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Abstract

Three dimensional (3D) voxel phantoms are numerical representations of hu-
man bodies, used by physicians in very different contexts. In the controlled
context of hospitals, where from two to ten subjects may arrive per day,
phantoms are used to verify computations before therapeutic exposure to
radiation of cancerous tumours. In addition, 3D phantoms are used to di-
agnose the gravity of accidental exposure to radiation. In such cases, there
may be from ten to more than a thousand subjects to be diagnosed simulta-
neously. In all of these cases, computation accuracy depends on a single such
representation. In this paper, we present EquiVox which is a tool composed
of several distributed functions and enables to create, as quickly and as ac-
curately as possible, 3D numerical phantoms that fit anyone, whatever the
context. It is based on a multi-agent system. Agents are convenient for this
kind of structure, they can interact together and they may have individual
capacities. In EquiVox, the phantom’s adaptation is a key phase based on
ANN interpolations. Thus, ANNs must be trained regularly in order to take
into account newly capitalised subjects and to increase interpolation accu-
racy. However, ANN training is a time-consuming process. Consequently, we
have built Equivox to optimize this process. Thus, in this paper, we present
our architecture, based on agents and ANN, and we put the stress on the
adaptation module. We propose, next, some experimentations in order to
show the efficiency of the EquiVox architecture.
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1. Introduction

Three dimensional (3D) voxel phantoms are numerical models of human
bodies and are used by physicians and medical doctors in very different con-
texts: to diagnose the gravity of accidental exposure to radiation (radiation
protection) and also to control the calibration of Treatment Planning Systems
used to eradicate cancerous tumours in hospital departments (radiotherapy).
These 3D organ and body representations must fit those of the subject as well
as possible. They can be generated from ionizing images (scanners), Magnetic
Resonance Imaging and/or ultrasounds. However, these methods require ex-
pensive and highly specialized equipment accessible only by appointment;
they also need preparation and surveillance. Such constraints significantly
increase delays before any accurate image can be obtained. Moreover, some
of these methods expose the already weakened subjects to additional radi-
ation. Consequently, the generation of 3D phantoms without recourse to
expensive and potentially harmful equipment is a useful and safe alternative
in all cases of exposure to radiation.

EquiVox is a tool implementing artificial intelligence concepts in order
to find and customize numerical phantoms of human beings [1]. This paper
aims at presenting and analyzing the ditferent improvements which have been
made in this tool. Case Based Reasoning (CBR) is a problem solving method
that uses similar solutions from similar past problems in order to solve new
problems [2]. The EquiVox platform uses the CBR approach to find the
most similar phantom(s) within any set of phantoms and then attempts to
adapt them to the characteristics of the target case (the subject). EquiVox
adaptation tool uses Artificial Neural Networks (ANN). The EquiVox case-
base can be supplied with 3D representations created in different hospital
departments or even in field hospitals established temporarily near the sites
of nuclear accidents. Thus, knowledge can be distributed over different sites
or can be shared and improved by different users situated in different places
[3]. Globally, EquiVox follows the path of any other CBR tool. Whenever a
person has to be modeled, the most similar phantom is found. This phantom
is then automatically adapted by the system after the retrieval phase. The
adaptation phase implements an ANN [1, 4] : the target case coordinates
of each point of each organ contour is interpolated by taking into account
the coordinates of the same point on the closest phantom and having the



same size as that of the target case. The adapted phantom is then revised
by the expert, then capitalized. During the capitalization phase, the ANN is
always trained so that the next adaptation phase takes into account this new
phantom. We have optimized the accuracy of interpolations by introducing
a weighting vector for each phantom [5, 6]. This optimization has lead to a
counter effect on the capitalization phase making the latter a very long time
consuming process. Hence, forcing us today to distribute the system.

The problem is that EquiVox may be used when less than ten new subjects
must be represented (in a normal hospital context) one day, and the next
day, when ten to a hundred of human bodies must be provided (just after
accidental exposures to radiations, for example). This important variation
of arrivals introduces many difficulties, and the last version of EquiVox was
not always capable of providing the most accurate representations for all
the subjects in an acceptable time. Therefore, we turned ourselves towards
a multi-agent model: each agent supports one of the phases of the CBR.
Through a probabilistic study [7], we initially evaluated the theoretical per-
formances of this first multi-agent model. The results demonstrated that the
multiple instances of all agents were not necessary and that only the multiple
instances of the agent in charge of the capitalization were sufficient in order
to improve the performance of the EquiVox system.

Besides, the simple multiplication of all agents cannot be a viable so-
lution as all hospitals do not have access anytime to clusters to parallelize
ANN learning. Hence, we had to think about a system that does not system-
atically capitalize, which is able to postpone the long capitalization phases,
while maintaining the highest level of precision for the supplied solutions.
So, we tested, compared, and analyzed various capitalization strategies. Any
capitalization strategy (or learning, if one takes the point of view of the ANN)
must consider the input flow of the system, and be put forward automati-
cally in real time by the system. Therefore, this EquiVox distributed version
ditffers from other CBR by the implementation of an adaptive capitalization,
deferrable, and distributed, rather than a linear and systematic capitaliza-
tion. In addition, no human intervention is required, EquiVox modifying the
capitalization process by itself in real time.

