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Abstract. Reusing and adapting existing components is the central
topic of component-based development. The major differences between
the existing approaches concern the models used to represent the com-
ponents and the detail given to generate the adapters. In this paper,
we present our approach which bases on the hierarchy to generate the
adapters. Our components are modelled using SysML blocks and their in-
teraction protocols are modelled using SysML Sequence Diagrams (SDs).
We have used coloured Petri nets as formal model to define the adap-
tation rules, and we have based on meta-modelling and model transfor-
mation to implement these rules. We illustrate our approach through a
case study.
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1 Introduction

When assembling components developed separately, there is a high probability
to confront the problem of mismatches. These mismatches can concern for ex-
ample the name of services, as well as the order in which the component asks
(resp. offers) for environment services (resp. its services). That is what justi-
fies the introduction of third entities or components which are used to solve
these mismatches. This kind of components are called ’adapters’. A big part of
the works done in this field start from a formal specification of these compo-
nents, which makes difficult the communication between the various stakeholder
in CBD (Component-Based Development) projects. To tackle this problem and
to make the communication easier, system engineering community proposes to
use high level languages. This appears clearly through SysML [1], a language
which is adopted by OMG, it is used to design systems that include software
and hardware.

The System Modelling Language (SysML), through its diagrams, fosters the
view point that takes the system as a set of components. In SysML, we call
them blocks. A block is a modular unit of the system description. It may include
both structural and behavioural features, such as properties and operations. To
communicate with its environment, a block has a list of ports. These ports are
characterised by interfaces that present the offered and required services of the



2 H. Bouaziz et al

block. SysML also offers many diagrams to represent the structure, the behaviour
and requirements of the blocks.

The privilege given to SysML doesn’t mean that it will take the place of
formal methods. But it replaces them at a level of system representation, where
we need a high level specification of the system. We must mention that SysML
lacks formal semantics which makes very interesting the introduction of formal
methods in component adaptation domain to compute the adapters and their
behaviour semantics. A combination of SysML and formal methods in the same
approach is the solution that will tackle the lack of each of them. That is what
Model Driven Engineering (MDE) tries to do through the introduction of model
transformation approaches. In this paper, we propose to use SysML sequence
diagrams to schedule the interactions of each block with its environment and we
propose a transformation process to generate their equivalents of coloured Petri
nets which are formal models that we consider more suitable for defining and
generating adapters for blocks.

The major difference between the existing adaptation approaches concerns
the detail given to generate the adapter. In [2], the authors give only an adapta-
tion contract which is resumed in a specification of the correspondences between
blocks services. This will have an impact on the generation of the adapter. The
adapter will contain all the possible interaction scenarios of executing the reused
components, it can contain scenarios which are not necessary for the cooperation
of the reused components. However, in [3–5], the authors have enriched their
adaptation contract by a specification of the adapter interactions by ordering
the vectors of the adaptation contract using regular expressions. This requires
that the developer, before making the specification of the adapter, must know
very well the interactions of each component with its environment, and he must
have an idea about the synchronous execution of the reused components. In this
context, we ask the question about the detail that will be enough to generate
adapters to make a set of components cooperate with respect of the intention
behind their assembling?

In this context, we propose an incremental approach to develop systems by
reusing and adapting components modelled using SysML, we base on coloured
Petri nets as formal models to compute the adapter interactions. In our process,
we do not give only the mapping rules between services like in [2], and we do not
give the specification of the adapter as in the works already done in [3–5]. But,
we give the interaction protocol of the composite block which will include the
reused blocks. The specification of the composite block is built by the architect
according to the interaction protocol of the system’s part has already been de-
signed, and in function of what the current composite block must perform to the
system’s part still to develop. The major difference comparing with our previous
work [6], is that in this paper, we solve more problems such as the reordering of
services calls, and we consider more types of correspondences between services.

In the remainder of this paper, in Section 2, we show our approach to adapt
SysML blocks, in Section 3, we present the meta models of sequence diagrams,
coloured Petri nets and adaptation contracts. In Section 4, we explain the rules
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to generate the adapter. In Section 5, we demonstrate our approach through a
case study. Finally, in Section 6, we conclude and we give perspectives.

