
SysML Model-Driven Approach to Verify Blocks
Compatibility

H. Bouaziz*, S. Chouali, A. Hammad and
H. Mountassir
FEMTO-ST Institute,
University of Bourgogne Franche-Comté,
Besançon, France
E-mail: hamida.bouaziz@femto-st.fr
E-mail: schouali@femto-st.fr
E-mail: ahammad@femto-st.fr
E-mail: hmountas@femto-st.fr
*Corresponding author

Abstract:
In the component paradigm, the system is seen as an assembly of

heterogeneous components, where the system reliability depends on these
components compatibility. In our approach, we focus on verifying compatibility
of components modelled with SysML diagrams. Thus, we model component
interactions with sequence diagrams (SDs) and components with SysML blocks.
The SDs constitute a good start point for compatibility verification. However,
this verification is still inapplicable directly on SDs, because they are expressed
in informal language. Thus, to apply a verification method, it is necessary to
translate the SDs into formal models, and then verify the wanted properties. In
this paper, we propose a high-level model-driven approach which consists of an
ATL grammar that automates the transformation of SDs into interface automata.
Also, to allow an easy use of Ptolemy tool to verify properties on automata,
we have proposed some Acceleo templates, which generate the Ptolemy entry
specification.

Keywords: model-driven; SysML; sequence diagram; interface automata; ATL;
Acceleo

Reference to this paper should be made as follows: Bouaziz, H., Chouali,
S., Hammad, A. and Mountassir, H.(xxxx) ‘SysML Model-Driven Approach
to Verify Blocks Compatibility’, Int. J. Computer Aided Engineering and
Technology, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Hamida Bouaziz is a PhD student at Femto-ST institute,
university of Bourgogne Franche-Comté, France. Her area of research includes
component-based systems, modelling of complex systems using SysML,
adaptation techniques of components and formal verification.

Samir Chouali is an associate professor at the university of Bourgogne Franche-
Comté. He is a member of the department of computer science and complex
systems (DISC) in FEMTO-ST institute. His research interests include the use
of formal methods in the specification and the verification of complex systems,
the development and the verification of component-based systems (CBS), and the
combination between semi-formal models (UML, SysML) and formal approaches
to develop reliable CBS.

Ahmed Hammad received his PhD degree in Computer Science from the
university of Toulouse, France. Currently, he is an associate professor at the

Copyright © 201x Inderscience Enterprises Ltd.

2 H. Bouaziz et al.

university of Bourgogne Franche-comté, and a member of the department of
computer science and complex systems (DISC) in FEMTO-ST institute. His
area of research includes the use of formal methods in the specification and the
verification of complex systems. His research interests concern also Model-Driven
Engineering (MDE) and model transformation.

Hassan Mountassir received his HDR (French post-doctoral degree allowing
its holder to supervise PhD students) degree in Software Engineering in 2001
from Bourgogne Franche-Comté university. Currently, he is a professor in the
department of Computer Sciences at Femto-ST institute. His research interests
include component-based systems, formal methods and verification techniques.

1 Introduction

The design and the development of large software and systems are addressed by the
introduction of new paradigms such as object and component paradigms. The use of
components as the development unit allows handling the complexity of these large systems.
Basing on the notion of component, OMG and INCOSE have founded the System Modelling
Language (SysML) OMG (2012). This language shows the system as a set of blocks OMG
(2012). SysML uses the Block Definition Diagram (BDD) and the Internal Block Diagram
(IBD) to structure the blocks and to establish links between them. To model the behaviour,
SysML uses the State Machine (SM), the Sequence Diagram (SD) and the Activity Diagram
(AD).

In SysML, interactions between blocks are modelled using IBDs and SDs. These
interactions take the form of architectural links in the IBDs. However, SDs, which interest us
in this paper, allow us to model the scheduling of these interactions using life lines of blocks.
Thus, the SDs constitute a good start point to verify the interactions inside the system. Since
formal verification is still inapplicable directly on SysML models (Bouaziz et al. (2015)),
therefore to apply a verification method, it is necessary to translate the SysML models to
formal ones, and then verify the wanted properties.

In our work, the interactions are represented using a set of SDs. Each SD is associated
with a block, and it describes the interaction scenarios of a block with its environment.
To formalize the semantic of SDs, we transform them into interface automata (IAs) (de
Alfaro and Henzinger (2001)). IAs constitute a good formal model to represent the scenarios
of requesting (output actions) and performing (input actions) services of a block. The
composition of interface automata allows us to verify some relations and properties on blocks
such as the consistency and the compatibility (i.e. verify the existence of an environment
where it is possible to connect these blocks).

Our approach of transforming SDs into IAs is mainly based on meta-modelling (de
Lara et al. (2004)) and meta-model transformations (Czarnecki and Helsen (2003)). Such
approach consists on defining the meta-models of the source and the target models, and then
specifying the correspondences between them in the meta-level. To avoid user errors during
the transformation from the SDs to IAs, we have proposed an automated ATL (ATL, n.d.)
grammar, which performs this transformation automatically. After, to verify some properties
on the resulted interface automata, we have opted for Ptolemy (Ptolemy, n.d.) tool that
requires as entry a textual specification. For this purpose, we have used Acceleo (Acceleo,
n.d.) to define a set of templates on our meta-model of interface automata, that allows us to

A Model-Driven Approach to Prepare SysML Blocks for Verification 3

generate automatically the Ptolemy entry specification. Thus, this tool chain, that we have
developed, allows to assist the architect during the verification phase by discharging him
from doing many tasks.

