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Abstract—Terahertz band (0.1–10 THz) provides very large
bandwidth, enabling multimedia transmission at short distance.
In macro world, ultra broadband communication networks at
THz band (TeraNets) provides very large bandwidth for wireless
multimedia sensor networks (WMSN). Similarly, recent devel-
opment in nano-technology (nano-antenna and nano-transceiver)
shows that electromagnetic nanocommunications at THz band
support very large bandwidth too, which enables the development
of wireless multimedia nano-sensor networks (WMNSN). For
both WMSN and WMNSN, the major challenges are simple
and energy efficient transmission, since the network consists of
a large number of nodes with limited battery capacity. In this
paper, we propose a simple, energy efficient and robustness-aware
image compression for pulse-based WMSN and WMNSN. We
investigate the system performance in terms of image quality,
energy efficiency, perpetual operation in nanocommunications
and transmission robustness against error. The results show
that for these networks, with the trade-off of image quality, the
proposed method outperforms JPEG, JPEG 2000, GIF and PNG
in all used metrics.

I. INTRODUCTION

The integration of low-power wireless networking technol-
ogy and multimedia microelectronics fosters the development
of wireless multimedia sensor networks (WMSN) [1]. A
node in WMSN has sensing, processing and communication
capability to send the information to an end system. In macro
scale, WMSN have applications as varied as artificial retina,
battlefield surveillance, movement monitoring, volcano mon-
itoring, tsunami or early flood detection [2]. While in micro
scale, wireless multimedia nano-sensor networks (WMNSN)
allow nano-devices to detect the presence of virus, harmful
bacteria and cancer cell in human body [3].

Whether in macro or micro, a node in WMSN has limited
resources in transmission range and energy capacity. The main
research challenge in WMSN is obtaining energy efficiency
to prolong the node lifetime, due to limited battery capacity
and difficult process to replace or recharge the battery. Thus,
it is essential to reduce the energy consumption whether in
computation or in communications process.

In macro scale, wireless sensor networks, energy consump-
tion for transmission (of 1 bit) is considerably larger than com-
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putation (execution of 1 instruction) [4], [2], [5], [6]. In [4], the
authors described that the energy cost to execute 3 million in-
structions is 3 J, so the computation consumes 1µJ/instruction.
More recent results show that in computation, conventional
microprocessor consumes 1 nJ/instruction, low-energy digi-
tal signal processing (DSP) consumes 0.01 nJ/instruction and
hardwired logic consumes 0.001 nJ/instruction [5].

As for transmission in macro scale, in [4], the transmission
of a 1 kbit packet over a distance of 1 km using BPSK mod-
ulation consumes energy 3 J, which is the same as executing
3 million instructions. Hence, the ratio between transmission
and computation is 1:3000. In Ultra-Wide Band (UWB) image
transmission system using On-Off Keying (OOK) modulation,
radio transmission component consumes P = 15mW with
rate R = 1.3Mbps for distance of 4 m [7]. So, the energy
consumption is E = P/R = 11.5 nJ/pulse, which is three
orders of magnitude more than required energy to execute 1
instruction in low-energy DSP. In built-in systems, the energy
to send one bit is between 1500 to 2700 for Rockwell WINS
nodes and between 220 to 2900 for MEDUSA II nodes bigger
than to compute a single instruction [6].

In micro scale (nanonetworks), computation energy in
nano-devices remains unknown, since nano-processor using
graphene-based nano-transistor is under development [8]. But
initial models of energy consumption in nano-devices give a
ratio between communication and computation of 10:1 [9],
e.g. energy to transmit a pulse is 1 aJ and energy to execute 1
instruction is 0.1 aJ. So, in micro scale too, the transmission
energy is larger than computation energy.

The previous numbers consider only the transceiver part.
However energy consumption for transmission also include
the process where central processing unit (CPU) reads the bit-
stream in memory and gives instructions to signal generator
for transmission process, so this process further increases the
transmission energy. Moreover, for large transmission distance
(e.g. more than 100 meters), transmitter requires power am-
plifier which consumes much energy. Since nodes in WSN
have short transmission range due to the use of low power
transmitter, end-to-end transmission is performed in multi-hop
fashion. Therefore, total energy consumption for transmission
is equal to the sum of transmission energy in each hop from
source node to end system. So the transmission energy is
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Fig. 1. SEIC application domain.

even greater. Based on all this information, we conclude that
computation consumes much less energy than communication.
These results motivate the use of compression method before
transmission process.

