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Abstract – Condition-based maintenance is nowadays 
considered as a key-process in maintenance strategies and 
prognostics appears to be a very promising activity as it 
should permit to not engage inopportune spending. Various 
approaches have been developed and data-driven methods 
are increasingly applied. The training step of these methods 
generally requires huge datasets since a lot of methods rely 
on probability theory and/or on artificial neural networks. 
This step is thus time-consuming and generally made in 
batch mode which can be restrictive in practical application 
when few data are available. A method for prognostics is 
proposed to face up this problem of lack of information and 
missing prior knowledge. The approach is based on the 
integration of three complementary modules and aims at 
predicting the failure mode early while the system can 
switch between several functioning modes. The three 
modules are: 1) observation selection based on information 
theory and Choquet Integral, 2) prediction relying on an 
evolving real-time neuro-fuzzy system and 3) classification 
into one of the possible functioning modes using an 
evidential Markovian classifier based on Dempster-Shafer 
theory. Experiments concern the prediction of an engine 
health based on more than twenty observations. 

I.  INTRODUCTION 
Prognostics reveals to be a very promising maintenance activity 
as it should permit to improve safety, plan successful missions, 
schedule maintenance, reduce maintenance cost and down time 
[1]. Also, industrials show a growing interest in this thematic 
which becomes a major research framework. However, 
considering the benefits that such technology may bring to the 
security, economics and resource management fields, real 
prognostics systems are still scarce in industry. From the 
research point of view, many developments exist to support the 
prognostics activity. They can be classified into three main 
categories, namely, model-based, data-driven, and experience-
based approaches, and their applicability depends on the 
characteristics of the system under study [2, 3]. In practice, 
choosing an efficient technique depends on classical constraints 
that limit the applicability of the tools: available data, 
knowledge or experiences, dynamic and complexity of the 
system, implementation requirements (precision, computation 
time, etc.), available monitoring devices. Following that and 
assuming that it is often possible to instrument industrial plant 
with sensors, data-driven have been increasingly applied to 
prognostics (mainly techniques from artificial intelligence AI) 
and have shown improved performances over conventional 
approaches [4]. However, it is not easy to apply AI techniques 

due to the lack of training data and of efficient procedures to 
extract specific knowledge. Thus, data-driven approaches are 
highly-dependent on the quantity and quality of operational 
data. This is the problem addressed in this paper: a method for 
prognostics is proposed to face up this problem of lack of 
information and missing prior knowledge in prognostics 
application. The approach is based on the integration of three 
modules and aims at predicting the failure mode early while the 
system can switch between several functioning modes. These 
modules are: 1) observation selection based on information 
theory and Choquet Integral, 2) prediction relying on an 
evolving real-time neuro-fuzzy system and 3) classification into 
one of the possible functioning modes using an evidential 
Markovian classifier based on Dempster-Shafer theory. 

The paper is organized as follows. In section 2, the global 
prognostics architecture is presented in order to give an 
overview of the proposed prognostics procedure and of the 
complementary of the modules. Then, each step is more widely 
presented in sections 3, 4 and 5. Finally, the whole proposition 
is illustrated in a real-world prognostics problem concerning 
the prediction of an engine health. 

II.  PROGNOSTICS ARCHITECTURE 

Prognostics within condition-based maintenance 
Based on ISO 13381-1:2004 standard, "prognostics of future 
fault progressions requires foreknowledge of the probable 
failure modes, future duties to which the machine will/might be 
subjected, and a thorough understanding of the relationships 
between failure modes and operating conditions" [5]. Thereby, 
the whole aspects of failure analysis and prediction must be 
view as set of activities that all must be performed. This aspect 
is particularly pointed out within CBM concept (Condition-
Based Maintenance). According to CBM practitioners, various 
activities, from data collection through the recommendation of 
specific maintenance actions, must be carried out to perform 
predictive maintenance. Usually, a CBM system is decomposed 
into seven layers, one of them being that of "prognostics" [6]. 

- Layer 1: The Sensor Module provides the system with 
digitized sensor or transducer data. 

- Layer 2: The Signal Processing Module performs signal 
transformations and feature extractions. 

- Layer 3: The Condition Monitoring Module compares 
on-line data with expected values; it should also be able 
to generate alerts. 

- Layer 4: The Health Assessment Module determines if 
the system has degraded. It also generates a diagnostic 
record and suggests fault possibilities. 
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- Layer 5: The Prognostics Module predicts the future 
condition of the monitored system. It should be able to 
require data from all the previous modules. 

- Layer 6: The Decision Support Module provides 
recommended maintenance actions or alternatives on 
how to run the system until completed mission. 