The remainder of the paper is organized as follows: In section 2, we present the
background about SysML sequence diagrams, interface automata, ATL and Acceleo.
Next, in section 3, we introduce our proposed approach. After, Section 4, gives details
of transforming sequence diagrams into interface automata. Next, Section 5, presents the
Acceleo templates that we have proposed to generate Ptolemy entry specification. In Section
6, we present how we verify the compatibility of the blocks. In section 7, we illustrate our
approach by a case study. In section 8, we discuss related work. Finally, in Section 9, we
conclude and we present perspectives of our work.

2 Preliminaries

2.1 Sequence Diagram

Sequence diagram (see figure 3) is a graphical diagram of SysML. It represents the
interactions by focusing on the observable exchange of messages between blocks. A
sequence diagram has two dimensions, where the vertical dimension represents time and the
horizontal one represents the blocks which participate in the interaction (Rumbaugh et al.
(2004)). It consists of a set of lifelines which represent the interacting blocks. The temporal
execution of interactions is shown as a succession of messages. A message takes the form
of an arrow originates at the sender and ends at the receiver. An SD can also contain a set of
combined fragments (CFs). CFs are used to express different types of control flows, such
as concurrency, choice and loop (Rumbaugh et al. (2004)). They are defined by interaction
operators (Alt, Loop, Break, etc) and corresponding interaction operands.

2.2 Interface Automata

Interface automata (de Alfaro and Henzinger (2001)) were introduced by Alfaro and
Henzinger to specify components interfaces and also to verify components assembly based
on their actions. The set of actions is decomposed into three groups: input actions, output
actions and internal actions. Input actions allow us to model the methods that the component
exposes to its environment. These actions are labelled by the character ’?’. The output
actions model the methods that the component needs to invoke from other components.
These actions are labelled by the character ’!’. Internal actions are methods that can be
activated locally and are labelled by the character ’;’.

An interface automaton A is represented by the tuple:

⟨ SA, IA, ΣI
A, ΣO

A , ΣH
A , δA ⟩

Where:

• SA is a finite set of states. IA ⊆ SA is a set of initial states.

• ΣI
A,Σ

O
A , and ΣH

A , respectively denote the sets of input, output, and internal actions.
The set of actions of A is denoted by ΣA.

• δA ⊆ SA × ΣA × SA is the set of transitions between states.

4 H. Bouaziz et al.

Definition 1 (Synchronous product):
The synchronous product is used to capture the parallel execution of two components

represented by their interface automata. Before computing the global behaviour of the two
components, it is mandatory to verify if they can be assembled by testing their composability.
Two interface automata A1 and A2 are composable if:

ΣI
A1

∩ ΣI
A2

= ΣO
A1

∩ ΣO
A2

= ΣH
A1

∩ ΣA2
= ΣA1

∩ ΣH
A2

= ∅.

The synchronous product between two interface automata A1 and A2 is defined as:

A1 ⊗A2 = ⟨ SA1⊗A2 , IA1⊗A2 , ΣI
A1⊗A2

, ΣO
A1⊗A2

, ΣH
A1⊗A2

, δA1⊗A2 ⟩

• SA1⊗A2
= SA1

× SA2
and IA1⊗A2

= IA1
× IA2

.

• ΣI
A1⊗A2

= (ΣI
A1

∪ ΣI
A2

) \ Shared(A1, A2).

• ΣO
A1⊗A2

= (ΣO
A1

∪ ΣO
A2

) \ Shared(A1, A2).

• ΣH
A1⊗A2

= ΣH
A1

∪ ΣH
A2

∪ Shared(A1, A2).

• ((s1, s2), a, (s
′
1, s

′
2)) ∈ δA1⊗A2 if

– a ̸∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1

∧ s2 = s′2

– a ̸∈ Shared(A1, A2) ∧ (s2, a, s
′
2) ∈ δA2

∧ s1 = s′1

– a ∈ Shared(A1, A2) ∧ (s1, a, s
′
1) ∈ δA1 ∧ (s2, a, s

′
2) ∈ δA2 .

We define by Shared(A1,A2) = (ΣI
A1

∩ ΣO
A2

) ∪ (ΣO
A1

∩ ΣI
A2

) the set of shared actions
between A1 and A2.

Definition 2 (Parallel composition):
The composition of two interface automata A1 and A2 is denoted by A1 ∥ A2, it is

computed by eliminating from the product A1 ⊗ A2 the illegal states and all states reached
from these illegal states by enabling output and internal actions. A1 and A2 are compatible
iff A1∥A2 ̸= ∅
The set of illegal states of two interface automata A1, A2 is defined as:

Illegal(A1, A2)=


(s1, s2) ∈ SA1 × SA2 | ∃a ∈ Shared(A1, A2).a ∈ ΣO

A1
(s1) ∧ a ̸∈ ΣI

A2
(s2)

∨
a ∈ ΣO

A2
(s2) ∧ a ̸∈ ΣI

A1
(s1)




We define by ΣI
A(s1), ΣO

A (s1), respectively the set of input and output actions enabled
at the state s1.

2.3 ATL: Atlas Transformation Language

ATL (ATL, n.d.) is a model transformation language and toolkit. In the field of Model-
Driven Engineering (MDE), ATL provides a way to produce a number of target models from
a set of source models. An ATL transformation program is composed of rules that define
how source model elements are matched and navigated to create and initialize the elements
of the target models. These rules are based on a mixture of declarative and imperative
constructs. The set of the rules constitutes the ATL grammar.

Each ATL rule is characterized by two mandatory elements:

A Model-Driven Approach to Prepare SysML Blocks for Verification 5

• from : A pattern on the source model with possible constraints.

• to : One or more elements of the target model, it indicates how target elements must
be initialized from the corresponding source element.