Now we turn our focus on the networks where the com-
pression method can be implemented. Our particular pulse-
based communication networks are TeraNets (ultra-broadband
communication networks at terahertz band) and nanocom-
munications. Both TeraNets and nanocommunications will
operate at THz band, which allows transmission rate up to
several Tbps [10]. Jornet and Akyildiz [11] proposed the use
of 100 fs-long pulses transmission by following an asymmetric
On-Off Keying modulation spread in time (TS-OOK). In TS-
OOK, binary 1 represents as a pulse transmission and binary
0 is silence. Pulse duration is smaller than pulse period and
time between consecutive bits is fixed.

In pulse-based communication and THz band communica-
tion, the communications can be classified according to the
size of devices (scale) as shown in Fig. 1. In micro world, the
devices have total dimension of several micro-meter square
and the transmission range is below 1 m [11]. In macro world,
the devices are larger and the transmission range is up to
10 m [12].

In this paper we propose simple and energy efficient image
compression (SEIC) for pulse-based communication systems
at THz band. The proposed method can be used in micro and
macro scale. SEIC compression is based on discrete wavelet
transform (DWT) transformation followed by low weight code.

Compressing an image inevitably consumes energy, hence
it is important to compare the energy to transmit an uncom-
pressed image and the energy to compress it and to send the
compressed file. As it will be shown later in the article, the en-
ergy in uncompressed case is much higher than in compressed
case, hence it is better to compress it before transmission.
The simulation results show that the proposed method obtain
energy efficiency of more than 88 % and outperforms JPEG,
JPEG 2000, GIF and PNG in terms of energy efficiency and
robustness against transmission error. Our main contributions
are:

• We propose an image compression based on DWT trans-
form and NME code, which is simple, energy-efficient
and takes into account robustness.

• We compare our proposed method with several existing

well known image compression methods such as JPEG,
JPEG 200, GIF and PNG.

• We prove that our compression method is useful in
WMSN and WMNSN.

• We show that a nano-node is able to perform perpetual
image transmission according to state of the art in nano-
transceiver and nano-battery.

II. RELATED WORK

Since a node in WSNs has limitation in energy capacity,
both energy for computation and communication should be
minimized. Simple data compression method is necessary
to reduce the energy consumption in computation process.
In [13], the authors proposed simple data compression for
WSN. The method maps the differences of the values between
consecutive samples to variable codeword size (output length).
The larger the difference, the longer the codeword size. For
example, if the difference is ±1 the codeword is 010, and
if the difference is ±8192 the codeword is 111111111110.
The results show that their method outperforms S-LZW, GZIP
and BZIP2 in terms of energy efficiency, a less computa-
tional effort and a lower memory occupation. However, the
drawback of this method is unreliability. The different value
(whether current sample/data is larger of smaller than previous
one) is coded with the same codeword, which may lead to
estimation error at receiver. The error is propagated even in
the absence of transmission error, so perfect reconstruction
is almost impossible. In addition, variable codeword sizes
require more computational complexity than the constant one.
Moreover, the number of bit 1s is very large especially in
long codewords. Therefore, we conclude that this method is
unsuitable in nanocommunications.

In classical WSN, image compression is required to reduce
the number of transmission due to the limited bandwidth
and limited-battery capacity in sensor devices [2]. Image
compression can be classified as lossless and lossy. In general,
lossy compression yields higher compression ratio than loss-
less [14]. Lossless image compression such as PNG and GIF
takes the advantages of non-uniform probability distribution
for a variable-length codewords. GIF uses Lempel-Ziv-Welch
(LZW) code to compress image, while PNG uses deflate code,
which is a variant of Lempel-Ziv.

Joint Picture Expert Group (JPEG) and JPEG 2000 are the
most popular lossy image compression. JPEG is based on
discrete cosine transform (DCT) transform, while JPEG 2000
on discrete wavelet transform (DWT). The results given in [15]
show that DWT outperforms DCT in terms of image quality,
execution time and transmission robustness, while DCT out-
perform DWT only in memory usage. Alternatively, memory
usage in DWT can be reduced by using block processing like
in JPEG [16].