- Layer 7: The Presentation Module can be built into a 
regular machine interface. 

In this paper, only layers from 2 to 5 are considered. 

Prognostics architecture 
The proposed prognostics architecture depicted in figure 1 aims 
at enabling to go from multidimensional data through the 
remaining useful life of a system. This prognostics procedure is 
composed of three complementary steps. Data are first 
processed (feature extraction, selection and cleaning). This step 
enables to feed an evolving neuro-fuzzy system which provides 
predictions of observations from t to t+h (where h is the 
horizon of prediction). These predictions are finally analyzed 
by a classifier which provides the most probable state of the 
system at any time t. (Each step is more widely explained in its 
corresponding section.) 

Multidimensional
Data

Functioning mode
at any time t

Prediction
From t+1 to t+h

Processing
Extract, select, clean

Classification
Probable states

Multidimensional
Data

Functioning mode
at any time t
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Functioning mode
at any time t

Prediction
From t+1 to t+h

Processing
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Probable states

Processing
Extract, select, clean

Classification
Probable states

Figure 1: Prognostics architecture 

The approach requires the data to be segmented into 
functioning modes. The granularity of the segmentation 
depends on the application. As an example, consider figure 2 
where data concern the evolution of a health performance index 
for an engine. These data can be easily segmented into four 
functioning modes: "steady state" (the engine is working well), 
"degrading state" (the engine is being degraded), "transition 
state" (in between "steady" and "degrading"), and "critical 
state" (the engine will broke). The set comprising the data and 
the ground truth concerning the modes is called the training 
dataset. 

Figure 2: Segmentation into functioning modes 
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Figure 3: Training step 
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Figure 4: Testing step 

Given the training dataset, an algorithm proposed in [7] is 
applied in order to select the most relevant set of features for 
each mode. This method relies on the Kullback-Leibler 
divergence and on the Choquet Integral. One advantage of this 
method is the computation of weights reflecting the importance 
of each feature and also of subsets of features. These weights 
are particularly interesting to quantify the redundancies and the 
complementarities of features (see [7] and cited references). 

The training dataset is also used by both the neuro-fuzzy 
(NF) predictor and the classification module (figure 3). The NF 
predictor is based on the evolving extended Takagi-Sugeno 
system (exTS) introduced by [8]. The main advantage of this 
system is that it starts from scratch, i.e. any assumption on its 
structure and parameters initialization is necessary. 

At classification step, "modeling algorithms" are used to 
provide a confidence value that reflects how likely is each 
functioning mode at each instant. These confidences values are 
then used in an Evidential Markovian Classifier (EMC) relying 
on the Transferable Belief Model framework [9]. This 
framework will be described later and is an extension of 
Dempster-Shafer theory of evidence [10, 11]. 

When the prediction and classification modules are 
correctly trained and after observing a new data at time t, the 
global prognostics architecture provides a belief concerning 
states at instant t and t+h (figure 4). 

III.  FEATURE SELECTION 

Objectives 
The aim of this first step of the prognostics architecture is to 
identify the best set of features for each mode. The applied 
method was initially developed in [7]. 

Let adopt the following notations. A data (measured or 
computed at t) is denoted by Xt = [xt,1  xt,2  …  xt,F], where F is 
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the dimension of the feature space. A dataset is the set of all 
data and is denoted by X = {X1, X2, …, XT} while the set of 
modes is denoted by Ω = {M1, M2, …, XK}. Li is the set of data 
for which the ground truth is the functioning mode Mi. The 
other data are gathered in the dataset denoted Ri and the 
corresponding ground truth is denoted Zi (it represents all 
modes except Mi). Li and Ri are both of dimension F. 

Given the mode Mi, the goal is to select the dimensions of 
Li which brings the most important part of the information 
contained in the features. The resulting dataset will be denoted 
Li

' with dimension Fi
' ≤ F. 

Theoretical background 
The method works as follows. All possible combinations of 
features are considered. Given a particular combination Y ⊆ X, 
two probability distributions based on the data in Li and Zi can 
be estimated: these two probability distributions, denoted 
P(Y|Mi) and P(Y|Zi), with Y ⊆ X, are actually defined 
conditionally to Mi and Zi and are both expressed on the joint 
space of the considered set of features. The divergence between 
these distributions reflects how discriminative the current set of 
features for the considered mode is. The chosen divergence is 
the Kullback-Leibler one: 

( )
Y

( ) P( ) log P( ) P( )i i i iKL Y Y M Y M Y Z=�   

One set of 2F divergence measures is thus computed for 
each mode. Given a mode Mi, the subset of features Li