2.4 Acceleo

Acceleo is the result of several man-years of R&D started in the French company Obeo
(Obeo, n.d.). Acceleo is a source code generator of the eclipse foundation. It implements
the MDA (Model driven architecture) approach to realize application starting from EMF
(Eclipse Modelling Framework) models. It is an implementation of the norm of the
Object Management Group (OMG) for transforming models to text (M2T), where the
transformations take the form of templates.

3 Our Methodology

Our approach aims to prepare the SysML blocks for the compatibility verification phase. We

Figure 1: Our Methodology

show an overview of our methodology in figure 1. To verify the compatibility of two blocks,
modelled using sequence diagrams, we start by applying the ATL grammar, that we will
expose in section 4, on their corresponding meta-models , in order to obtain their equivalents

6 H. Bouaziz et al.

of interface automata. For verifying the compatibility of the blocks, we use the Ptolemy tool.
Ptolemy contains a module which allows the verification and the composition of interface
automata. To discharge the user from redrawing the interface automata using the Ptolemy
user interface, we propose a set of Acceleo templates to generate automatically the Ptolemy
entry specifications corresponding to the interface automata specifications obtained in the
previous step.

4 Transforming SDs of blocks into interface automata

In our work, the sequence diagrams are used to visualize the scheduling of the different
interactions of each block with its environment. In the sequence diagram of a block B, the
environment life line will represent the set of all blocks with which the block B can interact.
Thus, in our context, we aggregate all the blocks that interact with B in one block that we
call ENV.

To transform these sequence diagrams into interface automata, some correspondences
are given in (Chouali and Hammad (2011)). In our paper, we analyse more constructs
with more detail. Also, our approach is a meta-model driven approach that define the
correspondences in meta-level. To implement these correspondences and to automate the
transformation, we propose a set of ATL rules. Our ATL grammar doesn’t deal with
combined fragments as an isolated units as in the works have already done on Petri nets and
the other kinds of automata. It deals with the different cases of nested combined fragments.

This ATL grammar is defined on the meta-model of sequence diagram as source and
meta-model of interface automata as target.

4.1 Sequence Diagram Meta-Model

By intention to reuse existed modelling tools, we have used the sub set of Papyrus (Papyrus,
n.d.) SysML meta-model and its graphical editor to draw the sequence diagrams. In figure
2, we represent the classes set of Papyrus meta-model that allows us to model sequence
diagrams, and in figure 3, we give an example of a sequence diagram which is modelled
using Papyrus editor.

In figure 2, the root class is the class Interaction. So, sequence diagrams, that we will
model, will be the instances of this class. Each interaction can include a set of life lines, a
set of messages and finally a set of interaction fragments. The classes:

• LifeLine: each instance of this class represents an object which participates in the
interaction. It will be the support of sending (resp. receiving) events executed (resp.
intercepted) by the object.

• Message: defines the messages set interchanged between objects. Each message has
two ends; a send end and a receive end.

• InteractionFragment: is the super class of the classes: Interaction,
CombinedFragment, InteractionOperand and OccurenceSpecification.

• CombinedFragment: each combined fragment includes a set of interaction operands,
and it has its own interaction operator. The interaction operator takes a value of this
list [alt, opt, break, loop, par, ...]

A Model-Driven Approach to Prepare SysML Blocks for Verification 7

Element

Interaction

*

NamedElement

name

MessageEndMessageInteraction
Fragment

Lifeline

Combined
Fragment

interactionOperator

Interaction
Operand

Occurrence
Specification

getCovered()

Message
Occurrence

Specification

Interaction
Constraint

lifeLine 0..* message 0.*

operand *

fragment 0..*

guard

sendEvent

recEvent

message

covered 0..*

CoveredBy 0..*

owner 0..1

ownedElement 0..*

Figure 2: Papyrus Meta-Model of SysML Sequence Diagram

• InteractionOperand: each operand is associated to a combined fragment, and it can
have a guard.

• MessageOccurenceSpecification: Each event associated to the life line is represented
as a message occurrence specification. It represents an extremity of a message. We can
know the life line, to which the specification is associated, by executing the method
getCovered() of the super class OccurenceSpecification. We can also obtain the message
started or finished at this specification, by navigating through the association message
of the super class MessageEnd.

The classes MessageEnd, Message and InteractionFragment inherit the class
NamedElement which its self inherits the class Element. The association ’owner’
allows us to obtain the father element of the current element, however the association
’ownedElement’ allows us to obtain the children elements of the current element.

4.2 Interface Automata Meta-Model

Basing on the formal definition of interface automata formalism given in section 2, we have
proposed their meta-model in figure 4. The classes:

• InterfaceAutomaton: is the root. Each interface automaton has a name which
represents the name of the block to which this automaton is associated. Each instance
of this class can include a set of states, a set of transitions and a set of ports(in-ports,
out-ports).

8 H. Bouaziz et al.

Figure 3: Sequence diagram elements

Interface
Automaton

name

Transition
action

State
name
type

Inport
name

Outport
name

states 0..*

transitions 0..* inports 0..*

outports 0..* StateType
Initial
NotInitial

source

target

Figure 4: Interface Automata Meta-Model

• State: Each instance of this class has a name and a type. The type allows specifying if
this instance is an initial state or not.

• Transition: each instance of this class has three values to specify. The action which is
the label of this transition, the source state and the target state.

• Inport: represent the ports associated with the input actions.

• Outport: represent the ports associated with the output actions.

In Figure 5, we present an interface automaton which is modelled using our editor. We have
used the Graphical Modelling Framework (GMF) to specify and generate our graphical
editor of interface automata.