Recently, there are many energy efficient codes for nanonet-
works. In [17], the authors investigate the energy efficient code
for TS-OOK modulation by taking into account the energy
consumption at the receiver. In [18], the authors compare the
performance of several low weight codes for nanonetworks



in terms of energy efficiency, bandwidth expansion, channel
capacity, interference reduction and transmission robustness
against error.

Our new method is based on DWT transform followed by a
low weight code. In image transformation, SEIC uses only the
coarse coefficients, i.e. only 1 sub-band from the 4 sub-bands
in original DWT. The use of a fixed codeword size in low
weight code simplifies the symbol detection in decompression
process compared to the variable-length codeword in DCT and
DWT.

III. BACKGROUND

A. Terahertz propagation model

In [19], the authors investigate the channel capacity in
terahertz band. The results show that terahertz band support
for the transmission of several Tbps for small distance. In
terahertz band, the electromagnetic propagation is affected by
molecular absorption and molecular noise. The path-loss in
terahertz band is mainly characterized by the spreading loss
and the molecular absorption loss. The spreading loss is the
attenuation when electromagnetic wave propagates through
the medium, while absorption loss is the attenuation due to
absorbed wave’s energy by molecules along the transmission
path, which converts part of wave energy into internal kinetic
energy at the molecule level. The excited molecules re-radiate
the absorbed energy, which is modeled as a noise factor. The
molecular absorption noise is correlated with the transmitted
pulse, where the amount is increased after a pulse transmis-
sion and there is background noise unless the molecules are
irradiated.

B. TS-OOK modulation

Jornet et al. [11] proposed the Time-Spread On-Off Key-
ing (TS-OOK) modulation based on very short pulses (one
hundred femtosecond-long per Gaussian pulse). For the time
being, the only feasible way for electromagnetic nanocom-
munications is pulse-base modulation. Such pulses have been
used in terahertz imaging and biological spectroscopy [20].
During the transmission process, binary 1 is considered as
a pulse transmission, while binary 0 as silence (no energy
required). The time Ts between two consecutive symbols is
much longer than the pulse duration Tp, i.e. β = Ts/Tp � 1.

C. NME code

In TS-OOK modulation, the transmission energy can be
reduced by using low weight codes [18]. NME [21] is one
such code we have proposed in the past. It obtains energy
efficiency by reducing the number of bits 1 in binary sequence.
This method uses simple mapping from input symbol to
its corresponding codeword (coding table). An example is
given in Table I. The most frequent symbols are mapped to
codewords with fewer bits 1. In coding table, input symbols are
sorted in decreasing order of their frequency, while codewords
are sorted in increasing number of their weight (the number
of bits 1 in the codeword). The codewords have the same
size (length) as input symbols bits. For codewords with the

Input symbol Symbol frequency NME
111 80 000
110 70 010
101 60 001
100 50 100
011 40 101
010 30 011
001 20 110
000 10 111

TABLE I
THE EXAMPLE MAPPING TABLE FOR NME CODE.

Fig. 2. Computation of a one level DWT decomposition.

same weight, the sorting allows to reduce the number of
sequential bits 1, which is a useful feature in terahertz band
communications.

D. Discrete wavelet transform (DWT)

Wavelet transform has a high energy compaction which
makes it a very suitable candidate for image compression.
It also has other properties such as, multi-resolution and
progressive reconstruction that provides wavelet a powerful
tool for image and video compression [22].

Wavelet-based image compression uses sub-band coding
which presents the different frequency components within an
image. Sub-band coding consists of a sequence of filtering and
sub-sampling processes. The wavelet decomposition for image
x is shown in Fig. 2. First, the input sequence x with size NxN
is filtered row by row by two filters (a low pass filter h0 and
a high pass filter h1) then sub-sampled by factor 2, which
results in two outputs of length N/2 in each filter. Next, these
coefficients are filtered and sub-sampled column by column
with the same process as previous (and the same filters).
As a result, the output y consists of four DWT coefficients
(LL, LH, HL and HH) each of size (N/2) x (N/2). The LL
coefficient is called approximation coefficient, while LH, HL
and HH are detail coefficients. The approximation coefficients
result in coarse information, which contains the significant
information (yLL). The image compression process discards
the insignificant information and maintains the significant
information.