' with the 
highest value of KLi(Li

') (and the lowest cardinality, i.e. Fi
' as 

low as possible) is chosen. The subsets Li
' will then be used in 

classification (explained in the next section). 
The method described in [7] also enables to build weights 

reflecting importance, redundancies and complementarities of 
each subset of feature. These weights are computed as follows. 
Let consider one subset Y∈2F in the set of divergence measures 
for a given mode Mi. The weight of each feature f∈Y in the 
considered subset Y is given by:  

( ) { }( )
-

- -1 ! !
( ) - ( )

!f
A Y f

n A A
v A f A

n
µ µ

⊆

= × ∪�
and the interaction coefficient between two features f∈Y and 
g∈Y is given by: 

( )
{ }

{ }( )

{ } { }

,
- ,

- - 2 ! !
* ( , )

( -1)!

( ) ( ) ( ))

f g
AÍ Y f g

n A A
I A f g

n

A f A g A

µ

µ µ µ

= ∪

− ∪ − ∪ +

�

where the importance coefficient µ(S) of a subset S is given by 
the value of the divergence normalized by the divergence of the 
whole set of features: 

( ) ( ) ( )i iS KL S KL Xµ =
Given a mode Mi, the coefficients ν and I represent the 2-

additive Choquet Integral parameters while coefficient µ
represents the generalized Choquet Integral parameters. The 
Choquet Integral is a powerful tool used for multicriteria 
decision making and information fusion (see references in [7]). 
In particular, this tool generalizes the weighted average. If the 

interaction coefficient If,g > 0, the features f and g are said 
complementary while they are said redundant when the 
coefficient is negative. When all interactions are nil, 
coefficients ν represent the weights of a weighted average [7]. 

This method has shown to be powerful in [7]. The main 
disadvantage is the necessity to compute a potentially high 
number of divergences that grows exponentially with the 
dimension F (until F=15, usual PC technologies and softwares 
are sufficient). 

IV.  TEMPORAL PREDICTIONS 

Objectives 
Assuming that data are defined in an multidimensional space 
(at any time t, Xt = [xt,1  xt,2  …  xt,F], where F is the dimension 
of the feature space), the aims of the prediction module is to 
forecast in time the evolution of the data values: 

t t,1 t,2 t,F t+h t+p,1 t+p,2 t+p,FX  = [x   x   …  x ]    X  = [x   x   …  x ]→

with p=[1,h], h being the maximum horizon of prediction. 
In practice, this global prediction can be performed by 

building a prediction system for each one of the sub-signals. 
For that purpose, many approaches exist in literature [12]. 
According to previous works [13], recent works focus on the 
interest of using hybrid systems for prediction purpose. More 
precisely, first order Takagi-Sugeno (TS) fuzzy models have 
shown improved performances over conventional approaches 
[4, 14]. In this paper, the evolving extended Takagi Sugeno 
system (exTS) introduced by [8] is used. 

First order Takagi-Sugeno systems 
A first order TS model can be seen as a multi-model structure 
consisting of linear models that are not necessarily independent 
[12]. It is based on the fuzzy decomposition of the input space. 
For each part of the state space, a fuzzy rule can be constructed 
to make a linear approximation of the input. The global output 
is a combination of the whole rules. Consider figure 5 to 
explain the first order TS model. This model has two inputs 
variables. Two membership functions (antecedent fuzzy sets) 
are assigned to each one of them. The TS model is finally 
composed of two fuzzy rules. (That can be generalized to the 
case of n inputs and N rules). 

Π

Π

Ν

Ν

Σ y

x1

x2

R1

R2

x1 x2

x1 x2

1
1A
1
2A

2
2A

2
1A Π

Π

Π

Π

Ν

Ν

Ν

Ν

Σ y

x1

x2

R1

R2

R1

R2

x1 x2x1 x2

x1 x2x1 x2

1
1A
1
2A

2
2A

2
1A

Figure 5: A First-order TS model with 2 inputs 

The rules perform a linear approximation of inputs:
1 n

i 1 i n i
i i0 i1 1 in n

R : if x is A and ... and x is A
THEN y =a +a .x +...+a .x
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where Ri is the ith fuzzy rule, N is the number of rules, 
Xt = [x1,  x2,  …,  xn]T is the input vector, Ai

j denotes the 
antecedent fuzzy sets, j=[1,n], yi  is the output of the ith linear 
subsystem, and aiq  are its parameters, q=[1,n]. Let assume 
Gaussian antecedent fuzzy sets (this choice is justified by its 
generalization capabilities) to define the regions of fuzzy rules 
in which the local linear sub-models are valid: 