A Model-Driven Approach to Prepare SysML Blocks for Verification 9

Figure 5: Generated Interface Automata Editor

4.3 Basic Interaction Transformation Rules

An interface automaton specifies the interactions of a block ’B’ with its environment, where
the environment represents all the blocks with which the block ’B’ can interact. So, the
interface automaton will be associated to the life line of the block ’B’.

To perform the basic transformations (interactions without combined fragments), we
have three rules:

• Rule 1: LifeLine2InterfaceAutomaton

This rule allows us to initialize the interface automaton which is associated to the
block ’B’. The name of the interface automaton will be the name of the block ’B’. The
in-ports are created using the helper ’createInports’, because we need to create one
in-port for all messages having the same name, which are received by the block ’B’.
To create the out-ports, we have used the helper ’createOutports’, which creates one
out-port for all messages having the same name, which are emitted by ’B’.

rule LifeLine2InterfaceAutomaton {

from lifeline : SD!Lifeline (lifeline.name<>’ENV’)

to ia : IA!InterfaceAutomaton (

name <-lifeline.name,

states <-IA!State.allInstances(),

transitions <-IA!Transition.allInstances(),

inports <- thisModule.createInports(lifeline),

outports <- thisModule.createOutports(lifeline)

) }

• Rule 2: MessageOccurrenceSpecification2State

We are only interested with events (sending and receiving of messages) associated
to the life line of our block ’B’. These events (mos) are the instances of the class

10 H. Bouaziz et al.

’MessageOccurrenceSpecification’, where their life line is not the environment but
the current block ’B’(mos.getCovered ̸= ENV). So, we must create a state for each
message occurrence specification.

rule MessageOccurenceSpecification2State {
from mos : SD!MessageOccurrenceSpecification

(mos.getCovered().name <> ’ENV’)

to s : IA!State (name<-mos.message.name.concat(’start’))

}

• Rule 3: Message2Transition

A message, which has an extremity that starts or ends at the life line of the current
block ’B’, must be transformed into a transition in the interface automaton of ’B’.
For a message mos1

mes−→ mos2 (where mos1 and mos2 are message occurrence
specifications), we create a new transition. This transition will be labelled with the
action ’mes’, but to specify the type of this action and to fix the beginning and the end
states of this transition, we must analyse three cases:

B
(1)

ENV
mes

mos1 mos2

mosi
mes!

B
(2)

ENV
mes

mos2 mos1

mosi
mes?

(3)
B

mos1

mos2
mesmes;

Figure 6: Message transformation

– Only mos1 is associated to the life line of ’B’ (see figure 6 (1)): In this case, the
label will be an output action ’mes!’. The transition starts at the state associated
to mos1 and ends at the state associated to mosi (the next message occurrence
specification of mos1 on the life line of ’B’).

– Only mos2 is associated to the life line of ’B’ (see figure 6 (2)): In this case, the
label will be an input action ’mes?’. The transition starts at the state associated
to mos2 and ends at the state associated to mosi (the next message occurrence
specification of mos2 on the life line of ’B’).

A Model-Driven Approach to Prepare SysML Blocks for Verification 11

– mos1 and mos2 are associated to the life line of ’B’ (see figure 6 (3)): In this
case, the label will be an internal action ’mes;’. The transition starts at the state
associated to mos1 and ends at the state associated to mos2.

rule message2Transition {
from mes : SD!Message, mos : SD!MessageOccurrenceSpecification
. (mos.getCovered().name <> ’ENV’)
to t : IA!Transition (
action <- mes.name.concat(

if(mes.sendEvent.getCovered()=mes.receiveEvent.getCovered())

then ’;’

else if (mes.sendEvent=mos)then ’!’ else ’?’endif

endif),
source <- thisModule.resolveTemp(mos, ’s’),
target <- thisModule.resolveTemp(

thisModule.NextMsgOcSpec(mos.getCovered(), mos), ’s’)

) }

– NextMsgOcSpec (lfn, mos) is an ATL helper that returns the next
occurrence specification of ’mos’ on the life line ’lfn’.

4.4 ALT Combined Fragment Transformation Rules

The alt fragment allows us to express alternative behaviours according to guards. To
transform the alt combined fragment, we have proposed three rules. Two rules for the
beginning of alt, and the third one is for processing the end of alt.

For the beginning of alt, we distinguish between two cases:

• Rule 1: TransformAltWichFollowsAMsg

In the case when the combined fragment ’alt’ follows a message ’mes’, to transform
alt, we create a state which represents the beginning of ’alt’, and three transitions (see
figure 7(1)).

– ’t1’ allows us to connect the beginning of ’alt’ with the previous behaviour using
the message just before ’alt’.

– ’t2’ allows us to connect the beginning of ’alt’ with the behaviour of the first
operand using guard as internal action.

– ’t3’ allows us to connect the beginning of ’alt’ with the behaviour of the second
operand using guard as internal action.

rule TransformAltWichFollowsAMsg {
from alt : SD!CombinedFragment (thisModule.FollowedAMessage(alt))
to
s : IA!State (name <- ’BeginAlt’),
t1 : IA!Transition (
action <- thisModule.previousMessage(alt).name.concat(...

– specify the type of action as in rule 2),
source <- thisModule.resolveTemp(

thisModule.PreviousMessageOccurence(alt),’s’),
target <- s),

12 H. Bouaziz et al.

t2 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp(thisModule.

getTheFirstElement(alt.operand->at(1)), ’s’)),
t3 : IA!Transition (
action <- alt.operand->at(1).guard...concat(’;’),
source <- s,
target<-thisModule.resolveTemp(thisModule.

getTheFirstElement(alt.operand->at(2)), ’s’)),

}

– FollowedAMessage (alt) is an ATL helper that returns true if alt follows
a message.