In the synthesis or reconstruction stage, the procedures are
repeated in reverse direction using another set of low pass and
high pass filters (a low pass filter g0 and a high pass filter g1).
The reconstructed image has the same size as the original,
and the result is close to the original image (but not the same)
due to filtering effects. The reconstruction process is shown in
Fig. 3.



Fig. 3. Computation of a one level DWT reconstruction.
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In DWT transform, image is transformed into transform
coefficients with the same size of image. Multi-level decom-
position can be performed (level i+1) using sub-band LLi to
produce LLi+1, HLi+1, LHi+1 and HHi+1 bands, each with
size N/(2i) x N/(2i). The process of multi-level decomposition
is illustrated in Fig. 4.

IV. SIMPLE AND ENERGY EFFICIENT IMAGE COMPRESSION
(SEIC)

At the sender, SEIC consists of three steps:
• Perform the first decomposition of DWT (and only this).
• Quantize the coefficients and convert them to binary

stream.
• Reduce the number of bit 1 in binary stream by a low-

weight code.
These steps are shown in Fig. 5 and detailed in the following

algorithm:
1) The image x is filtered row by row using low pass filter

h0 and down sampled by factor 2, then filtered column
by column using filter h1 and down sampled by factor 2.
The output is y with a size of 1/4 of the input x.

2) Next, the output of transformation y is quantized by
uniform scalar quantizer to fit into n bits pulse code
modulation (PCM) or n bit NME code.

3) NME performs simple mapping from input symbol to a
codeword, which produces binary stream for transmis-
sion.

At receiver, the reconstruction process is performed in
reverse direction, i.e., NME decoding [21], de-quantization
and DWT inverse transform.

The first step in SEIC algorithm is related to the obtained
energy efficiency. As already stated, SEIC uses only one
decomposition level. Instead, if several levels are used, the
larger the level i, the larger the compression ratio which
can be obtained. For example, transmitting only LL1 yields
compression ratio 4:1 and LL2 yields 16:1 as shown in Fig. 4.

Therefore, minimum energy efficiency can be estimated for
each level. For example, the minimum energy efficiency using
level 1 decomposition is 75 % (this value is obtained from the
discard of 75 % coefficients from data input), the minimum
energy efficiency for level 2 is 93 % and for level 3 is 98 %.

Our method uses only the approximation coefficient and
discards the detail coefficients of DWT. SEIC is both simple
and energy efficient. It is simple because:

• In a wireless node-device, the compression is performed
by an electrical circuit. Compared to other DWT-based
image compression methods, such as JPEG 2000, SEIC
uses only 25 % of the circuit in DWT transforms. The
circuit size is smaller than original DWT (i.e., use only 1
sub-band from the 4 sub-bands), which is preferable for
a nano-device.

• Required memory is smaller than original DWT, due to
fewer circuit/electrical components. It reduces the amount
of required memory by approximately 75 % compared to
JPEG 2000.

• Compared to DWT, there is no negative coefficient (neg-
ative coefficients appear only in detail coefficients), i.e.
there is no additional memory to save negative sign for
each of the coefficients.

It is energy efficient because:
• Due to fewer circuit/electrical in DWT components, the

computation energy is smaller by approximately 75 %
than original DWT.

• Output data size is reduced by 75 % from the input size in
each decomposition level, i.e. each decomposition level
reduces the number of coefficients by 75 % of data input.
As shown in Fig. 4, the input has data size N x N, then the
approximation coefficient at level i has data size N/(2i)
x N/(2i). The larger the decomposition level, the larger
the energy efficiency (compression ratio) which can be
obtained, but the lower the reconstructed image quality.

The use of fixed codeword size in NME decoding makes
symbol detection simpler, compared to variable codeword size
as used in JPEG and JPEG 2000. In many cases, a 1-bit error in
variable codeword size causes symbol error detection for the
next symbols (error bits make impossible the reconstruction
process).

V. PERFORMANCE ANALYSIS

The goal of this section is to confirm the theory, i.e.
computation consumes much less energy than transmission,
as given in Introduction, through simulation.