i i* i 2
j jj
� =exp -4 x-x (� )� �

� �
� �

where σi
j is the spread of the membership function, and xi* is 

the focal point (center) of the ith rule antecedent. The firing 
level (τi) and the normalized firing level (λi) of each rule are 
obtained as follows: 
� =� (x )×...×� (x )i i1 1 in n , N

i i jj=1� = � ��
The model output is the weighted averaging of individual 

rules' contributions: 
TN Ny= � y = � x �i i i e ii=1 i=1� �

where πi = [ai0,  ai1,  …,  ain] is the vector parameter of the ith

sub-model, and xe = [1  XT]T is the expanded data vector. 
A TS model has two types of parameters. The non-linear 

parameters are those of the membership functions (a Gaussian 
membership has two parameters: its center and its spread 
deviation). These kinds of parameter are referred to as premise 
or antecedent parameters. The second types of parameters are 
the linear ones that form the consequent part of each rule (aiq). 
All this parameters must be tuned to fit to the studied problem. 
This is the aim of the learning procedure. 

Learning procedure of exTS 
The learning procedure of exTS is composed of two phases: (1) 
an unsupervised data clustering technique is used to adjust the 
antecedent parameters, (2) the supervised recursive least 
squares learning method is used to update the consequent 
parameters. These algorithms can not be fully detailed in this 
paper but are well described in [8, 15]. 

The exTS clustering phase processes on the global input-
output data space: z = [xT ; yT ]T , z ∈ Rn+m, where n+m defines 
the dimensionality of the input/output data space. Each one of 
the sub-model of exTS operates in a sub-area of z. This 
clustering algorithm is based on the calculus of a potential 
which is the capability of a data to form a cluster (antecedent of 
a rule). The procedure starts from scratch and, as more data are 
available, the model evolves by replacement or upgrade of 
rules. This enables the adjustment of the antecedent parameters 
(the non-linear ones). 

Note that the main advantages of this NF systems result 
from the clustering phase. Firstly, they an exTS is able to 
update the parameters without the intervention of an expert. 
Secondly, they it can be trained in online mode. Thirdly, it has 
a flexible structure that evolves as data are gathered: data are 
collected continuously which enables to form new rules or to 
modify an existing one. This last characteristic is very useful to 
take into account the non-stationary aspect of signal. 

Using exTS for prediction 
In forecasting applications, models are usually built by 
considering some past values of each input and output 
variables. Consider figure 6 as for an example. In this figure, 
the NF system is composed of 2 input variables (x1 and y), 
predictions are made at one step ahead (t+1), one regressor is 
used for variable y and two for variable x1. 

In the case of a mono-variable predictor (and assuming that 
future is for essence unknown), previous predictions can be 
used as for the inputs for next predictions. This type of 
architecture, named "cascade models" enables to perform 
multi-step ahead predictions (at t+h) without building various 
predictors (and thereby with a single learning phase). 

Figure 7 shows the evolution of a performance index of an 
engine and the prediction that can be obtained thanks to an 
exTS. Note that in this figure, all predictions (from 51 to ###) 
where made at time t = 50. 

exTS
prediction module y t 1+( )

y t( )
y t 1−( )

x t1( )

x t 11 −( )

x t 21 −( )

exTS
prediction module y t 1+( )

y t( )
y t 1−( )

x t1( )

x t 11 −( )

x t 21 −( )

Figure 6: Forecasting model with regressors 
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Figure 7: Example of multi-step ahead predictions 

V.  CLASSIFICATION OF TEMPORAL PREDICTIONS 

Objectives 
Given observations which can be measured at t or computed by 
exTS at t+h, the goal of this module is to provide a reliable 
classification into one of the possible functioning modes. 

The proposed classification method relies on one model of 
data for each functioning mode. Given these models, a 
decision-making process is used to choose the best functioning 
mode given the observations. The decision-making process is 
temporal i.e. it embeds past and current knowledge on the 
functioning modes. The temporal aspects are taken into account 
using a Markovian state sequence recognition algorithm. The 
main idea of the proposed method is that the sequence of modes

ha
l-0

04
59

31
0,

 v
er

si
on

 1
 - 

23
 F

eb
 2

01
0



leads to a more reliable conclusion concerning the real 
functioning mode than a decision based on modes only. This 
idea is not really new: in [16], authors proposed a similar 
approach based on Hidden Markov Models but their method 
requires prior information concerning the duration of the states. 
Most of methods implementing this idea were based on 
probability theory. We propose here to exploit a new 
framework called the “Transferable Belief Model” (TBM). 
This framework was proposed by Ph. Smets [9] and is based on 
belief functions (instead of probabilities) extending the work on 
Evidence Theory of Dempster and Shafer [10, 11]. The TBM 
has been shown to be powerful in particular for classification in 
many applications [17]. This is mainly due to the capacity of 
belief functions to model real situations without assuming prior, 
and also to the Generalized Bayesian Theorem (GBT) [18]. 

