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Abstract

Clouds are more and more becoming a credible al-
ternative to parallel dedicated resources. The pay-
per-use pricing policy however highlights the real
cost of computing applications. This new criterion,
the cost, must then be assessed when scheduling
an application in addition to more traditional ones
as the completion time or the execution flow. In
this paper, we tackle the problem of optimizing the
cost of renting computing instances to execute an
application on the cloud while maintaining a de-
sired performance (throughput). The target appli-
cation is a stream application based on a DAG pat-
tern, i.e., composed of several tasks with dependen-
cies, and instances of the same execution task graph
are continuously executed on the instances. We pro-
vide some theoretical results on the problem of op-
timizing the renting cost for a given throughput then
propose some heuristics to solve the more complex
parts of the problem, and we compare them to opti-
mal solutions found by linear programming.

Keywords: Clouds, scheduling, optimization,
DAG applications

1 Introduction

Public clouds are more and more becoming a cred-
ible alternative to private parallel computing re-
sources to run scientific applications. The pay-per-
use pricing policy however highlights the financial
cost of running an application on cloud platforms
while only the computing cost where mostly con-
sidered on dedicated platforms. From the schedul-
ing point of view this introduces a new criterion, the
cost, when executing an application on a cloud in
addition to more traditional ones as the completion
time or the execution flow. From the optimization
point of view, the cost criterion is antagonistic to the
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execution performance both in case of an execution
flow or a single application as it is cheaper not to run
an application than running it.

In this paper we tackle the problem of optimiz-
ing the cost of renting computing instances to ex-
ecute an application on the cloud while maintain-
ing a desired performance (throughput). The target
application model is a stream of applications based
on the same DAG pattern, i.e., composed of several
tasks with dependencies, and instances of the same
execution task graph are continuously executed on
the instances. An example of such an application
can be found in image or signal processing applica-
tions where several different filters or codecs must
be applied to a stream of data, or a large set of im-
ages. Our objective is to provide enough resources
for the application to reach a given throughput, in
terms of computed instances, while minimizing the
renting cost. The desired throughput may be manda-
tory to guarantee the quality level of a video stream
for example. Since we are planning to rent machines
from clouds, we are interested in minimizing the to-
tal cost. As we run long-term stream applications,
this objective is better expressed as minimizing the
hourly price for renting the machine.

On the cloud the provided resources are how-
ever heterogeneous as different types of instances
are proposed: for instance the EC2 or Azure clouds
provide different types of on demand instances®.
Other heterogeneity factors must also be taken into
account: 32-bit architectures vs. 64 ones, CPU ar-
chitectures vs. GPU ones and so on. This imposes
constraints on the task to instance mapping: tasks
that can run on one instance cannot always run on
another instance. For instance 64-bits applications
cannot be run on 32-bits instances, CPU tasks can-
not be run on GPU instances or some constraints
may be forced by the amount of memory required to
run the task. On the other hand tasks may have dif-
ferent implementations with different constraints, as
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for instance the need for specific hardware. A ma-
trix multiplication task can be implemented either
for CPU or for GPU but the associated task must
be run on the right hardware. So a type must be
associated with each task and only the correspond-
ing instances can be used to run it. Considering that
the same computation can be done using tasks of
different types, we can define alternative graphs to
compute the same result. For instance, if an appli-
cation pattern includes a matrix multiplication task
then two alternative graphs may be defined: one that
uses a CPU task to compute the matrix multiplica-
tion task and another that uses a GPU task to com-
pute it.

As our objective is only to reach a given through-
put we can run several alternative graphs concur-
rently. All the graphs participate to the same appli-
cation as long as the global cost is lowered. Consid-
ering that we can access clouds that provide differ-
ent instance types (CPU speed, memory, I/O band-
width, GPU or not, etc.) at different prices we try to
optimize their use, and their cost, to reach a target
throughput. The graphs may share or not the rented
cloud instances. This makes the problem more com-
plex than with a single application graph. Thus, the
problem is on the one hand to find the right applica-
tion graph(s) that optimize the cost, and on the other
hand the right cloud instances that gives the lower
cost with this or these application(s).

Note that because of the use of various application
graphs, different instances, such as different images
of a video stream, may be processed using differ-
ent graphs, and thus experience different processing
times. To avoid that these images are output in a
different order than their input order, a buffer of suf-
ficient size is needed. In this paper, we assume that
we have such a buffer as well as a mechanism that
ensures that instances are output in the same order
as their input order, and we concentrate only on the
throughput maximization.

In the following, we study this problem using var-
ious models of the application programs. In sec-
tion 2 we present the related work on cloud schedul-
ing and cost optimization. The studied model is pre-
sented in section 3 then we provide some theoretical
results on the problem of optimizing the cost for a
given throughput in section 4 and 5. In section 6
we propose some heuristics to solve the more com-
plex parts of the problem and we compare them to
optimal solutions found by linear programming in
section 8.