In macro world, the ratio between transmission and com-
putation (10 000) is much bigger than in micro world (10),
as presented in Introduction, so the energy for computation is
negligible compared to transmission. Therefore, in this section
we focus on the “worse” case for us, the micro world.

In the following, we numerically investigate the perfor-
mance of SEIC in terms of visual quality, energy efficiency,
perpetual operation and robustness against transmission er-
ror, and compare it with several well-known compression



Fig. 5. Proposed method: (a) SEIC encoder, (b) SEIC decoder

standards (which do not use NME). In order to make our
simulation more realistic, we use the following parameters:
pulse width Tp = 1 ps (the first derivation of a 100 fs-long
pulse results in a 1 ps-long pulse, to prevent DC component
in Gaussian pulse [23]), pulse power P = 1µW [24], so
pulse energy Ep = P Ts = 1 aJ. In wavelet transform, we use
wavelet biorthogonal4.4 and quantization 8. For simulation we
use MATLAB. For diversity, in the simulation we use 4 images
with resolution 128x128 pixels, as follows:

• Cancer cell image (cancer128.bmp) to represent an
image with micro scale content (a cell).

• Lena image (lena128.bmp) to represent images with
high correlation between adjacent pixels.

• Barbara image (barbara128.bmp) to represent images
with moderate correlation between adjacent pixels.

• Baboon image (baboon128.bmp) to represent images
with low correlation between adjacent pixels.

A. Image quality

The metric we used to measure the visual quality of
reconstructed images are structural similarity (SSIM) and peak
signal to noise ratio (PSNR). SSIM provides results more
similar to human visual perception than PSNR [25]. For both
of them, the larger the value the closer the received image to
the transmitted one. SSIM and PSNR for all images are shown
in Table II. GIF and PNG have mean SSIM 1 and PSNR∞ dB,
which means perfect reconstruction. For lossy compression,
JPEG 2000 has the largest PSNR and SEIC has the lowest
PSNR for all images. As shown in Fig. 6, the SEIC image is
not perfect, but is sufficiently good. This is the price to pay
in order to have a simple and energy efficient compression.

B. Energy efficiency

In order to investigate the effectiveness of our compression
method from energy point of view, we compare the energy in
both cases, i.e. the energy to transmit the uncoded image to
the energy to compress it and transmit the compressed image:

EUncoded
cons = EUncoded

tx (1)

ECoded
cons = Ecomp + ECoded

tx (2)

where Econs is the energy consumption, Etx the transmission
energy, and Ecomp the compression energy. We present the

Original GIF

Mean SSIM = 1

PNG

Mean SSIM = 1

JPEG 2000

Mean SSIM = 0.99952

JPEG

Mean SSIM = 0.93419

SEIC

Mean SSIM = 0.82825

Fig. 6. Visual result of compressed Cancer image for various methods.

energy on the transmitter, but similar formulas apply for
receiver too.

Transmission energy. In TS-OOK modulation, the transmis-
sion energy can obtained from the number of transmitted bits 1
and pulse energy:

EUncoded
tx = NUncoded

1 Ep (3)

ECoded
tx = NCoded

1 Ep (4)

where Ep is the pulse energy (1 aJ) and N1 the number of
bits 1. Table II presents the transmission energy for all used
methods using these formulas. Column Energy consumption
on transmitter shows that the energy varies between approxi-
mately 7,000 and 76,000 aJ.

Computation energy for coded. For image with resolu-
tion 256x256 pixels, JPEG compression executes 10 million
instructions on an 8-bit micro-controller. The computation
energy can be reduced by factor 100 using JPEG dedicated
hardware [26]. As mentioned before, the computation in a
nano-device consumes 0.1 aJ [9] per instruction. So, JPEG
hardware compression consumes 100 fJ. Therefore, for an
image of resolution 128x128 pixels and processed on a 32-bit



Image Method Energy cons. (aJ) Energy PSNR SSIM
Transmitter Receiver eff. (%) (dB)