TBM for state sequence recognition 
One of the first tools used for the analysis of temporal data in 
the TBM was proposed in 1999 by Rombaut et al. [19] but this 
tool is not robust to noise and no classification criterion was 
proposed. The generalized HMM [20] proposed in 2000 is 
narrowed down to possibility measures and thus is not able to 
manage belief functions. One advantage of their framework is 
the possibility to manage dependent observations by using 
fuzzy operators (but the authors used the product thereby 
assuming statistical independence). Other tools were developed 
by Pieczynski et al. [21, 22] who attempted to mix belief 
functions with Markov chains leading to promising results on 
several applications. This mixing alleviates the problem of 
prior modeling in Markov chains using Dempster’s rule of 
combination (which generalizes Bayesian inference [10]). 
However, either the prior or the belief state is evidential but not 
both (therefore underlying probability assumptions are present). 
In [23, 24] was also proposed a deterministic state machine 
where an original inference criterion relying on a conflict 
measure was proposed for classification of sequences. The 
main problem of this method is parameter setting for highly 
noisy data. Lastly, we proposed recently [25] an efficient 
method for state sequence recognition based on noisy 
observations in the TBM. It is a generalization of HMM 
mechanisms to belief functions and allows to use possibly 
dependent observations. This method is described in the sequel.  

Belief functions in the Transferable Belief Model 
We first recall the basics on belief functions necessary to 
understand the classification part. 

The Basic Belief Assigment – Let Ω={M1, M2, … MK} be 
the frame of discernment (FoD) gathering all possible and 
exclusive hypotheses. The number of hypotheses is called 
cardinal and denoted |Ω|. The distributions of masses, also 
called Basic Belief Assigment (BBA), is defined on all possible 
subsets of the FoD which is 2Ω={{M1}, {M2}, {M1, M2}, {M3}, 
{M1, M2, M3}, … {Ω}}. A subset is denoted for example S⊆Ω
or equivalently S∈2Ω. The BBA is then defined as follows: 

: 2 [0,1]m Ω

      ( )S m SΩ      with    ( ) 1
S

m SΩ =�

and a subset for which mΩ(S)>0 is called a focal set. The BBA 
is said: 

- Normalized when mΩ(∅)=0 (one can normalize a BBA 
easily by dividing each focal set by 1-mΩ(∅) and 
cancelling mΩ(∅)).  

- Vacuous when the whole belief mass is assigned to Ω. 
This BBA represents total ignorance.  

- Categorical when the whole belief mass is assigned to a 
subset B⊂Ω.  

Given a BBA mΩ, several functions can be computed which 
allow to interpret the BBA content and also to simplify 
combinations of BBA. The main functions are: 

- The plausibility function: ( ) ( )
C S

pl S m CΩ Ω

∩ ≠∅
= �

(which is strongly related to likelihood [11, 18]) 
- The credibility function: ( ) ( )

C S
bel S m CΩ Ω

∅≠ ⊆
= � , 

also called belief function. 
- The commonality function: ( ) ( )

C S
q S m CΩ Ω

⊇
= �

- The weights of the canonical conjunctive 

decomposition: ∏
⊇

−Ω
+−

=
SA

SA

AqSw
1

)1()()(

The BBA can be recovered from any of these functions and 
the inverse formula are given in [11, 18]. 

The conjunctive rule of combination – Given two BBA 
provided by distinct and reliable sources of information, their 
fusion (or combination) can be done using the conjunctive rule 
of combination (CRC) defined by: 

1 2 ( ) ( )* ( )
A B S

m S m A m B∩
∩ =

= �

Using commonalities, the conjunctive rule reduces to: 
1 2 1 2( ) ( )* ( )q S q S q S∩ = i.e. to point-wise multiplication. Other 

combination rules were proposed in the literature. Of particular 
interest are the disjunctive rule of combination (the same 
formula as the CRC but replacing ∩ by ∪) and the cautious 
CRC rule (called CCRC) [26] proposed when distinctness (i.e. 
independence) and reliability of the sources of information can 
be questioned. The CCRC is defined by: 

1 2 1 2( ) ( ) ( )w S w S w S⊗ = ⊗

where the operator ⊗ is the CCRC operator. The CCRC is 
based on pair of t-norm/conorm, for example, in [26], the 
author proposed to use Frank’s family: 

1

1 2

1 2
1 2 ( ) 2( )

( ) ( ) 0
( )* ( ) 1

( )
(1 )*(1 )log ]0,1[

1

w S w S

w S w S if
w S w S ifw S

ifτ

τ
τ

τ τ τ
τ

⊗

∧ =�
	 =	= 


− −	 ∈	 −�
Conditioning – Given an imprecise and uncertain 

knowledge represented by a BBA mΩ, one knows that the truth 
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is in one subset B⊆Ω. The BBA mΩ is updated by combining 
conjunctively both information using the CRC. The process is 
called conditioning: 

BmmBm ∩=][ �

where mB is a categorical BBA defined by mB(B)=1
(conditioning in the TBM is denoted by brackets). Probabilistic 
conditioning is a special case recovered when m is Bayesian 
(and the BBA normalized). 