2 Our Approach

The goal of our approach consists on generating the adapter Ad for a set of blocks
{Bi} to meet the specification of their future parent block B (a composite block).
In the context of our incremental approach, in the next step of adaptation, this
block B will be adapted with other blocks to meet the specification of its parent.
The interaction of each block with its environment is modelled using a SysML
sequence diagram. Because sequence diagrams are not formal models, we have
performed a transformation to obtain their equivalents of Coloured Petri Nets
(CPNs). The formal semantic of CPNs allows us to reflect easily the adaptation
contract on the interactions of the blocks to compute the interactions of the
adapter.

Our approach of adaptation is based on meta-modelling and models trans-
formation, where we base on ’ecore’ models to represent the meta-models of
formalisms that we use (Sequence diagrams, coloured Petri nets). The trans-
formation is performed through the use of ATL [7] rules that allow to define
the correspondences between source and target meta-models. To generate the
adapter, we have introduced the meta-model of the adaptation contract, and we
have based also on ATL rules to reflect the information present at the level of
the contract model onto the coloured Petri nets of the reused blocks.

3 Meta-Modelling

3.1 Meta-Model of Sequence Diagrams

By intention to reuse existing modelling tools, we have used the sub-set of Pa-
pyrus [8] SysML meta-model and its graphical editor to draw the sequence di-
agrams. In Figure 1, we represent the meta-model of sequence diagrams. The
root is the class Interaction. So, each sequence diagrams is an instance of this
class. Each interaction can include a set of life lines, a set of messages and a set
of interaction fragments. The classes:

– LifeLine: represents the set of object which participates in the interaction.
– Message: each message has two ends; a send end and a receive end.
– InteractionFragment: is the super class of the classes: Interaction, Com-

binedFragment, InteractionOperand and OccurenceSpecification.
– CombinedFragment: each combined fragment includes a set of interaction

operands, and it has its own interaction operator. The interaction operator
takes a value of this list [alt, opt, break, loop, par, ...]

– InteractionOperand: each operand is associated to a combined fragment,
and it can have a guard.
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Fig. 1: Papyrus Meta-Model of SysML Sequence Diagram

– MessageOccurenceSpecification: Each event associated to the life line
is represented as a message occurrence specification. It represents an ex-
tremity of a message. We can know the life line, to which the specification
is associated, by executing the method getCovered() of the super class Oc-
curenceSpecification. We can also obtain the message started or finished at
this specification, by navigating through the association message of the super
class MessageEnd.
The classes MessageEnd, Message and InteractionFragment inherit the class
NamedElement.

3.2 Meta-model of Coloured Petri Nets

Coloured Petri Nets (CPNs) preserve useful properties of Petri nets, and at the
same time extend initial formalism to allow the distinction between tokens [9]. In
CPNs, a token has a data value attached to it. This attached data value is called
token colour. The Meta-model of coloured Petri nets is presented in Figure 2. It
contains the following classes:

– CPN: represents the root class, each instance of this class will include a set of
places, a set of transitions, a set of input arcs (according to the transitions)
and finally a set of output arcs (always according to the transitions).

– Place: each place has a name, a colorSet attribute which is a list that contains
the set of colours of tokens that can be stored in this place. The attribute
nbrTokenPerColor specifies the number of tokens of each colour.

– Transition: each instance of this class has a name that represents the action
done at this stage of behaviour evolution. A transition is fired if the colour
and the number of tokens mentioned at the level of each input arc is available
in the place situated at the origin of this arc.
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Fig. 2: Meta-Model of coloured Petri nets

– InArc: this class represents the set of arcs that starts at places and ends
at transitions. To represent the colour of tokens consumed from the source
place to execute the transition located at the end of a given arc, we have
defined the attribute colorSet. However, to specify the number of tokens of
each colour ∈ ColorSet, we have used the attribute nbrTokenPerColor.

– OutArc: this class represents the set of arcs that starts at transitions and ends
at places. The colours of tokens produced by executing the source transition
of a given arc are recorded into the list ColorSet. To specify the number of
produced tokens of each colour, we use the list nbrTokenPerColor.