2 Related work and context

We focus in this paper on streaming applications
run on heterogeneous resources and in particular on
coarse grain applications. These applications are
composed of several tasks, linked by dependency
constraints, and they continuously process a set of
input data to compute the output set. In fact, this
computation may be truly continuous as in the case
of multimedia or sensor applications [10, 11, 14]
or long enough to neglect the initialization and
ending phases and concentrate on the steady-state
phase as in [2]. Much attention has already been
paid to running workflow applications on hetero-
geneous resources as a grid. These studies may
be distinguished in two main categories: practical
works or more theoretical ones. From the practi-
cal point of view several frameworks as Pegasus [6]
or Condor [16] propose to dynamically schedule
multi-task workflows on heterogeneous computing
resources. For example, a survey on scheduling
pipelined workflow applications on grids is given
in [3]. Several objectives are studied in this context
depending on the workflow characteristics. When
the executed workflows are different, the makespan
objective is usually targeted [15] but when the same
instance of the workflow is continuously run, the
throughput objective is more adapted. From the
theoretical point of view several works tackle the
problem of proving complexity results for through-
put. In [2] the optimal throughput is given by defin-
ing a periodic schedule but other objectives, the la-
tency [5] or the reliability [4], may also be added to
improve the quality of the result. Note that the cost
objective is not truly relevant in the grid context as
the resources are usually freely shared and there is
no economical model behind.

By providing on-line on-demand resources, the
cloud concept goes one step further in the similarity
to flexibility to the Power Grid, the so-called elastic-
ity. Clouds are traditionally classified depending on
their public opening, i.e., public or private clouds, or
depending on the service level [1, 8], i.e., Infrastruc-
ture as a service or IaaS, Plateform as a service or
PaaS, Software as a service or SaaS, and so on. As
we are interested in executing applications by using
on-demand resources in the cloud we focus in the
following on pubic IaaS clouds. The Amazon EC2f
or the Microsoft Azure cloud* are examples of such
clouds.

IaaS public clouds introduce an economical di-
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mension in the resource use with a market oriented
model. The pay-as-you-go pricing model makes it
worth to study the application cost before execu-
tion. In the context of application execution opti-
mization in cloud computing, the cost objective is
mainly studied from a practical or dynamic point of
view. For instance [17] studies the impact of pricing
on distributed applications, [13] tackles the prob-
lem of minimizing the cost of cloud use, [18] opti-
mizes the task to virtual machine assignment based
on QoS requirements, and [19] addresses the ques-
tion of matching customer demand and provider’s
revenues. In [9] several strategies of dynamic re-
source provisioning of homogeneous instances are
assessed to lower the cost and wait objectives with
an online model and in [7] scheduling heuristics for
workflow applications are compared on real hetero-
geneous instances. As far as we know there is no
work on minimizing the execution cost of a work-
flow application processing a stream of data on the
cloud.

3 Framework

In this section we formally define the platform and
application framework. This model is rather tradi-
tional with a set of tasks to be run on processing
resources, cloud instances here. The problem we
face is to provision enough resources to run a DAG
based streaming application with a given through-
put. The cloud provides heterogeneous resources,
different machines with different throughputs and
different costs. We want to find the cheapest config-
uration that allow to reach the desired throughput.

As the considered tasks are typed, only a part of
the provided resources can be used to run one of the
tasks. Yet all the tasks of the same type can be run
on the same instance provided that its throughput is
sufficient. As stated in section 1, different applica-
tion graphs may be used to compute the same input
set, either because they use different algorithms or
because they take benefit of different types of re-
sources.

Note that we concentrate on computing intensive
applications and thus we neglect the communica-
tions costs between the tasks as a first approxima-
tion.

The application framework consists of a global
application ¢, a set of J workflow applications,
or graphs, where each graph apj 1<jJ5<J
is composed by I; tasks ¢] (¢7 = {¢], ..., ¢l
ceo @J}j 1. A type is associated to each task. Let
T ={1,2,...,Q} be the set of Q (task) types avail-

able on the platform and ¢ be a function that returns
the type ¢ of a task ¢! such that ¢(i,7) = ¢. An
example is given in Figure 1 to illustrate these no-
tations considering one application and four types.
This application can be performed using one of the
three alternative application graphs. All these appli-
cation graphs have tasks of type 1. Hence a machine
able to perform that type can be shared by the three
application graphs. One can see that the type 3 is
also shared between the two first application graphs
of this illustrating example.
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Figure 1: Illustrating task graphs

These applications are to be run on virtual ma-
chine instances, or processors, available from the
cloud. To be able to potentially run a copy of each
task graph on the computing resources, we need at
least one processor able to process each of its task
types.

We consider here dedicated resources: a task type
also corresponds to a processors type, which is the
type of processor capable of processing tasks of this
type. Thus, a task ¢ of type ¢ is only processed by
a processor of the same type and it is the only task
type that such a processor may process. Processors
of different types have different renting costs: the
cost of renting a processor of type g is denoted by c¢,.
Note that as we aim at providing a desired through-
put for an unknown (but long) period of time, this
cost is a hourly rate. The throughput of a proces-
sor of type ¢ continuously processing tasks of the
same type is r4. Finally, we consider that all proces-
sors of the same type have the same characteristics
(throughput and cost).

