance percentages
than the other two scenarios which means the difference between the energy
reduction and the performance degradation percentages is the highest for this
scenario. From these observations, it can be concluded that, in a platform
with CPUs that consume low static power and high dynamic power, a lot of
energy consumption can be reduced by applying the HSA algorithm but the
performance degradation might be significant.

The energy saving percentages are the smallest with the 70%-30% power
scenario. The high static power consumption in this scenario forces the HSA
algorithm to select small scaling factors in order not to decrease the perfor-
mance of the application significantly. Indeed, scaling down more the frequency
of the CPUs will notably increase the total execution time and consequently
increase the static energy consumption which will outweigh the reduction of
dynamic energy consumption. Finally, since the dynamic power consumption
ratio is relatively small in this power scenario, less dynamic energy reduction
can be gained by lowering the frequencies of the CPUs than in the other power
scenarios. On the other hand, the performance of the 70%-30% power scenario
suffers the least from the application of the HSA algorithm. From these ob-
servations, it can be concluded that in a high static power model, just a small
percentage of energy can be saved by applying the HSA algorithm.

The asynchronous application of the HSA algorithm improves on average
the performance of the application more than the synchronous application of
the HSA algorithm. This difference can be explained by the fact that applying
the HSA algorithm synchronously scales down the frequencies of the CPUs
after the first iteration, while applying the HSA algorithm asynchronously
scales them down after many iterations, depending on the heterogeneity of
the platform. However, for the same reasons as above, the synchronous ap-
plication of the HSA algorithm reduces the energy consumption more than
the asynchronous one even though, the method applying the first has a bigger
execution time than the one applying the latter.

8.5 Comparing the HSA algorithm to the energy and delay product method

Many methods have been proposed to optimize the trade-off between the en-
ergy consumption and the performance of message passing applications. A
well known optimization model used to solve this problem is the energy and
delay product, EDP = energy×delay . In [10,26,3], the researchers used equal
weights for the energy and delay factors. However, others added some weights
to the factors in order to direct the optimization towards more energy saving
or less performance degradation. For example, in [23] they used the product
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EDP = energy × delay2 which favors performance over energy consumption
reduction.

In this work, the proposed scaling factors selection algorithm optimizes
both the energy consumption and the performance at the same time and gives
the same weight to both factors as in Equation 25. In this section, to evaluate
the performance of the HSA algorithm, it is compared to the algorithm pro-
posed by Spiliopoulos et al. [34]. The latter is an online method that selects for
each processor the frequency that minimizes the energy and delay product in
order to reduce the energy consumption of a parallel application running over
a homogeneous multi-core platform. It gives the same weight to both metrics
and predicts both the energy consumption and the execution time for each
frequency gear as in the HSA algorithm. To fairly compare the HSA algorithm
with the algorithm of Spiliopoulos et al., the same energy models, Equation
(14) or (16), and execution time models, Equation (2) or (4), are used to pre-
dict the energy consumptions and the execution times. Furthermore, the EDP
algorithm, as for the HSA algorithm, starts the search process from the initial
frequencies that are computed in Equation (27). It stops the search process
when it reaches the minimum available frequency for each processor.

The EDP objective function can be equal to zero when the predicted de-
lay is equal to zero. Moreover, this product is equal to zero before applying
any DVFS operation. To eliminate the zero values, the EDP function can be
modified into the following form:

EDP = ENorm × (1 +DNorm) (28)

where ENorm is the normalized energy consumption which is computed as in
Equation (21) and DNorm is the normalized delay of the execution time which
is computed as follows:

DNorm = 1− PNorm = 1− (
Told
Tnew

) (29)

Where PNorm is computed as in Equation (24).
The EDP algorithm was applied to the synchronous and asynchronous

MS algorithm solving a 3D problem of size 4003. Two platform scenarios,
Grid 4*4 and Grid 4*8, were chosen for this experiment. The EDP method
was applied synchronously and asynchronously to the MS application as for
the HSA algorithm. The comparison results of the EDP and HSA algorithms
are presented in Figures 13a, 13d,13c and 13d. Each of these figures presents
the energy saving, performance degradation and distance percentages for one
version of the MS algorithm. The results shown in these figures are also the
average of the results obtained from running each version of the MS method
over the two platform scenarios described above.

All the figures show that the proposed HSA algorithm outperforms the
EDP algorithm in terms of energy saving and performance degradation. EDP
gave for some scenarios negative trade-off values which means that the perfor-
mance degradation percentages are higher than the energy saving percentages,
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Fig. 13: The comparison results
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while the HSA algorithm gives positive trade-off values over all scenarios. The
frequency scaling factors selected by the EDP are most of the time higher than
those selected by the HSA algorithm as shown in Figure 14. The results confirm
that higher frequency scaling factors do not always give more energy saving,
especially when the overall execution time is drastically increased. Therefore,
the HSA method which computes the maximum distance between the energy
saving and the performance degradation, is an effective method to optimize
both metrics at the same time.

9 Conclusions

This paper presents a new online frequency selection algorithm. It selects the
best vector of frequencies that maximizes the distance between the predicted
energy consumption and the predicted execution time of an asynchronous mes-
sage passing iterative application running over a grid. The algorithm uses new
energy and performance models to predict the energy consumption and the
execution time of a synchronous, asynchronous or hybrid message passing it-
erative application running over a grid. The proposed algorithm was evaluated
on the SimGrid simulator while running a multi-splitting (MS) application. It
was applied synchronously and asynchronously on a synchronous and an asyn-
chronous version of the MS application. The results of the experiments show
that applying synchronous HSA algorithm on an asynchronous MS applica-
tion gives the best tradeoff between energy consumption reduction and per-
formance. This scenario saves on average the energy consumption by 22% and
reduces the execution time of the application by 5.72%. The HSA algorithm
was also evaluated over three power scenarios. As expected, the algorithm
selects different vectors of frequencies for each power scenario. The highest
energy consumption reduction was achieved in the power scenario with the
highest dynamic power and the lowest performance degradation was obtained
in the power scenario with the highest static power. Finally, the proposed algo-
rithm was compared to another method that uses the well known energy and
delay product as an objective function. The comparison results showed that
the proposed algorithm outperforms the latter by selecting a vector of frequen-
cies that gives a better trade-off between the energy consumption reduction
and the performance.

As a future work, it would be interesting to evaluate the HSA algorithm on
other message passing iterative methods in order to see how it adapts to the
characteristics of the new method. Furthermore, the methods should be exe-
cuted on a real grid to check if the results obtained by the SimGrid simulator
are comparable to those of a real experiment. Finally, it would be interesting
to explore if a relation can be found between the numbers of asynchronous
iterations required to global convergence and the applied frequencies to the
nodes. The number of iterations required by each node for global convergence
is not known in advance and the change in CPUs frequencies influences the
number of iterations required by each node for global convergence.
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