3.3 Meta-Model of Adaptation Contracts

Our adaptation contract specifies the correspondences between blocks services.
Its meta-model (see Figure 3) contains the following classes:

– AdaptationContract: represents the root class. Each instance of this class
includes a set of blocks and a set of vectors.

– Block: this class represents all the blocks which are concerned by the adap-
tation (Child blocks). It includes also the abstract block (Parent block) that
represents the container of the reused blocks. Because we are interested by
the correspondences between blocks services, we reduce the block features
to the set of its required and provided services.

– Service: each service has a name and a type. The attribute type can take the
value Prov or the value Req.

– Vector: each mapping vector establishes a link between the services of two
blocks. According to its type, a vector can belong to one of these two sub-
sets:
• a mapping vector between two reused blocks: OneReq2OneProv

(One required service to one provided service), OneProv2ManyReq (One
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Fig. 3: Meta-Model of adaptation contracts

provided service to many required services), OneReq2ManyProv (One
required service to many provided services).

• a mapping vector between a reused block and its parent:
OneP2OneCProv (One provided service of the parent to one provided
service of a child), OneP2OneCReq (One required service of the parent
to one required service of a child), OneP2ManyCProv (One provided
service of the parent to many provided services of a child), ...

So end1 represents the first extremity of the vector and end2 contains the
services that correspond to the service end1.

To verify the contract validity, we have defined a set of OCL constraints. In
the following, we give an example of an OCL constraint used in the class Vector
to verify the extremities of a vector of type ’OneReq2OneProv ’.

/*cotraints in the class Vector */

invariant verifysizeOfend2andTypeOfServicesOfAVectorOneReq2OneProv:

self.type=VectorType::OneReq2OneProv implies self.end1.type=TypeService::Req

and self.end2->size()=1 and self.end2->first().type=TypeService::Prov ;

4 Transformation from SD into CPN

In Figure 4, we present the correspondences between sequence diagrams and
coloured Petri nets (! represents a request of a service, and ? represents a re-
ception of this request).

To implement these correspondences, we have based on ATL rules that takes
the meta-model of sequence diagrams as source of transformation and the meta-
model of coloured Petri net as target. In the following we give the rules to
transform the basic interaction of sequence diagrams into coloured Petri nets.
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Fig. 4: Transformation SD → CPN

The first rule createCPN allows to generate the CPN, the second rule creat-
eStates allows to create the states of the CPN, where the place associated to the
first event on the life line of the block must contain a token idle which triggers
the execution of the block interactions. Finally, the third rule createTransitions
allows to create the transitions and the arcs that link the places and transitions.

rule createCPN {

from sd : SD!Interaction

to cpn : CPN!CPN ( name <- ’CPNBlocks’,

places <- CPN!Place.allInstances(), transitions <- CPN!Transition.allInstances(),

inArcs <- CPN!InArc.allInstances(), outArcs <- CPN!OutArc.allInstances() )}

rule createStates {

from mos : SD!MessageOccurrenceSpecification

((mos.covered->first().name <> ’ENV’) and (mos.MoshavePlace()))

to place : CPN!Place (

colorSet <-if (mos.previousMos()=mos) then Sequence{’idle’} else Sequence{} endif,

nbrTokenPerColor <- if (mos.previousMos()=mos) then Sequence{1} else Sequence{} endif,

name <- ’p’.concat(mos.covered->first().name).concat(mos.getCovered().coveredBy->

select(e|e.oclIsTypeOf(SD!MessageOccurrenceSpecification))->indexOf(mos)) )}
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rule createTransitions {

from mes:SD!Message , mos:SD! MessageOccurrenceSpecification

((mos.covered->first().name <> ’ENV’) and (mos.message=mes) and (mos.MoshavePlace()))

to

t : CPN!Transition (name<- mes.name.concat(if mes.sendEvent=mos then ’!’ else ’?’ endif)),

inArc : CPN!InArc(

start <- thisModule.resolveTemp(mos, ’place’), end <- t,

colorSet <-Sequence{’idle’}, nbrTokenPerColor <- Sequence{1} ),

outArc : CPN!OutArc(

start <- t, end <- mos.nextplace(mos.covered->first()),

colorSet <-Sequence{’idle’}, nbrTokenPerColor <- Sequence{1} )}

– MoshavePlace(): is a helper that takes as context a message occurrence
specification, and it returns the value true if we must associate a place to
the current message occurrence specification.