The Global Application ¢ requires a certain level
of quality of service (QoS) which is expressed by its



output throughput p (number of data sets computed
by time unit (¢.u.). Since the output data sets may be
computed using different workflow applications, the
throughput p is the sum of the throughput p; of each
workflow application ¢’/ € ¢. Each local through-
put p; has to be determined considering the number
of resources (and possibly the fraction of them) ded-
icated to this workflow application.

Each application graph may include several tasks
of the same type: for example on Figure 1, graph *
has 4 tasks of type 1. We denote by ng is the number
of tasks of type ¢ in the application graph ¢;. In the
previous example, we have n$ = 4.

Table 1 summarizes the main definitions used in
the allocation problems. All the parameters describ-
ing the applications and the platform are integers.

Dimensions

Q number of task and processor types

J number of graphs

I; number of tasks in the graph ¢’

Indices

q a task of processor type

J a graph

i a task in a given graph ¢/

Parameters

Cq cost of renting a processor of type ¢

Tq throughput of a processor of type ¢

ng number of tasks of type ¢ in the graph
(pj

Variables

P total throughput of the set of graphs

pj individual throughput of the graph ¢’

Zq number of rented processors of type ¢

Cy(p) | rental cost of processor of type ¢ to
achieve p

C(p) | cost of the platform to achieve the
throughput p

Table 1: Main definitions for the allocation prob-
lems

The problem we face is a dimensioning prob-
lem where we want to rent enough computing in-
stances from (possibly different) clouds to assess the
QoS requirements of the Global Application ¢ while
minimizing the global rental cost C'. To achieve this
goal, we have to select which graphs o7 will be used,
and with which throughput p; (an unused graph will
simply be considered as p; = 0). The number of
necessary computing resources for each task type ¢
has also to be determined. The general problem is
expressed as follows.

Definition 1 MinCOST Given an application de-
scribed by J possible application graphs, a platform
described by the unitary costs cq, throughputs rq for
each processor of type q and a target throughput p,
what is the throughput p; of each application graph
@) and the number of processors x, of each type
q to be booked to reach the prescribed throughput
with minimal cost ?

In the following, we propose several practical
ways to find solutions for this problem, depending
on the complexity of the application description.

4 Simple cases

In this section, we first focus on two simple variants
of the problem, which allows to give a first overview
of the complexity of the problem.

4.1 Single application graph

In the first simple case we consider one application
made of a single graph ¢': this is the only available
option to produce the final result. For each task type
q, we need to rent a sufficient number of processors
from the Cloud. In particular, the application graph
may include several tasks of the same type ¢. For
each task type ¢ the number of machines needed to
reach the throughput p is given by:

n
=[5
q

The associated cost Cy(p) to compute the tasks of
type q in the application is:

nq

Cqlp) = Lq 4 X ¢q

Finally, the global cost is:

Q
Clw)=> Gyl =Y |

, 'P“ X Cq
q=1 g=1"'"1

4.2 Several independent applications

The second simple case considers several indepen-
dent applications ¢, ..., 7. Each of these appli-
cations produces its own result. The difference with
our general context is that the throughput for each
application is now prescribed: application ¢/ must
have a throughput of at least p; instances per time
unit. Note that this makes the problem simpler, as



the decomposition of the total throughput p into the
sum p; + - - - + py is fixed.

Since different task graphs are involved, several
tasks of different graphs may have the same type.
Consequently, the different graphs may share ma-
chines of the same type. Contrarily to the previous
simple case, all application graphs have to be con-
sidered when computing the number of machines of
type ¢ to rent. For each task type g the number of
machines needed to reach the throughput p is given

by: p 4
’VZJ’—I ny X Pj-‘
Tyg=|———— .

T'q

The associated cost C; to compute the tasks of
type ¢ in the application is:

J .
D i1 X pj
CQ(plap%”-?pJ): ’VW X Cq
Tq
Finally, the global cost of the required platform
is:

C(PlaP%anJ) =

q=1 q=1

S General problem with various
application complexities

We now get back to the general problem where a
single result has to be computed with a prescribed
throughput p. Several application graphs ¢’ can be
used to compute this result. Every application pro-
duces the same result but each at its own throughput
pj which contributes to the global throughput p. In
this case every individual throughput p; has to be
determined for each application.

To address this problem we consider the three fol-
lowing cases with an increasing complexity:

1. In the first case, each application graph consists
of a single task, whose type is different from
the types of other application tasks. In that case
an application graph is seen as a simple black
box, which makes it easy to compute the cost
of a graph given its throughput. We aim at bal-
ancing the throughput between the applications
to lower the global cost.

2. In the second case, we do not consider applica-
tion graphs as black boxes anymore but as sets
of tasks that do not share any task type: all task

types used from application graph ¢/ are spe-
cific to that graph. This case arise for example
if we use several computing clouds to run the
application graphs computing the same result:
a graph running on a given cloud cannot share
its resources with another graph running on a
different cloud.