Cancer BMP 76 223 139 696 – – –
Cancer GIF 64 339 153 024 15.6 ∞ 1
Cancer PNG 51 080 99 584 33.0 ∞ 1
Cancer JPEG 2000 47 895 96 520 37.2 62.0 0.99
Cancer JPEG 17 852 36 024 76.6 38.1 0.93
Cancer DWT approx 16 229 36 992 78.7 33.1 0.83
Cancer SEIC 7 198 36 992 90.6 33.1 0.83
Lena BMP 65 594 139 696 – – –
Lena GIF 57 797 146 640 11.9 ∞ 1
Lena PNG 42 842 84 752 34.7 ∞ 1
Lena JPEG 2000 37 267 75 344 45.5 60.8 0.99
Lena JPEG 14 781 29 256 78.3 40.4 0.95
Lena DWT approx 13 581 36 992 79.3 35.1 0.90
Lena SEIC 7 765 36 992 88.2 35.1 0.90
Barbara BMP 66 303 139 696 – – –
Barbara GIF 59 109 149 936 10.9 ∞ 1
Barbara PNG 42 196 83 280 36.4 ∞ 1
Barbara JPEG 2000 36 110 72 472 42.9 60.9 0.99
Barbara JPEG 14 410 28 552 77.2 42.4 0.97
Barbara DWT approx 13 301 36 992 79.9 37.2 0.94
Barbara SEIC 7 742 36 992 88.3 37.2 0.94
Baboon BMP 69 411 139 696 – – –
Baboon GIF 61 582 155 152 11.3 ∞ 1
Baboon PNG 47 778 95 104 31.2 ∞ 1
Baboon JPEG 2000 44 939 90 680 35.5 62.0 0.99
Baboon JPEG 15 530 31 784 77.6 39.1 0.93
Baboon DWT approx 14 076 36 992 79.7 35.3 0.84
Baboon SEIC 7 082 36 992 89.8 35.3 0.84

TABLE II
ENERGY EFFICIENCY FOR ALL USED METHODS (DWT APPROX MEANS

DWT WITH ONLY APPROXIMATION COEFFICIENTS).

micro-controller, as in our case, JPEG compression consumes
Ecomp = 100 fJ /16 = 6,250 aJ. Note that DWT transform
consumes less energy than DCT [15].

The previous two paragraphs show that the compression
process consumes less energy than transmission (6,250 aJ vs
7 000–76 000 aJ). Thus, simulation results confirm theory, as
given in the Introduction.

Energy efficiency. Energy efficiency denotes the ability of
code to reduce the energy consumption at transmitter side:

ξ =
EUncoded

tx −
(
ECoded

tx + EComp
tx

)
EUncoded

tx

100% (5)

The energy efficiency for all images in various methods
is shown in Table II, where energy for compression has
been discarded since it is negligible. The results show that
NME code increases the energy efficiency of DWT with only
the approximation coefficients. Our proposed method (SEIC)
yields more than 85 % energy efficiency.

To conclude, the energy consumption for compression is
negligible compared to the energy for transmission. Therefore,
it is useful to compress the image before transmitting it.
Otherwise said, the energy lost by compressing an image is
much lower than the energy gained by sending a compressed
image.

C. Perpetual operation

The size of an individual nano-device is in the order of a
few cubic micrometers [11]. In advanced health monitoring

system, nano-devices can be used to detect infectious agents,
such as virus and harmful bacteria [27], and sick cells. For
example, cancer cells detected [28] at early stage are easier to
cure. We believe that this method will revolutionize the way to
cure these diseases. A nano-camera captures cell images, then
transmits them to the end system for the physician diagnostic.
In our application, nano-camera has 128x128 pixels resolution,
so if the pixel size is 1 nm, then the size of nano-camera is
around 128x128 nm2, which still fulfills the size requirement
for nano-component.

Recently, novel energy harvesting mechanisms have been
proposed allowing perpetual (infinite life time) nanonetworks.
One such mechanism is described in [29]. The vibrational
energy is harvested by exploiting the piezoelectric effect of
zinc oxide (ZnO) nanowires. The nano-battery capacity is
approximately 800 pJ when the 9 nF nano-capacitor is charged
at 0.42 V generator voltage and the number of vibration cycles
is 2500 cycles. For a vibrator of 50 Hz, such as the vent of
air conditioner in offices, the time needed to fully charge the
nano-battery is 50 seconds.