Decision-making – Given a BBA Ωm , one can be 
interested in making a decision based on this knowledge. For 
that, Smets [9] proposed the pignistic transformation: 

{ }
,

1 ( )( )
1 ( )

i
B M B

m BBetP m M
Bm i

Ω
Ω Ω

Ω
⊆Ω ∈

=
− ∅

�

The Generalized Bayesian Theorem (GBT) – The Bayesian 
theorem allows computing a posterior probability distribution 
over a set of hypotheses given both a set of likelihoods 
(conditional to the hypotheses) and prior. In the TBM 
framework, this reasoning process has been extended by Smets 
[18] and called the GBT. The particularity of the GBT is that 
no prior is required for the posterior computation.

The GBT requires only a set of |Ω| conditional BBA 
mX[Mi] (where Mi plays the role of an hypothesis) while the 
prior is assumed vacuous. Each conditional BBA is defined on 
a set X which can be either discrete or continuous [27]. For 
classification problems, X represents (possibly multi-
dimensional) observations and is generally continuous [17]. 
The GBT computes the posterior belief on Ω (i.e. the set of 
classes, here the modes) [18]: 

[ ]( ) 1 (1 [ ]( ))X
t i t

M S
pl x S pl M x

i

Ω

∈
= − −∏

If a prior is available, it can be combined with the posterior 
belief using the CRC rule [].

Evidential Hidden Markov Models (EvHMM) 
In [25], we proposed an extension of probabilistic Hidden 
Markov Models (HMM) to the TBM. To represent EvHMM, 
we use an extension of Directed Evidential Network [14] to the 
temporal domain that we call Temporal DEVN (TDEVN). A 
TDEVN is depicted in figure 8 (using the formalism proposed 
in [28]). The advantages of this framework are: 

- Representation lack of knowledge on states, e.g. at the 
first instant the prior on states can be vacuous. 

- Improvement of the estimation of the network 
parameters using a training set annotated by belief 
functions [25, 29]. 

- Improvement of the inference of the state sequence 
based on noisy observations using the evidential Viterbi-
like decoder proposed in [25]. 

- Possibly non-distinct (not independent) observations can 
be considered using particular combinations rules [26]. 

- Combination of several types of formalism for 
uncertainty management in one common framework. 

Figure 8: TDEVN representing EvHMM on two slices 

Classification of sequence of observations in EvHMM –
Given a set of T observations X1:T  (with dimension F), it is 
possible to compute the likelihood of the sequence by 
computing recursively using the forward belief function. For a 
particular EvHMM λ, the forward variable is given by: 

11( ) ( )* [ ]( )
1

[ ]( )

a
B

tb

t tt tw S m B w B S
t
tw X S

α α
Ω ΩΩ Ω

⊆Ω

Ω ℜ

� �−−� �=
� �−� �

⊗

�

In order to represent missing prior at the first instant, one can 
use a vacuous BBA: 1)( 1

1 =ΩΩ
αm . If observations are 

distinct, one may use the commonalities instead of weights. 
At each instant, the conflict value ( )tmα

Ω ∅  represents the 

amount of mass which is allocated to subsets not in tΩ2  and 
therefore, the total amount of conflict in the whole sequence 
quantifies how unlikely are the observations given the model 
[25]. The conflict value is linked to the plausibility by  

( ) 1 ( )t
t tm plα α

Ω Ω∅ = − Ω . Thus, it is possible to compute the 
sequence plausibility for a particular EvHMM λ by: 

1

1( ) log ( )
T

t
t

tL pl
T αλ Ω

=
= Ω�

and then the best model is given by maximizing L(λ) over all 
models λ. 