3. In the third case, we consider that the applica-
tion graphs can share task types. This is the
general case. As one processor can be shared
by several application graphs, their through-
put depend on each other: throughputs and re-
source sharing must be considered at the same
time. As resources may be shared between sev-
eral applications then only one cloud can be
considered.

In the following we present solutions for these

three cases.

5.1 Black box applications

We first present the simplest variation when the ap-
plications @7 are considered as black boxes, all dif-

J
9 Cy ] 1 nj X Pfe ent from each other, or when they consist of only
> Calp) =3

onje tadk ] whose type is ¢ (t(1,j) = ¢). Note that
each task type corresponds to only one application.
Thus for simplification reasons we use j = q. We
have:

Vjand Vi’ (1< 4,5 < J): t(1,5) = t(1,5)

Let p, be the throughput of application ¢/ = 9.
The problem can be expressed as an integer linear
problem where z, denotes the number of machines

of type q used:

Q
Minimize C(p Z TqCq
Q
Under the constraint Z TaPg = P
q=1

This resembles a knapsack problem with repeti-
tion using negative weights and values. Such a knap-
sack problem is formalized as follows.

Definition 2 (Unbounded Knapsack Problem)
Given n objects with value v; and weight w;, and
a total capacity of W, how many copies of each
object should we select to maximize the total value
without exceeding weight W ?

=J=J



The previous knapsack problem can be expressed
with the following integer linear program, where x;
is the number of copies of item ¢ included in the
solution.

Maximize E T;U;

Under the constraint Z zw; <KW

Our problem is thus equivalent to a knapsack
problem where items have value (—c,) and weight
(—pq) and the total capacity is (—p). Solving such
a knapsack is a (unary) NP-complete problem and
many approximation algorithms and heuristics have
been proposed to solve it [12]. In particular, there
exists a pseudo-polynomial dynamic program which
solves it with time complexity O(np). This solution
can easily be translated into a solution to our prob-
lem for this case.

5.2 Applications without shared task
types

We now consider that the global application
¢ is composed of several application graphs
o', ... 07, ... ¢’ that produce the same result but
that do not share any task type between each other.
Each application @7 is composed of several tasks
Ol <p3~j such that a graph ¢’ and a graph ¢’
do not share any task type: t(i,j) # t(i, ;') for
1<j,7<Jandj # j andfor1 < i < I; and
1<i <Ij.

Obviously as this version of the problem includes
the previous one, it is at least as complex, and thus
this version is also unary NP-complete. In this sec-
tion, we exhibit a dynamic program with pseudo-
polynomial complexity to solve it, which proves that
the problem is not binary NP-complete.

The throughput of task <pZ on a machine is de-
noted by p;;. To obtain the prescribed through-
put, we may either use several application graphs
concurrently or increase the throughput of a graph
by renting several processors corresponding to its
task types. Generally, an optimal solution is ob-
tained as a combination of these two strategies, and
the throughput of each graph ¢ has to be carefully
tuned.

We now present a dynamic program with pseudo-
polynomial complexity to compute an optimal solu-
tion in this case. It relies on C(p, j), which denotes
the minimum cost to reach a throughput p using only
the first j application graphs (among the J defined

in the model). C'(p, j) can be computed as follows:

I nl'

prll ATCA )

(C(p - pj’j - 1)+

min
Clp,j) = { 0<ps<p
I J
My -
Z M.pj X Ci(i,)
puell RACICRD)
otherwise

The base case j = 1 corresponds to a single ap-
plication graph, and is thus similar to Section 4.1.
In the general case, the prescribed throughput p is
split into two parts: p;, which is the throughput de-
voted to graph 7, and is computed as previously,
and p — p;, which devoted to the the first j — 1
graphs, and thus can be expressed recursively. The
final result C/(p) is obtained as C'(p, J). Note that as
each processor of type g delivers an integer through-
put rg, the throughput of an application graph can
only be an integer. Thus, there is a finite set of pos-
sible integer values p; to test in the previous for-
mulation. To compute a given C(p, j), all C(p’, j')
with p’ < pand 7/ < 7 must be computed. Based
on these values, the complexity of the elementary
computation is O(pl). The complexity of comput-
ing C(p) is thus O(p?1.J]).

5.3 Applications with shared task types

Here, we consider a generalization of the previ-
ous setting, where tasks ¢, of different application
graphs may have the same type:

As a consequence, a processor may be shared be-
tween several application graphs. Although the im-
plementation of this option is more difficult, due to
the complex control needed, it is expected to give
better performance since several (expensive) pro-
cessors may be shared by all possible application
graphs.

The whole throughput p must be at least the sum
of the individual application graph throughput p;:

ey



For each task type ¢ we need to rent enough proces-
sors to reach the global throughput p.

IJ
(L, )
i=1|t(4,j)=q

j=1

@)

with z, the number of instances of type ¢ such that
q = t(¢, j) and r, throughput of processor P, when
executing a task of type q.