– previousMessage(alt) is an ATL helper that returns the message which is
before alt.

– PreviousMessageOccurence(alt) is an ATL helper that returns the
message occurrence specification which is before alt.

– getTheFirstElement(op) is an ATL helper that returns the first element in
the operand op.

• Rule 2: TransformFirstAltInInteractionOrOperand

This rule processes ’alt’ in case when it is the first element of the global interaction, the
first element in an operand, or when it follows a combined fragment. The difference
between this rule and the last one, reside in the transition t1. In this rule, we don’t
create the transition t1 because when ’alt’ is :

– the first element in the interaction (see figure 7(2)): we don’t need this transition.

– directly after a combined fragment ’cf’ (see figure 7(4)): this transition will be
created by the rule which processes the end of ’cf’.

– the first element of an operand ’op’(see figure 7(3)): this transition will be created
by the rule which processes the beginning of the combined fragment of ’op’.

rule TransformFirstAltInInteractionOrOperand {
from alt : SD!CombinedFragment

(thisModule.FirstElementOrFollowsCF(alt))

to
s : IA!State (– the same as rule 1),

t2 : IA!Transition (– the same as rule 1),

t3 : IA!Transition (– the same as rule 1),

}

– FirstElementOrFollowsCF (alt) is an ATL helper that returns true if
alt is the first element in the interaction, the first element inside an operand, or it
follows directly a combined fragment.

A Model-Driven Approach to Prepare SysML Blocks for Verification 13

• Rule 3: TransformEndAlt

This rule (see figure 7(5)) allows us to process the end of an ’alt’ operand. It takes as
parameters this operand and the last message occurrence specification (mos) inside it.
It creates a transition between the state associated to mos and the state associated to
the next element of the combined fragment to which this operand belongs (op.owner).
The next element may be a message or a combined fragment. The transition takes as
label the name of message whose ’mos’ is one of its ends.

B ENV
mes

alt
[cond1]

[cond2]

mes!

cond1; cond2;

(1) CF after a Message
B ENV

alt
[cond1]

[cond2]

cond1; cond2;

(2) CF the first element of SD

B ENV

[cond]

alt
[cond1]

[cond2]

cond;

cond1; cond2;

(3) alt is the first element in an Operand
B ENV

CF

alt
[cond1]

[cond2]

cond1; cond2;

(4) alt after a CF

B ENV

alt
[cond1]

[cond2]

mes1

mes2

Next element

mes1! mes2!

(5) the end of alt operands

Figure 7: Alt transformations

14 H. Bouaziz et al.

rule TransformEndAlt {
from
op : SD!InteractionOperand,
mos : SD!MessageOccurrenceSpecification

(thisModule.isTheLastMessageInOperand(mos.message, op)

and mos.getCovered().name<>’ENV’)
to
t : IA!Transition (
action <- mos.message.name.concat(

– specify the type of action as in rule 2),
source <- thisModule.resolveTemp(mos,’s’),
target <-thisModule.resolveTemp(thisModule.

getNextElement(op.owner),’s’),
}

– isTheLastMessageInOperand(mes, op) returns true if the message
mes is the last message in the operand op.

– getNextElement(cf) returns the next message or combined fragment of the
combined fragment cf.

Using the same manner of thinking, we can define rules for other combined fragments.

5 Generation of Ptolemy specification

At this step, and to discharge the user from redrawing the interface automata using the
Ptolemy user interface, we propose a set of Acceleo templates to generate automatically
the Ptolemy entry specification.

By analysing an entry file of ptolemy interface automaton, and by eliminating
information related to the position of nodes on the ptolemy canvas, we have obtained its
skeleton and we have defined six Acceleo templates. We have eliminated the information
related to the position of nodes on the canvas, because the ptolemy, when it doesn’t find
information about the position of a node, it uses its default values.

The first Acceleo template ’generateIA’ is the main template, it creates the file of the
Ptolemy specification and its header, and calls the other templates. The templates, after the
principal one, each one has a name that corresponds to its role.

• generateInport(inport : Inport): it allows us to generate the Ptolemy
specification of each in-port of the concerned interface automaton.

• generateOutport(outport : Outport): it will be called iteratively (as the
previous template) by the main template to generate the Ptolemy specification for each
out-port of the concerned interface automaton.

• generateState(state : State): it allows us to generate the Ptolemy
specification for automaton states.

• generateRelation(transition : Transition, i:Integer) and
generateLinks (transition : Transition, i:Integer): these

A Model-Driven Approach to Prepare SysML Blocks for Verification 15

two templates allow us to generate the Ptolemy specification for transitions of the
automaton.

[comment encoding = UTF-8 /]
[module generate(’http://www.interfaceAutomata.ecore’)]
[template public generateIA(IA : InterfaceAutomaton)]
[comment @main/]
[file (IA.name.concat(’.xml’), false, ’UTF-8’)]
<?xml version="1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">

<entity name="[IA.name/]"
class="ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">

[for (outport :Outport| IA.outports)]
[generateOutport(outport)/]
[/for]

[for (inport :Inport| IA.inports)]
[generateInport(inport) /]
[/for]

[for (state :State| IA.states)]
[generateState(state) /]
[/for]

[for (transition :Transition| IA.transitions)]
[generateRelation(transition, i)/]
[/for]

[for (transition :Transition | IA.transitions)]
[generateLinks(transition,i)/]
[/for]

</entity>

[/file]
[/template]

[template private generateInport(inport : Inport)]
<port name="[inport.name/]" class="ptolemy.actor.TypedIOPort">

<property name="input"/>

</port>

[/template]