– previousMos(): is a helper that takes as context a message occurrence
specification, and it returns the previous message occurrence specification.

– nextplace(ln): is the helper that takes as context a message occurrence
specification, and it returns the place associated to the next message occur-
rence specification on the life line ln.

5 Generating the Adaptor

To generate the adaptor, firstly we need to compute the global interaction of the
reused blocks by gluing their CPNs according to the adaptation sub-contract
that specifies the correspondences between the reused blocks. Thus, the CPNs
of the reused blocks are glued using the store place and a set of transitions
(which translate the adaptation contract). The store place will store the calls
for services until the targeted blocks can receive these requests. In the following,
through these rules, we explain how we glue them.
Rule 1: one-required-to-one-provided. This rule (presented in Figure 5(a))
is applicable on vectors of type OneReq2OneProv : 〈 ei, ej 〉, where ei =Bi:x!

and ej =Bj:{y?}. It specifies that the required service x of block Bi corresponds
to the provided service y of block Bj . In this case, when the block Bi executes
the transition x!, it generates the corresponding action y as a token, which will
be consumed later by the block Bj , when it tries to execute the action y?.
Rule 2: one-required-to-many-provided. This rule (presented in Figure
5(b)) is applicable on vectors of type OneReq2ManyProv : 〈 ei, ej 〉, where

ei = Bi:x! and ej = Bj:{y1?,...,ym?}. It specifies that the required service
x of block Bi corresponds to the provided services y1,...,ym of block Bj . In this
case, when the block Bi executes the transition x!, it generates the corresponding
actions y1,...,ym as tokens, which will be consumed later by the block Bj when
it tries to execute an action yk ∈ {y1,...,ym}.
Rule 3: one-provided-to-many-required. It means that the block Bi can
execute the service mentioned in ’one(provided)’ only after when the block Bj
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Fig. 5: Rules for synthesizing the reused blocks

sends requests for all services specified in ’many(required)’. This correspondence
can be specified at the level of the adaptation contract by a vector: 〈 ei, ej
〉, where ei = Bi:x? and ej = Bj:{y1!,...,ym!}. To represent this vector
using CPNs, we apply the rule 3 (see Figure 5(c)). So, we create a place ’pre-
store-x ’. This place stores calls for the services that correspond to x. Then, we
link all transitions labelled by yk!k=1..m to the place ’pre-store-x ’. After, we
must create a transition tau that has an incoming arc which starts from the
place ’pre-store-x ’. This arc is labelled by [yk 1]k=1..m. We must also create an
arc which starts from transition tau and ends at the store place, this arc must
be labelled by ’x 1 ’. Finally, to allow to the block Bi to execute the service x,
we link the store state with the transition x?.

The ATL grammar that implements these adaptation rules takes as entry
the meta-model of CPNs and the meta-model of the adaptation contract, and it
generates one CPN that represents the global interaction of the reused blocks.
The grammar, at the first step, creates the new CPN and copies the places, the
transitions, the in-arcs, the out-arcs, and creates the store place.

rule createStorePlace {

from contract : C!AdaptationContract

to GIR : outPN!CPN ( name <- ’GIR’,

places <- outPN!Place.allInstances(), transitions <- outPN!Transition.allInstances(),
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inArcs <- outPN!InArc.allInstances(), outArcs <- outPN!OutArc.allInstances() ),

store:outPN!Place( name <- ’store’ ) }

In the following we present the ATL rules that allows to reflect the vector of
type one required service to one provided service. The first one ’oneReq2oneProv1 ’
creates the incoming arc to the store place (the request of the service), However,
the second rule ’oneReq2oneProv2 ’ creates the arc which starts from the store
place to allow the reception of the request by the concerned block.