Then the problem can be formulated as the fol-
lowing MIP:

Minimizing C(p) = Zqul Tyq - Cq
under constraints (1) and (2)
withz, € N

Despite our efforts, we have not been able to de-
termine if this general version is unary or binary
NP-complete. However, given the additional com-
plexity of splitting the prescribed throughput into a
sum of elementary throughputs, we conjecture that
this problem is binary NP-complete, contrarily to
the previous version. In the following we propose
several heuristics of polynomial complexity to ad-
dress the problem.

6 Heuristics

In this section we propose several heuristics which
address the problem presented in Section 5.3. More-
over, if possible, an optimal solution is computed
using an integer linear program solver as described
in the next section.

HO0 (random) HO randomly chooses each
throughput p; for each graph ¢/ (1 < j < J) such
that the constraint ), <j<Jg Pj = pis satisfied.

H1 (best graph) The H1 algorithm selects only
one application graph. It chooses the graph ¢’ (1 <
J < J) whose cost is minimum to reach the desired
throughput, that is p; = p. This cost is computed as
in Section 4.1. The complexity of the H1 algorithm
isin O(J x Q).

H2 (random walk) The H2 algorithm starts from
the solution given by HI (p1, p2,...,ps) and tries
to improve this solution iteratively. At each step, H2
randomly chooses two different graphs ¢, and ¢;,,
and then moves a fraction § of the throughput from
@4, to @;, such that their throughputs respectively
become p;, — d and p;, + 9 for the next iteration.

If pj, <9, pj, becomes equal to zero and p;, equal
to p;, + p;,. This solution is stored if it improves
the current minimal cost. In any case, this new solu-
tion is the starting point of the next iteration even if
this computed solution does not reduce the current
minimal cost yet. The heuristic stops after a prede-
termined number of iterations and outputs the best
encountered solution.

H31 (stochastic descent) The H31 algorithm is
very similar to the H2 heuristic. The main differ-
ence is that H31 retains the same solution for the
next iteration as long as no improvement is obtained
by the exchange. However, if the cost associated to
the computed solution is lower than the current min-
imal cost, this new solution becomes the baseline
solution for the next iteration. The heuristics stops
if a given number of iterations is reached or if the
solution corresponding to the minimal cost has not
changed for a predetermined number of iterations.

H32/H32Jump (steepest gradient) The H32 and
H32Jump algorithms follow the steepest gradient
paradigm. As for the two previous heuristics, both
the H32 and the H32Jump algorithms start using
the solution given by H1. All possible throughput
fraction exchanges between graphs are tested and
only the one leading to the smallest platform cost
is stored. When no improvement is possible, the
current solution is a local minimum and is output
by H32. To search for a better solution that this lo-
cal minimum, H32Jump allows for a deterioration
of the current solution by accepting a given number
of throughput exchanges between graphs without
checking if the solution is improved or not. Then,
the improvement process described before is started
again using the obtained current solution as the new
baseline. This solution is in a neighborhood of the
solution corresponding to last obtained local min-
imum. If this neighborhood is large enough, an-
other local minimum may be found. This solution is
stored if its cost is smaller than the previous stored
minimum solution. The solution corresponding to
the smallest cost from all the computed solutions is
returned by H32Jump.

7 Illustrating example

In this section we illustrate on an example the abil-
ity of some heuristics to simultaneously use several
application graphs in order to improve the platform
cost. In this example we consider an application that
can be described indifferently by three workflows as
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Figure 2: Illustrating example: Application parame-
ters

shown in Figure 2. Whatever the graph that is used,
one input leads the same output after its execution.
Each workflow has two tasks and each task is of one
type out of four. The available platform provides
four machines, one for each task type, with different
throughput performance and costs. The detailed pa-
rameters are shown in Table 2. Table 3 gathers the
results of all heuristics. The first column contains
the desired throughput p. The following columns
present for the ILP and each heuristics the chosen
throughputs (p1, p2, p3) for each application graph
and the corresponding solution cost. For example,
for a desired throughput of p = 70, the solution
chosen by the ILP splits the total throughput into
p1 = 10, po = 30 and p3 = 30, for the corre-
sponding application graphs. For this solution, ac-
cording to the platform parameters, one has to rent
3 instances of P;, 2 instances of P», 1 instance of
P53 and 1 instance of P,, with total cost of 124.

To highlight the optimal costs on Table 3, opti-
mal values are printed in bold. It can easily be seen
that in this small example, both heuristics H2 and
H32jump very often find the optimal cost (H2 fails
only twice). Moreover, it also shows the bucket be-
havior of H1: as H1 only chooses one application
graph, the same solution may be chosen for one or
more consecutive throughputs until no more idle ca-
pacity is available. In the case of a desired through-
put p = 160 none of the heuristics is capable of
finding the optimal cost. They all output the same
solution with only one application graph, whereas
the optimal solution uses all 3 available graphs.