[template private generateOutport(outport : Outport)]
<port name="[outport.name/]" class="ptolemy.actor.TypedIOPort">

<property name="output"/>

</port>

[/template]

[template private generateState(state : State)]
<entity name="[state.name/]" class="ptolemy.domains.modal.kernel.State">
[if (state.type=StateType::Initial)]

<property name="isInitialState" class="ptolemy.data.expr.Parameter"

value="true"></property>

[/if]

16 H. Bouaziz et al.

</entity>

[/template]

[template private generateRelation(transition : Transition, i:Integer)]
<relation name="relation[if (i>1)][i/][/if]"

class="ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="[transition.action/]"></property>

</relation>

[/template]

[template private generateLinks (transition : Transition, i:Integer)]
<link port="[transition.source.name/].outgoingPort"

relation="relation[if (i>1)][i/][/if]"/>
<link port="[transition.target.name/].incomingPort"

relation="relation[if (i>1)][i/][/if]"/>
[/template]

6 The Blocks Verification

We want to verify the composability and the compatibility of the blocks. To do that, we base
on the interface automata which describe the interaction protocols of these blocks.

• Two blocks B1 and B2 are considered as composable if their interface automata A1

and A2 are composable: ΣI
A1

∩ ΣI
A2

= ΣO
A1

∩ ΣO
A2

= ΣH
A1

∩ ΣA2 = ΣA1 ∩ ΣH
A2

= ∅.

• Two blocks are compatible, if they are consistent and their interface automata are
compatible. According to the optimistic approach of Henzinger, two interface automata
are compatible if their composition is not empty: A1∥A2 ̸= ∅

To verify the composability and the compatibility of the blocks, we use the Ptolemy tool.
we give it, as entry, the generated files (the files that we have generated using our Acceleo
templates). Ptolemy computes the composition of interface automata and delivers the result.
If the result of composition is not empty, this means that the blocks are compatible.

7 Case Study: CyCab

CyCab (Baille et al. (1999)) is a new means of electrical transportation, it is conceived
basically for free-standing port services. It is controlled by a computer system. The CyCab
system has two major parts: the station and the vehicle. The vehicle is guided by the
information received from the station, which allows to situate the vehicle.

In this case study, we are only interested by the ’station’ part. The station has a sensor
that receives signals from vehicle giving the vehicle position (pos?). The station has also a
computing units that sends a signal (far! or halt!) to the vehicle to indicate if it is far from
the station or not. In figure 8, we present the architecture of the Cycab System using the
SysML BDD.

A Model-Driven Approach to Prepare SysML Blocks for Verification 17

properties
values

references
parts

operations

constraints

CompUnit
<< block >>

properties
values

references
parts

operations

constraints

Sensor
<< block >>

properties
values

references
parts

operations

constraints

V ehicle
<< block >>

properties
values

references
parts

operations

constraints

Station
<< block >>

properties
values

references
parts

operations

constraints

CyCabSys
<< block >>

<< interface >>
I-C-S

pos

<< interface >>
I-V-C

far
halt

<< interface >>
I-S-V

spos

bdd CyCab

Figure 8: Block Definition Diagram of CyCab

Figure 9: SD of Sensor Figure 10: SD of Computing-Unit

The interactions of the sensor and the computing-unit blocks are represented as sequence
diagrams (see figure 9 and figure 10). To draw sequence diagrams, we have used the papyrus
editor.

18 H. Bouaziz et al.

By applying our ATL rules on the sequences diagrams of the sensor and the computing
unit, we have obtained their equivalents of interface automata. In figure 11 and figure 12,
we present the resulted interface automata in our graphical editor.

Figure 11: SD of Sensor Figure 12: SD of Computing-Unit

By applying the acceleo templates, that we have defined to generate Ptolemy
specification, we have obtained these files.

• Ptolemy file of Sensor block:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="sensor" class=
"ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">

<port name="pos" class="ptolemy.actor.TypedIOPort">
<property name="output"/>

</port>
<port name="spos" class="ptolemy.actor.TypedIOPort">

<property name="input"/>
</port>
<entity name="s1" class="ptolemy.domains.modal.kernel.State">
</entity>
<entity name="s0" class="ptolemy.domains.modal.kernel.State">
<property name="isInitialState" class="ptolemy.data.expr.Parameter"
value="true"></property>

</entity>
<relation name="relation" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="spos?"></property>

</relation>
<relation name="relation2" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos!"></property>

A Model-Driven Approach to Prepare SysML Blocks for Verification 19

</relation>
<link port="s1.outgoingPort" relation="relation"/>
<link port="s0.incomingPort" relation="relation"/>
<link port="s0.outgoingPort" relation="relation2"/>

<link port="s1.incomingPort" relation="relation2"/>

</entity>

• Ptolemy file of Computing-Unit block:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_1.dtd">
<entity name="Computing Unit" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomaton">
<port name="far" class="ptolemy.actor.TypedIOPort">
<property name="output"/> </port>

<port name="halt" class="ptolemy.actor.TypedIOPort">
<property name="output"/> </port>

<port name="pos" class="ptolemy.actor.TypedIOPort">
<property name="input"/> </port>

<entity name="s0" class="ptolemy.domains.modal.kernel.State">
<property name="isInitialState" class="ptolemy.data.expr.Parameter"
value="true"> </property> </entity>

<entity name="s2" class="ptolemy.domains.modal.kernel.State">
</entity>
<entity name="s3" class="ptolemy.domains.modal.kernel.State">

</entity>
<entity name="s1" class="ptolemy.domains.modal.kernel.State">

</entity>
<relation name="relation" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="pos?"> </property>

</relation>
<relation name="relation2" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"

value="BDistance;"> </property>
</relation>
<relation name="relation3" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="SDistance;"> </property>