Thus, this paper presents and evaluates the original modifications we have
made to this distributed architecture in response to this specific problem.



2. Materials and Methods

The first part of this section presents EquiVox, its objectives, the inherited
difficulties and the original architecture we have designed in order to deal
with them. The difficulties posed by the previous non-adaptative version
of EquiVox are also highlighted through an example in this first subsection.
The second part of this section presents the detailed new agents of EquiVox
and their behaviors.

2.1. The EquiVox objectives

3D phantoms provide solutions to many situations. In case of accidental
exposures, the computed impacts of both the external and internal (inhaled)
doses are reported. EquiVox 3D phantoms are used in this particular case,
to estimate the dose due to the quantity inhaled. These representations are
of precious help for dosimetric reports of inhaled substances since in this
particular case, even if the radiation source is not well known, an accurate
idea of the inhaled dose can be computed.

Other non-ionizing imaging methods such as Magnetic Resonance Imag-
ing and ultrasound may provide accurate images as well. These methods,
however, require expensive and highly specialized equipment which may not
be readily available after the accident. If it is available anywhere nearby, it
may already be in use by local hospitals and accessible only on appointments,
which significantly increases delays before any accurate images can be ob-
tained. In addition, radiotherapy services today treat an increasing number
of cancerous lung tumors, with physicians and medical doctors using Treat-
ment Planning Systems to treat tumors. The equipment necessary for this
requires preparation and control. Its suppliers use 3D phantoms to control
their calibration, though it would be reassuring to also use 3D representations
from independent sources.

Finally, the use of this equipment requires additional appointments, with
further and inconvenient testing, thus creating additional constraints. The
already weakened subjects (elderly subjects in the case of cancer treatment
and subjects in shock in the case of accidental exposure) are thus under
greater stress and in need of quick reassurance. Consequently, 3D phantoms
are useful alternatives and also comprise preliminary models in all cases of
exposure to radiation.



2.2. Case modeling and retrieval phase

We have studied the list of useful characteristics furnished by the physi-
cians of the French Institute of Radiation and Protection (IRSN). Thus, in
EquiVox, a problem is described as a set of r descriptors {dy, ..., d,}. These
descriptors are external measures of the human body: height, gender, age,
under bust circumference and chest circumference. Table 1 presents three
examples of phantoms stored in the initial case base of EquiVox. There are
two adult women phantoms and an adult man phantom of ditferent ages and
sizes.

Each expert has is own set of n phantoms: SP = {P,,..., P,}.

Each P; is the solution part of a case and represents the contours of m
organs: P, = {P} ..., P"}.

Each organ O is a set of ¢ points joined by a Delaunay mesh [8]: P? =
{C’{"O, - C’;’O} where C;-’O denotes the 3D coordinates of point j of organ
O of phantom P;, O € {lung, heart, liver, sternum, ribs, scapulae, spine,
breasts, skin, oesophagus, thoraz}.

Finally, a case 7 is: i = {{dil, oy dl} P,-}.

The retrieval phase lies in sorting the source cases according to their
similarity with the target case t. We implemented a classical version of the
k-Nearer Neighbour (kNN) algorithm [9]which computes the distances be-

tween each descriptor of the problem parts of target and source cases. Thus,

for each case i, a similarity index .S; is computed as follows:
sn Ap—|db —db |
S; = k=l A
where A is the difference between the maximum and the minimum
known values that the descriptor dj can take. The S; value is always be-
tween 0 and 1. The greater the similarity of ¢ to t, the closer the S; value to

1.

2.3. The agents in EquiVox

Hence, the actual system aims at assisting the physician in choosing and
customizing the most similar phantom from among the existing available
ones. The EquiVox platform uses the CBR approach to find the most similar
phantom(s) within any set of phantoms and then attempts to adapt them
to the characteristics of the target case (TC) (the subject). The EquiVox
adaptation tool uses ANN to adapt the stored phantoms in accordance with
the subject. As previously explained, different experts may use this platform



in very different contexts. In the context of hospitals, 2 to 6 new subjects can
arrive every day. In the context of large hospitals or in case of minor radiation
contamination accident, we can consider that 10 to 15 new subjects usually
arrive every day. If we consider the use of EquiVox in the context of accidental
exposure to radiations, EquiVox must provide 30 up to 80 (massive radiation
contamination) new 3D representations every day. The main purpose of this
study is to present EquiVox with a distributed and cooperative architecture
in order to merge and share the adaptation knowledge (AK) and phantoms
drawn by all the users.