8 Experiments

To assess the quality of the different heuristics we
have developed a simulator in python. The heuris-
tics described in Section 6 are implemented in this
simulator and the integer linear programs are solved

Processor || type | p | cost
Py tq 10 | 10
Py ty |20 18
Ps ts3 | 30| 25
P, ty | 40| 33

Table 2: Illustrating example: Available machines

by calling the Gurobi® library from the simulator. In
this section we present the simulator, the experimen-
tal settings and the obtained results.

8.1 The cloud renting simulator

The simulator aims at assessing the quality of the
algorithms used to choose the best way to execute
an application on the cloud when it is described in-
differently by several graphs. These algorithms give
the part of the target throughput each graph has to
reach so as to decrease the cost of the whole plat-
form as much as possible. Starting from a configu-
ration file that gives the properties of the application
graphs and the properties of the cloud, it randomly
generates several sets of application graphs and their
corresponding sets of machines. For each couple of
application graph set and machine set, it then ap-
plies the heuristics and the ILP resolution to find a
solution as cost effective as possible.

The relevant parameters when generating a set of
application graphs and a cloud are dictated by the
problem model. For the application graphs these pa-
rameters are:

e The number of tasks that compose an appli-
cation graph: When generating an application
graph its number of tasks is randomly chosen
in the interval [min_tasks, max_task]. Thus
all the application graphs do not get the same
number of tasks. This is to avoid getting too
similar applications.

e The number of available types that can be used:
This number is a fixed value for the simulation.
There is no need for an interval here as task
types are randomly chosen.

e The number of application graphs: The number
is a fixed value for the simulation.

In our first attempt, the application graphs for an
application are randomly generated: For each task
of an application graph its type is randomly chosen

Shttp://www.gurobi.com/



ILP Hl H2 H31 H32 H 32 JUMP

P || Pr| p2 | p3|cost) p1 | pa | p3 |COSt|| p1 | p2 | p3 | COSt || p1 | p2 | p3 | COSt|| p1 | p2 | p3 | COSt|| p1 | p2 | p3 | cost
10 0 0 10 | 28 0 0 10 28 0 0 10 | 28 0 0 10 28 0 0 10 28 0 0 10 | 28
20 0 0 20 | 38 0 0 20 38 0 0 20 | 38 0 0 20 38 0 0 20 38 0 0 20 | 38
30 0 30 | 0 58 0 30 0 58 0 30 | 0 58 0 30 0 58 0 30 0 58 0 30 | 0 58
40 (|40 | O 0 69 40 0 0 69 40 0 0 69 40 0 0 69 40 0 0 69 40 0 0 69
50 10 30 | 10| 86 0 0 50 | 104 10 30 | 10| 86 0 0 50 | 104 0 0 50 | 104 10 30 | 10| 86
60 || 40| O 20 | 107 0 0 60 | 114 || 40 0 20 | 107 0 0 60 | 114 0 0 60 | 114 || 40 0 20 | 107
70 10| 30 | 30| 124 70 0 0 138 10 30 | 30 | 124 70 0 0 138 70 0 0 138 10 30 | 30 | 124
80 || 20| 60 | O | 134 80 0 0 138 20 60 | 0 | 134 80 0 0 138 80 0 0 138 80 0 0 | 138
90 || 50| 30 | 10 | 155 0 90 0 174 50 30 | 10| 155 0 80 10 | 169 0 80 10 | 169 50 30 | 10 | 155
100 || 20 | 60 | 20 | 172 || 100 0 0 189 20 60 | 20 | 172 || 100 0 0 189 || 100 0 0 189 20 60 | 20 | 172
110 | 20| 90 | O | 192 0 110 | 0 199 20 90 | 0 | 192 0 110 | 0 199 0 110 0 199 20 9 | 0 | 192
120 0 | 120 | O | 199 0 120 | 0 199 0 120 | 0 | 199 0 120 | 0 199 0 120 0 199 0 120 | 0 | 199
130 || 30 | 90 | 10 | 220 0 0 130 | 256 30 90 | 10 | 220 0 0 130 | 256 0 0 130 | 256 90 30 | 10 | 224
140 || O | 120 | 20 | 237 0 140 | 0 257 0 120 | 20 | 237 0 140 | 0O 257 0 140 0 257 0 120 | 20 | 237
150 | 0 | 150 | O | 257 0 150 0 257 0 150 | 0 | 257 0 150 | 0 257 0 150 0 257 0 150 | 0 | 257
160 || 40 | 120 | O | 268 || 160 0 0 276 || 100 | 60 | O | 272 || 160 0 0 276 || 160 0 0 276 || 160 | 0O 0 | 276
170 || 10 | 150 | 10 | 285 0 170 | 0 315 10 | 150 | 10 | 285 10 | 150 | 10 | 285 10 | 150 | 10 | 285 10 | 150 | 10 | 285
180 || 40 | 120 | 20 | 306 0 180 | 0O 315 40 | 120 | 20 | 306 0 180 | 0 315 0 180 0 315 40 | 120 | 20 | 306
190 || 10 | 150 | 30 | 323 0 190 | 0 340 10 | 150 | 30 | 323 10 | 180 | O 333 10 | 180 0 333 10 | 150 | 30 | 323
200 || 20 | 180 | O | 333 0 200 | O 340 20 | 180 | O | 333 0 200 | O 340 0 200 0 340 20 | 180 | O | 333