State sequence recognition in EvHMM – Given a sequence 
of noisy observations, one may be interested in knowing which 
state is the best one at a given instant. For that, two solutions 
are available. The first one relies on the smoothing variable 
and the second one relies on a Viterbi-like decoding. 

a) The smoothing variable is computed by conjunctively 
combining both the forward and backward variables. The 
backward variable is given by [25]: 

11( ) ( )* [ ]( )
1

ab
B

t tt tw S m B w B S
t

β β
Ω ΩΩ Ω

∩
⊆Ω

++=
+

�

where 1
b

tmβ
Ω

∩
+  is the BBA obtained by conjunctively combining 

1tmβ
Ω +  and 1

1 [ ]( )tb
tm X SΩ ℜ

+
+ . The posterior weights 

1
a

t twΩ Ω+  are obtained by applying the GBT (by first 
transforming w into pl). The smoothing is thus given by: 

( ) ( ) ( )tt tw S w S w Sγ α β
ΩΩ Ω= ⊗

The most probable state at t is then given by maximizing the 
pignistic probability over all states: 
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{ }* arg max ( )t
i

M
tM BetP m M

i
γ
Ω� 
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b) A Viterbi-like decoder allows propagating the decision at 
t over the states at subsequent instants. In [25], we proposed 
two algorithms and one of them is optimal in terms of 
maximum of plausibility. The second algorithm, called 
evidential Viterbi-like decoder is not optimal but allows to fully 
drawing benefit of belief functions framework. This algorithm 
is used in this paper since results are generally better than the 
previous one. The evidential Viterbi-like decoder is based on 
the propagation of the following metric )(Sw tΩ

δ : 

11( ) ( ( )* [ ]( )) [ ]( )
1

a tb
B

tt tt tw S m B w B S w X S
t

δ δ
Ω ℜΩ ΩΩ Ω

⊆ℑ

−−= ⊗
−

�

The difference with the forward variable is the computation of 
the sum which is now done over subsets of 1−ℑt . This set is 

actually a subset of 1−Ωt  and the hypotheses composing 1−ℑt

are selected at each instant as follows. First, we compute the set 
of weights t

jwΩ
,δ  defined by: 

,
11( ) ( ( ) * [ ]( )) [ ]( )

1
a j tj b

B

tt tt tw S m B w B M S w X S
t

δ δ
Ω ℜΩ ΩΩ Ω

⊆Ω

−−= ∩ ⊗
−

�

This equation is simply a forward propagation but conditioned 
on each mode Mj∈Ωt-1. One obtains a set of weights for each 
mode. These weights are then transformed into BBA )(, Sm t

j
Ω
δ

and then into pignistic probability distributions. We thus obtain 
a set of |Ωt-1| pignistic distributions defined on Ωt conditionally 
to each mode. The best predecessor of a mode tiM Ω∈   is 
thus found and stored as follows: 

{ },
1( ) arg max ( )

1
t i ij

M

t t tM BetP m M
j t

δψ Ω Ω Ω

∈Ω

−=
−

The set 1t−ℑ  is then composed by the union of predecessors: 

1 ( )t t i
i

Mψ−ℑ =

At instant t, it is possible to compute the state sequence from t0. 
For that, we need first to compute the best mode tM*  at t: 

{ }* ,arg max ( )
1

t
ij

M

ttM BetP m M
j t

δ
ΩΩ

∈Ω
=

−
and then to use the backtracking process until t0: 

1
* *( )t t

tM Mψ− =
Parameter learning in EvHMM – In this paper, the training 

set is composed of observations for which the ground truth 
(real modes) is known. In this case, modes are not hidden but 
we use the Viterbi-like decoder developed in EvHMM in order 
to recognize the sequence of modes given observations. This 
approach has been used by several authors [16] based on 
probabilistic HMM. Each mode is thus modeled using an EM 
clustering assuming Gaussian mixtures. Given trained models, 
a new observation generates a set of likelihoods (one for each 
mode) which are then used in the GBT in order to compute the 

posterior BBA on the set of modes given observations. These 
posterior BBA are then used to estimate automatically the 
evidential transition matrix. The method consists in computing 
the expected joint belief mass defined on the product space 

1−Ω×Ω tt over all time instants. In the case of possibly non-
distinct observations, we have: 

1
2

1 1 1 11ˆ ( ) [ ] [ ]
1

T
a t tb b

t

t t t t t tt tw S w X w X
T

Ω ℜ↑Ω ×Ω ℜ Ω ℜ↑Ω ×Ω ℜΩ ×Ω
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where 1 [ ]tb
t t tw XΩ ℜ↑Ω ×Ω ℜ−  is called vacuous extension [] of 

][ tb Xw t ℜΩ  onto the product space 1−Ω×Ω tt . For a BBA, 
the vacuous extension is defined by: 
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VI RESULTS 
The evidential Viterbi-like decoder is illustrated on the 

challenge dataset of diagnostic and prognostics of machine 
faults from the first Int. Conf. on Prognostics and Health 
Management (2009) [30]. The dataset consisted of multiple 
multivariate time series (26 variables) with sensor noise (Fig. 
2). Each time series was from a different engine of the same 
fleet and each engine started with different degrees of initial 
wear and manufacturing variation unknown to the user and 
considered normal. The engine was operating normally at the 
start and developed a fault at some point. The fault grew in 
magnitude until system failure. 