</relation>
<relation name="relation4" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="far!"> </property>

</relation>
<relation name="relation5" class=

"ptolemy.domains.modal.kernel.ia.InterfaceAutomatonTransition">
<property name="label" class="ptolemy.kernel.util.StringAttribute"
value="halt!"> </property>

</relation>
<link port="s0.outgoingPort" relation="relation"/>
<link port="s1.incomingPort" relation="relation"/>
<link port="s1.outgoingPort" relation="relation2"/>

20 H. Bouaziz et al.

<link port="s2.incomingPort" relation="relation2"/>
<link port="s1.outgoingPort" relation="relation3"/>
<link port="s3.incomingPort" relation="relation3"/>
<link port="s2.outgoingPort" relation="relation4"/>
<link port="s0.incomingPort" relation="relation4"/>
<link port="s3.outgoingPort" relation="relation5"/>
<link port="s0.incomingPort" relation="relation5"/>

</entity>

Using Ptolemy tool, we can use these two files to verify the composability and the
compatibility of the sensor and the computing unit blocks.

Figure 13: Parallel composition of Control Unit and Sensor

In figure 13, we present the result of composing the two interface automata using Ptolemy
tool. Because the composition is not empty, we deduce that the control unit and the sensor
blocks are composable and compatible. If we assemble them in the same system, we obtain
a system part that interacts with the rest of the system according to the scenarios modelled
as an interface automaton in figure 13.

8 Related work

In literature, various research works have been done to transform informal models to formal
ones (Rehab and Chaoui (2015)) (Aouag et al. (2014)) (Guerrouf et al. (2013)) (Debbabi et al.
(2010)). These transformations are generally implemented and offered as tools which can
assist architects during the verification of their systems. Many of these works are dedicated
to generate formal models from UML and SysML diagrams (Rehab and Chaoui (2015))
(Aouag et al. (2014)) (Rahim et al. (2015)), which are considered as informal models. In
fact, the sequence diagram, which is a shared model between UML and SysML, was be the
matter of many transformation works. The most of the proposed approaches are based on
using transformation rules, and they differ essentially in the target model of transformation.

In (Kessentini et al. (2010)), (Ribeiro and Fern (2006)), we find a description of an
automated transformation method, which allows transforming the sequences diagrams to

A Model-Driven Approach to Prepare SysML Blocks for Verification 21

their equivalents of coloured Petri Nets. In (Emadi and Shams (2009)), the authors have
proposed some correspondences to transform sequence and use case diagrams to Petri
Net. These correspondences formalize interactions composed of messages and combined
fragments (alternative, optional and loop). Authors in (Merah et al. (2014)), basing on Meta-
modelling and ATL grammars, they have defined a set of ATL rules to transform SDs to
Petri Nets. They have proposed rules for the basic constructs of SDs and for a sub set of
combined fragments kinds (Alt, Par). In (Chaoui et al. (2009)), a grammar, which based
on graph transformation, was proposed to transform the sequence diagram to ECATNets,
a variant of Petri Net. The authors have based on the AToM3 tool to implement meta
models of SDs and ECATNets, to generate the modelling tools and to implement the graph
grammar which performs the transformation. They are also some works which have as target
models a textual specification. In (Ait Oubelli et al. (2011)), a graph grammar was used
to generate Promela code starting from SDs. The authors used also the tool AToM3 for
meta-modelling and for implementing the graph transformation grammar. In (Merah et al.
(2013)), The authors, they propose a grammar to transform the communication diagram,
which has a near semantic to that of SD, to Buchi automata.

In (Chouali and Hammad (2011)), some correspondences between sequence diagram
and interface automata are given. This work was be the reference in (Carrillo et al. (2012)) to
prepare the sequence diagram of SysML blocks for the compatibility verification phase. But,
in (Carrillo et al. (2012)), this transformation have done manually, which can be considered
as a source of user errors. That’s why, we propose, in this paper, the correspondences for
more constructs, and we propose, also, a set of ATL rules to automate this transformation.
Contrary to the works mentioned before, which they don’t take into consideration the case
of nested combined fragments, in our work, we explain the different cases, and how we deal
with them.

The second phase concerns Ptolemy tool, which is used to verify the interface automata
compatibility, and to compute their parallel composition. To discharge the user from
redrawing the resulted interface automata using the Ptolemy user interface, we have
proposed a set of Acceleo templates to generate the entry code of Ptolemy. The other strong
point of our work is the use of the meta-model of UML and SysML sequence diagram
proposed by Papyrus, and so we base on its graphical editor to draw sequence diagrams.

9 Conclusion

The point we want to address in our paper is how can we prepare the SysML blocks
interactions for verification. Thus, our proposed approach is based on specifying the
correspondences between the blocks sequence diagrams and interface automata. The goal
of this paper is to present how it’s possible to automate the transformation from sequence
diagrams to interface automata using ATL. We have shown the transformation of the
basic constructs of sequence diagrams. We have also given the ATL rules to transform the
alternative combined fragment. The second objective of our work concerns Ptolemy tool,
which is used to verify the interface automata compatibility, and to compute their parallel
composition. To discharge the user from redrawing the resulted interface automata using
the Ptolemy user interface, which can considered as a source of errors, we have proposed
a set of Acceleo templates to generate the entry code of Ptolemy. We have also given an
overview of how can we use the generated files to verify the compatibility of blocks. To
illustrate our approach, we have apply it through a CyCab case study.

22 H. Bouaziz et al.

As future works, we plan to utilize the use case diagrams for interlinking the different
sequence diagrams of blocks during the transformation into interface automata. We plan
also to back-annotate the results of interface automata compatibility verification on the
source sequence diagrams.