The energy harvesting rate Ehr can be obtained from the
nano-battery capacity 800 pJ divided by time to fully recharge
it 50 seconds, which is 16 pJ/sec. The energy to transmit the
cancer cell for uncoded is Etx = EpN

Uncoded
1 = 73,126 aJ.

The perpetual operation for uncoded Ehr/Etx = 16 pJ /
73,126 aJ ≈ 220 images/second. For SEIC, the energy to
transmit the cancer cell is Etx = EpN

SEIC
1 = 7,198 fJ. The

perpetual operation for SEIC Ehr/Etx = 16 pJ / 7,198 fJ ≈
2,220 images/second.

D. Robustness against transmission error

In general, compressed data is vulnerable to transmission
error. One bit error may cause error propagation in reconstruc-
tion process which destroys the received image, e.g., distorted
or file unable to open. This is not the case for SEIC. In this
section we present the effect of error bit for transmitted image
for all methods.

In order to simulate the transmission at terahertz band,
we use HITRAN (HIgh resolution TRANsmission molecular
absorption database), an online catalog [30] for path-loss
computation. Molecular absorption noise in THz band is
function of distance. Larger distance means larger noise in the
received signal, which causes error in detection process. Using
the bit error rate (BER) equations from [31], and pulse energy
1 aJ, the BER when sending only bits 1 (BER1) and only
bits 0 (BER0) are shown in Fig. 7. As expected, it shows
that the BER when transmitting bit 1 is always larger than
when sending only bit 0 (BER1 ≥ BER0).

We investigate here the effect of error bits in the recon-
struction (decompression) process at receiver. Due to limited
computation in nano-devices, hard decision method is utilized
in nano-receiver. Therefore, terahertz band is modeled as a
binary asymmetric channel (BAC) and channel output as a
discrete random variable [31]. We simulate the transmission
at distance 1 cm and obtain BER0 = 1.7 × 10−8 and
BER1 = 5.0 × 10−4, as shown in Fig. 7. The effect of error
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Uncoded

Mean SSIM = 0.99274

GIF

File error

PNG

File error

JPEG 2000

Mean SSIM = 0.46523

JPEG
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SEIC
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Fig. 8. Visual result of received compressed Cancer image for various
methods.

bits in reconstruction process of each compression method
are different. Using the same noise, the visual quality of
reconstructed image for all methods is shown in Fig. 8, 9, 10,
and 11. In uncoded transmission, error bits affect only certain
pixels, which is also the same as SEIC method. In JPEG 2000
and JPEG, the error propagates, e.g., one bit error causes errors
in many pixels. In GIF and PNG, the error results in an image
which cannot be reconstructed (file cannot be opened). In order
to obtain reliable transmission for compressed image, GIF,
PNG, JPEG and JPEG 2000 require complex (powerful) error
correction code, which is impractical for limited computation
in nano-devices. While SEIC can use simple error correction
code such as Hamming code, since error does not propagate in
decompression process. As conclusion, SEIC method is more
robust against transmission error.

Uncoded

Mean SSIM = 0.99573

GIF

File error

PNG

File error

JPEG 2000

Mean SSIM = 0.47834

JPEG

Mean SSIM = 0.3036

SEIC

Mean SSIM = 0.87998

Fig. 9. Visual result of received compressed Lena image for various methods.

Uncoded

Mean SSIM = 0.99385

GIF

File error

PNG

File error

JPEG 2000

Mean SSIM = 0.25715

JPEG

Mean SSIM = 0.53242

SEIC

Mean SSIM = 0.92004

Fig. 10. Visual result of received compressed Barbara image for various
methods.

VI. CONCLUSIONS

We presented a simple and energy efficient image compres-
sion (SEIC) for binary pulse-based wireless sensor networks
at terahertz band. The method uses only the approximation
coefficients of DWT transform followed by NME code. The
simulation results show that our proposed method outperforms
JPEG, JPEG 2000, GIF and PNG in several metrics: energy
efficiency, perpetual operation in nanocommunications and
robustness against transmission error. The trade-off is a lower
image quality at receiver.

In future work we will include the computational energy
to have a complete knowledge in energy consumption and
perform fair comparison between image compression methods.



Uncoded

Mean SSIM = 0.99341

GIF

File error

PNG
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JPEG 2000
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Fig. 11. Visual result of received compressed Baboon image for various
methods.
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