rule oneReq2oneProv1{

from contract:C!AdaptationContract, v : C!Vector, t:InPN!Transition

((v.type=#OneReq2OneProv) and (v.end1.name.concat(’!’)=t.name) )

to arc : outPN!OutArc (

start <- t, end <- thisModule.resolveTemp(contract, ’store’),

colorSet <- Sequence{v.end2->first().name}, nbrTokenPerColor <- Sequence{1} ) }

rule oneReq2oneProv2 {

from contract:C!AdaptationContract, v : C!Vector, t:InPN!Transition

((v.type=#OneReq2OneProv) and (v.end2->first().name.concat(’?’)=t.name) )

to arc : outPN!InArc(

start <- thisModule.resolveTemp(contract, ’store’), end <- t,

colorSet <- Sequence{v.end2->first().name}, nbrTokenPerColor <- Sequence{1} ) }

To represent the exchange of requests between the blocks and their environ-
ment, we base on the mapping vectors that link the reused blocks and their
parent block (vectors that represent the delegation relation between the parent
and their children blocks), we have defined the correspondences using CPNs and
we have implemented them using ATL. But due to the lack of space, we cannot
present them in this paper.

Basing on the CPN that represents the interaction of the reused blocks ac-
cording to the specification of their parent and the mapping between their ser-
vices, we can generate the adapter. The adapter will play the role of a mirror
between the reused sub-blocks {Bi}. So each call for a service by a sub-block
Bi must be intercepted by the adapter, and each reception of a request for a
service by a sub-block Bi must be preceded by a call for this service, this call
must be emitted by the adapter. Thus, to generate the adapter, we base on the
CPN synthesized in the last phase. We take this CPN, and we apply the mirror
function on some transitions, we transform each call for a service x! by a reused
block Bi into a reception of this call, and each reception of a call for a service x?
by a reused block Bi must be transformed to an emission of this call x!. Therefore
this transformation concerns only the transitions of the reused blocks, because
the adapter plays the role of mirror only between the reused sub-blocks. Con-
cerning the relation between the adapter and the parent block, it is a delegation
relation. So, the adapter delegates the parent to interact with the environment,
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that is why we do not need to inverse the actions done at the level of the parent
transitions.

6 Case Study

We give an example of a simple robot which can receive a request to move with
a given speed from a station, and it stops after reaching a goal. We consider
that the robot that we want to construct and to integrate to our system, will
have the interaction protocol given in Figure 6. To build the robot, we have
reused two blocks ’Controller’ and ’MovingSystem’, their interaction protocols
modelled using SysML sequence diagrams in Figure 6. To simplify we consider
that the corresponding actions have the same name and we differentiate between
them by adding the first letter of the block’s name to each action. To obtain the
interaction protocol of the adapter, we base on the adaptation contract modelled
using our graphical editor in Figure 7.

Fig. 6: Sequence diagrams of the robot, the controller and the moving system

The CPN of the adapter is presented in Figure 8. This adapter solves the
problem of name mismatches between services of blocks, it restricts the inter-
action between blocks to the specification of their parent (the robot block) and
reorders the call for services (setSpeed and move). To obtain the interaction
protocol of the adapter, we need just to compute the reachability graph of its
CPN using for example CPNtool [10]. In Figure 9, we present the new internal
structure of the robot block.

7 Conclusion

In this paper, we have presented a bottom-up model-driven approach to adapt
SysML blocks. Our adaptation process takes a part of the system to develop,
and generates an adapter for the SysML blocks which are reused to meet the
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Fig. 7: The adaptation contract C
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Fig. 9: Internal block diagram of the robot

specification of this part. We have based on SDs of SysML to model the inter-
actions of each block. Due to the informal aspect of SysML, we have proposed
to transform the SDs of blocks into CPNs, and we have implemented this trans-
formation using ATL language. Now, we are working on the Acceleo templates
that take our adapter and generate the input file for CPN tool, to discharge the
user from redrawing the CPN of adapter to compute its reachability graph. In
a future work, we plan to deal with the asynchronous aspect in the adaptation
context.
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