Table 3: Illustrating example: Results

in a set of types. The machine throughput and its
price is also randomly chosen in an interval. Us-
ing this totaly random generation we do not control
the efficiency of the machine and hence most of the
application graphs are of no use because they use
inefficient machines compared with the others. As
a result we do not get a real competition between
all graphs but rather between only very few of them,
and often, only one single graph leads to the smallest
cost for the whole throughput. With these configu-
rations the H1 heuristic is usually able to find a very
good solution, and the ILP quickly picks out the
optimal solution, in particular when the requested
throughput is high compared to the machine perfor-
mance. To focus on the difficult and realistic cases,
where some of the tasks of an application graph are
replaced by other type of tasks (e.g. when a task
running on GPU is replaced by a task running on a
classical CPU architecture for a matrix product), we
first randomly generate a initial application graph.
The other, alternative, application graphs of the set
are then generated by randomly changing a percent-
age of tasks of this initial graph. As a result the ap-
plication graphs of the set that are able to perform
the same outputs considering the same inputs share
more tasks than totaly randomly chosen graphs.

The relevant parameters for the cloud generation
are:

e The throughput of each machine: To generate
different types of machines the throughput of
each machine is randomly chosen in the inter-
val [min_thrgpt, mazx_thrgpt).

e The price of each machine: The price is chosen
between 1 and a higher value.

For each parameter set, the cloud renting simu-

lator generates hundred different configurations of
applications and clouds. Then for each (application,
cloud) configuration couple and for a set of target
throughputs it computes the cost values obtained us-
ing the ILP and the heuristics.

8.2 Results

Using the cloud renting simulator we have tested
several (application, cloud) configurations to assess
the behavior of the ILP and the heuristics. There is
no real interest to give all the results so we concen-
trate here on three of the most interesting parameter
settings with small, medium and large application
graphs. The tested target throughput p ranges from
20 to 200 with a step size of 10.

8.3 Small application graphs

With the first settings we consider the case of small
application graphs. We have generated 20 alterna-
tive graphs per application that are able to perform
the same outputs considering the same inputs. Each
graph contains between 5 and 8 tasks. The percent-
age of tasks that are changed between the initial ap-
plication graph and the alternative graphs is 50%.
The cloud is composed of 5 different types of ma-
chines, each costing between 1 and 100 and deliver-
ing a throughput between 10 and 100.

Figure 3 shows the normalization of cost values
obtained by the heuristics with the optimal solu-
tion computed by the ILP. The size of the addressed
problem in this case is quite small and it is not sur-
prising that the ILP is always able to compute the
optimal solution even if the variables are integer.
Note also that the results given by the heuristics are



1.00

0.98

Normalization(Cost)
8
1

0.94

1 1
100 200

Throughput

50 150

ILP - H1 -= H2 —+ H31 -# H32 - H32Jump

Figure 3: Normalization of cost with the optimal so-
lution. (20 alternative graphs, between 5 and § tasks
for each graph)

not far from the ILP solution, no more than 6%.
The second element that we note is that a hierar-
chy exists between heuristics. The order between
them remains the same throughout the entire exper-
iment even if the baseline solution is given by H1.
H32jump performs the best among our heuristics.
Finally we take note that solutions given by H1 can
always be improved.
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Figure 4: Number of times where each algorithm
finds the best. (20 alternative graphs, between 5 and
8 tasks for each graph)

Figure 4 shows the number of times that each ap-
proach proposes the lowest cost value within the 100
simulations for each throughput value between 10 to
200. In this simulation the number of instance types
and the size of application graphs are not large and
the ILP still finds the optimal solution. However,
Figure 4 shows that almost all heuristics also find
the optimal solution in more than a quarter of the
runs.

Figure 5 shows the run time of the heuristics and
the ILP. H1 almost instantly finds its solutions. H31
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Figure 5: Computation time for the heuristics. (20
alternative graphs, between 5 and 8 tasks for each
graph)

is a little faster than the ILP. H2 and H32 follow
very closely. H32jump is the slowest. As expected,
H32jump is by far the slowest, but as already stated
above, this heuristics achieves the best results apart
from the ILP. This latter point can easily be ex-
plained by the fact that H32Jump performs several
steepest gradient algorithms before giving its solu-
tion.

8.4 Medium application graphs

In the second setting we consider the case of
medium application graphs. We have generated 20
alternative graphs per application and each graph
has between 10 and 20 tasks. The percentage of
tasks that are changed between the initial application
graph and the alternative graphs is 30%. The cloud
is composed of 8 different types of machines each
costing between 1 and 100 and delivering a through-
put between 10 and 100.