Given a new observation sequence, the goal was to diagnose 
its current mode and to determine if the system was faulty. A 
fault occurred when a sequence of four modes was detected 
(steady → transition → degrading → faulty).  

From the 26 features, we first aimed at selecting only 8 of 
them. We first built all groups of 8 features and applied the 
feature selection method. For each mode, the group with the 
maximum value of the Kullback-Leibler divergence was 
selected. Then, we applied again the feature selection process 
considering all combinations of features among the group of 
eight. Note that the group of features for each mode was 
generally different. 

One detector was built for each mode. For that, an EM was 
run on the training set using mixture of Gaussians with adaptive 
number of components.  

For the prediction step, each feature was estimated with an 
exTS model for multi-step ahead prediction (a NF cascade 
model as explained before). Table 1 resumes the set of inputs 
variables used for that purpose. All predictions were made until 
time t = 50, so that, for each data test set, the prediction module 
provided the expected values of the considered performance 
index from time t = 51 to the end of the test series. 

Table 1: Feature prediction with exTS 
Feature Inputs Feature Inputs 

F 1 t, x1(t), x1(t-1), x1(t-2) F 5 t, x5(t)
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F 2 t, x2(t), x2(t-1), x2(t-2) F 6 t, x6(t)
F 3 t, x3(t), x3(t-1), x3(t-2) F 7 t, x7(t), x7(t-1)
F 4 t, x4(t), x4(t-1) F 8 t, x8(t), x8(t-1)

For the classification step, a four states EvHMM was then 
built where the evidential transition matrix was estimated as 
proposed in this paper (using the training set). For belief 
propagations, we used the CRC rule. The results of the 
evidential Viterbi-like decoder for state detection are given in 
Table 2 (“trans.” means “transition state”, “degrad.” means 
“degrading state”, “critic.” means “critical state”). 

Table 2: State detection using EvHMM 
 STEADY TRANS. DEGRAD. CRITIC. 

STEADY 87 43 7 0 
TRANS. 9 52 23 10 
DEGRAD. 4 5 54 18 
CRITIC. 0 0 16 72 

The results show good performance in detecting states, in 
particular the critical state and the steady states. The main 
problems appeared in detecting both the transition and 
degrading states: the former were of short duration and thus 
difficult to detect while the latter was highly evolving. 

In order to compare our approach with probabilistic HMM, 
we simply converted the evidential transition matrix into 
probabilities (using the pignistic transformation) and used the 
likelihoods directly (without the GBT). Results of the detection 
are shown in Table 3.  

Table 3: State detection using HMM 
 STEADY TRANS. DEGRAD. CRITIC. 

STEADY 79 45 7 0 
TRANS. 17 46 28 16 
DEGRAD. 4 9 48 24 
CRITIC. 0 0 17 60 

The overall detection was slightly better with the evidential 
version than with the probabilistic HMM (an example is given 
in figure 9). In particular the detection of “transition” and 
“degrading” states were better with the evidential approach. 
This is mainly due to the (sub-optimal) Viterbi-like decoder 
which allows to propagate decisions carefully. Actually, this 
algorithm postpones the decision until the last instants thanks to 
the conditioned forward propagation.  

The results presented in this paper are less good than in 
[25]. However in [25], the classification was done at each 
instant while in this paper the classification relied on 
predictions with a relatively long horizon because the average 
duration of the time series is close to 180 (time units) and thus 
the average value of the prediction horizon was close to 130 
(time units). So the results of the proposed architecture are 
significative. 

Figure 9: A detection result. Blue dots: data normalized in [0,4] 
for visualization. Magenta: HMM, Red: EvHMM detection. 

VII CONCLUSIONS 
An original and efficient architecture was proposed for 

diagnostics and prognostics of a system health. This 
architecture was composed of three modules: an information 
theory-based feature selection process, an exTS for reliable 
multi-step ahead predictions and on an evidence theory-based 
Markovian classifier for classification.  

The efficiency of the proposed architecture was showed on 
a real data set concerning an engine health. In particular, the 
average horizon for predictions used in experiments was close 
to t+130 time units and despite this challenging condition, the 
overall performance of the evidential classification of states 
was close to 70%. A comparison with probabilistic HMM for 
state classification clearly showed the efficiency of the 
proposed approach. 
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