References

Acceleo. http://www.eclipse.org/acceleo/ [Accessed 12/02/2016].

Ait Oubelli, M., Younsi, N., Amirat, A. and Menasria, A. (2011). ’From UML 2.0 Sequence
Diagrams to PROMELA code by Graph Transformation using AToM3’. In Abdelmalek
Amine, Otmane Ait Mohamed, Boualem Benatallah and Zakaria Elberrichi, ed., ’CIIA’,
CEUR-WS.org.

Aouag, M., Elmansouri, R. and Allaoua Chaoui (2014). ’From UML 2.0 diagrams to aspect
oriented diagrams using graph transformation’. International Journal of Computer Aided
Engineering and Technology, vol 6, no 2, pp. 200–233.

ATL: Atlas Transformation Language. https://eclipse.org/atl/ [Accessed
12/02/2016].

Baille,G., Garnier, P., Mathieu,H. and Pissard-Gibollet, R. (1999). ’The INRIA Rhone-
Alpes CyCab’ , INRIA, Tech. Rep.

Bouaziz, H., Chouali, S., Hammad, A., and Mountassir, H. (2015). ’SysML Blocks
Adaptation’, in 17th International Conference on Formal Engineering Methods, ICFEM
2015, Paris, France, pp. 417–433.

Carrillo, O. , Chouali, S., and Mountassir, H (2012). ’Formalizing and verifying
compatibility and consistency of sysml blocks’, ACM SIGSOFT Software Engineering
Notes, vol. 37, no. 4, pp. 1–8.

Chaoui, A. , ElMansouri, R. , Saadi, W. , and Kerkouche, E. (2009). ’From uml sequence
diagrams to ECATNets: a graph transformation based approach for modelling and
analysis’, in proceedings of The 4th International Conference on Information Technology
ICIT. Orissa, India.

Chouali, S., Hammad, A. (2011) ’Formal verification of components assembly based on
sysml and interface automata’, ISSE, vol. 7, no. 4, pp. 265–274.

Czarnecki, K. and Helsen, s. (2003). ’Classification of model transformation approaches’,
OOPSLA Workshop on Generative Techniques in the Context of the Model Driven
Architecture, Anaheim, USA.

de Alfaro, L. and Henzinger, T. A. (2001). Interface automata. In ESEC/ SIGSOFT FSE,
Vienna, Austria, pp. 109–120.

Debbabi, M., Hassa, F., Jarraya, Y., Soeanu, A. and Alawneh,L. (2010). Verification and
Validation in Systems Engineering - Assessing UML/ SysML Design Models. Springer.

A Model-Driven Approach to Prepare SysML Blocks for Verification 23

de Lara, J.,Vangheluwe, H., and Alfonseca, M. (2004). ’Meta-modelling and graph
grammars for multi-paradigm modelling in atom3’, Software and System Modeling, Vol.
3, No. 3, pp. 194–209.

Emadi,S. and Shams, F. (2009). ’Mapping annotated use case and sequence diagrams to
a petri net notation for performance evaluation’, in Proceedings of the 2009 Second
International Conference on Computer and Electrical Engineering - Volume 02, ser.
ICCEE’09. Washington, DC, USA: IEEE Computer Society, pp. 68–71.

Guerrouf,F., Chaoui, A. and Aldahoud A.(2013). ’A graph transformation approach of
mobile activity diagram to nested Petri nets’. International Journal of Computer Aided
Engineering and Technology, vol 5, no 1, pp. 44–57.

Kessentini, M., Bouchoucha, A., Sahraoui,H. and Boukadoum ,M. (2010). ’Examplebased
sequence diagrams to colored petri nets transformation using heuristic search’, in
Modelling Foundations and Applications, 6th European Conference, ECMFA 2010, Paris,
France, pp. 156–172.

Merah, E. , Messaoudi, N. ,Saidi, H. , and Chaoui, A. (2013). ’Design of atl rules for
transforming uml 2 communication diagrams into buchi automata’, International Journal
of Software Engineering and Its Applications, vol. 7, no. 2, pp. 19–34.

Merah, E. , Messaoudi, N. , Bardou, D. , and Chaoui, A. (2014). ’Design of atl rules for
transforming uml 2 sequence diagrams into petri nets’, International Journal of Computer
Science and Business Informatics, vol. 8, no. 1, pp. 1–21.

Obeo, http://www.obeo.fr [Accessed 12/02/2016].

OMG, OMG Systems Modeling Language (OMG SysMLTM) Version 1.3, 2012, http:
//www.omg.org [Accessed 12/02/2016].

Papyrus. https://eclipse.org/papyrus/ [Accessed 12/02/2016].

Ptolemy Project. http://ptolemy.eecs.berkeley.edu/ [Accessed
12/02/2016].

Rahim, M., Kheldoun, A., Boukala-Ioualalen, M. and Hammad, A. (2015). ’Recursive
ECATNets-based approach for formally verifying System Modelling Language activity
diagrams’, IET Software, vol 9, no 5, pp. 119–128.

Rehab, R. and Chaoui, A. (2015). ’TGG-based process for automating the transformation
of UML models towards B specifications’. International Journal of Computer Aided
Engineering and Technology, vol 7, no 3, pp. 378–400.

Ribeiro, O. R. and Fern, J. M. (2006). ’Some rules to transform sequence diagrams into
coloured petri nets’, in In 7th Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools, Aarhus, Denmark, pp. 237–256.

Rumbaugh, J. , Jacobson, I. , and Booch, G. (2004). ’The Unified Modeling Language
reference manual’, Second Edition. Addison-Wesley, Essex, UK, UK.