1.00 4

4

©

@©
1

Normalization(Cost)

o

©

-3
1

1 1
100 200

Throughput

50 150

ILP —- H1 -=- H2 —+ H31 -# H32 - H32Jump

Figure 6: Normalization of cost with the optimal so-
lution. (20 alternative graphs, between 10 and 20
tasks for each graph)



Figure 6 presents the normalized results of this
second setting. As for small applications, the or-
der within our heuristics stays the same: H1 — H2
— H31 - H32 — H32jump. The quality of the solu-
tions given by the heuristics is also about the same
as for small graphs, within 5% of the ILP solution.

8.5 Large application graphs

In the third setting we consider the case of medium
application graphs. We have generated 20 alterna-
tive application graphs that contain between 50 and
100 tasks. The percentage of tasks that are changed
between the initial application graph and the alter-
native graphs is 50%. The cloud is composed of 8§
different types of machines each costing between 1
and 100 and delivering a throughput between 10 and
50.
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Figure 7: Normalization of cost with the optimal so-
lution. (20 alternative graphs, between 50 and 100
tasks for each graph)

Figure 7 shows the normalization of cost values
obtained by the heuristics with the optimal solu-
tion computed by the ILP. In this case the heuristics
perform almost identically and the normalized cost
shows a performance of more than 99% for through-
puts higher than 50: for throughputs sufficiently
large, using a single graph (such as the one output by
H1) is enough to get close to optimal cost. The so-
lutions given by HI and H2/H32Jump becomes very
close and if another graph is chosen, the higher the
target throughput, the smaller its contribution. In-
deed our heuristics become asymptotically close to
the optimal cost value as the throughput is increas-
ing considering such large application graphs.

In order to find the limits of the ILP we made a
larger experiment where we limited the search time
of the ILP to 100 s. In this experiment we have gen-
erated 10 alternative application graphs that are able
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to perform the same outputs considering the same
inputs. Each graph contains between 100 and 200
tasks. The percentage of tasks that changed be-
tween the initial application graph and the alterna-
tive graphs is 30%. The cloud is composed of 50
different types of machines each costing between 1
and 100 and delivering a throughput between 5 and
25. Using this configuration the ILP is often not able
to find the optimal results. In Figure 8 one can see
that for a throughput larger than 100, the ILP reaches
the time limit of 100 s. Note that increasing the time
limit value from 100 s to 5 minutes (300 s) does not
significantly improve the result. In this case the ILP
still its current solution with smallest cost, but it is
able to guarantee that it is optimal.
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ILP H1 —= H2 -+ H31 H32 — H32Jump

Figure 8: Computation time for the heuristics. (20
alternative graphs, between 100 and 200 tasks for
each graph)

8.6 Summary

Our experiments show that even if the case of multi-
DAG applications with shared task types is a NP-
complete problem, an efficient ILP solver allows to
compute optimal solutions, i.e., an allocation with
the smallest cost, for small and medium sized so-
lutions. On the other hand for applications with a
large number of tasks, i.e., more than hundred tasks,
the ILP fails to find the optimal solution. It generaly
returns a good solution but not always the best. It
also generates much longer computing times when
the number of tasks increase.

In the lack of such a solver, the best graph heuris-
tics given by heuristic H1 allows to compute allo-
cations with minimal cost overhead (in most of the
cases the overhead is less than 2% of the optimal so-
lution). All in all improved heuristic solutions does
not allow to achieve more than 5% over the naive
HI approach, in the tested configurations. We also



show that the naive H1 approach leads to solutions
whose cost becomes asymptotically close to the op-
timal cost value when this one can be found using
the ILP.

9 Conclusion

In this paper, we investigate the problem of rent-
ing resources on the cloud for one application that
can be described in several ways, each one by one
different application graph (DAG). Indeed, as re-
sources on the cloud are massively heterogeneous,
one application can be described by several graphs.
The considered applications are workflow applica-
tions that have to achieve a target throughput. The
issue is to find the suitable throughput distribution
between DAGs and then the rented instances corre-
sponding to these graphs corresponding to the part
of the target throughput that they have to perform.
We show that, in some cases, this problem can be
optimally solved using dynamic programming ap-
proach even if the problem is known to be NP-
complete in the weak sens (knapsack problem using
negative loads). But this problem becomes unfortu-
nately harder in the most general cases when appli-
cation graphs can share tasks and thus machines that
perform these shared tasks. The real complexity of
the most general problem remains open (obviously
at least NP-Complete in a weak sens). However we
propose a characterization of the optimal solution
by designing an Integer Linear Program. If an effi-
cient solver is used, optimal solutions can be found
as shown in the experimental section of the paper.
As solving such an ILP can not be guaranteed, we
propose several efficient heuristics that are able to
reach solutions very close to the optimal solution
in many cases as shown by numerous simulations.
Our approaches lead to solutions that are less than
6% from the optimal value and this percentage de-
creases when the target throughput increases. For
future work we plan to test our approach on real ap-
plications and we will then try to integrate our so-
lution as a pre-step before the deployment phase in
existing Cloud deployment systems like Pegasus or
CometCloud.
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