The first version of the distributed architecture was designed to suit the
material architecture [7]. Figure 1 represents the intra-agent control model
over the EquiVox architecture. The entire set of phantoms is stored under
Rhino3D files on a central server. The corresponding biometric data is stored
under an ontology scheme on the same server.

Whenever a new subject arrives, a new phantom is required. The Descrip-
tor Agent (DA) is in charge of describing the target case. Once this phase
completed, the described target case is transmitted to a Reminder Agent
(RmA). The latter determines the similitude index by taking into account
the source cases found on the central server (in the case base). This phase is
known as the retrieval phase and as is can be seen in the figure, the RmA is
responsible of contacting the server and retrieving back the phantom. The
retrieved source case and the target case from the RmA then undergo an
adaptation phase. An Adaptation Agent (AA) considers the characteristics
of the source case and calls the interpolation module. This module loads the
trained ANNs and the coordinates of the organ contours in question in order
to create interpolated contours suited to the target case and which are finally
combined to create the interpolated organ contours. At this stage, there are
two possibilities. Whether the Expert Agent (EA) accepts the phantom as
it is or else requires that a revision phase be performed. According to the
EA, if the phantom doesn’t match the subject, it then revises and finalizes
the adapted phantom and sends this revised solution for capitalization.

As mentioned above, training of an ANN module is a time consuming
process and when the latter is in this state, it cannot be used by any AA
for interpolation purposes. Hence, it has been necessary to find procedures
and techniques which will enable the system of being used and trained at
the same time. Besides, when used, an ANN must have the latest data in
order to be the more optimal possible. The architecture we have designed
can cope with these two challenges. Firstly, it is guaranteed that whenever



the ANN is used, the latter always dispose of the latest data and secondly
during its training phase, the system can still be used. When an expert sends
the revised case for capitalization, these new data are buffered temporarily
on the the central server. According to the strategy employed for training
ANNs, when a certain amount of capitalized cases is reached or it is time
for launching an ANN training, it is the Strategy Agent (SA) which is put
forward. In fact, this agent acts like a coordinator and will orchestrate the
activation and deactivation of Retainer Agents (RtA). New RtAs will be
activated if the SA estimates that there is not enough RtAs to perform ANN
trainings. Else, RtAs will be deactivated. As already mentioned, RtAs will
take all the phantoms awaiting for capitalization from the buffer and will
perform the capitalization phase. It is to be known that whenever a training
process is in progress, there always exists a copy of a latest operational ANN
module; the SA guarantees this aspect of the system.

Figure 2 depicts the different agents that implement our system. We
have mapped agents on the functions described in Figure 1. The DAs handle
functions surrounding TCs. The RmAs deal with the retrieval phase. The
AAs are mandatory for adaptation. The experts are considered as agents
(Expert Agents, EA) in our model. They describe and revise the solutions.
Finally, the RtAs deal with the global knowledge.

We have two main categories. The first one concerns human agents, the
expert and the subject who is being studied (they inherit from the general
class). Despite that they are human beings, we can represent them by means
of agents in a simulation software tool. The second category concerns sim-
ulation software agents which are programs designed and implemented in
distributed EquiVox. They will both act upon data represented by resource
class named General Knowledge. On this figure, we can clearly see the influ-
ence that the strategy agent will have on retainers. At last, we have a class
that represent the General Knowledge. It is independent on an AML class
diagram since in these diagrams we only represent inheritance links. But, in
the MAS System each agent can access, at least in theory, to this resource.

2.4. The adaptation module of EquiVox based on ANN and its limitations

To interpolate the 3D contours of the organs, the subject’s height must
be known. Indeed, as concluded by I. Clairand et al. study [10], organ shapes
and volumes depend on the subject’s height.

In fact, bust circumferences are added during the revision phase when the
target is an adult woman. These parameters have no influence on the shape of
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organs. They help to determine breast models to add to corresponding male
phantoms and generated by the ANN. It should be noted that the ANN will
always provide male phantoms. These phantoms are then adpated (addition
of a breast model in respect to bust circumferences) to fit female phantoms.

Actually, this is one of the features of the EquiVox target and source
cases. Let us note h; the feature corresponding to the height of the case ¢
and h;, the height of the TC.

An ANN with 5 inputs and 3 outputs was simulated, and the source case
STM which height hgyys is the closest to the TC is considered.

The trained ANN interpolates the 3 coordinates of each point of the
organ contours separately. Thus, the 5 inputs enabling interpolation of the
coordinates C,i’o of point k of organ O of t are:

I

e The 3 coordinates of point k of O contours of STM: C'*°

e The height of the TC: hy ;
e The difference between h; and hsry: Ah = hgrar — hy.

For example, suppose that a person measuring 1m70 must be modeled
and that the most similar phantom of a given hospital’s knowledge base is
the phantom P, measuring 1m65. During EquiVox adaptation phase, each
contour point of each organ will be interpolated by a trained neural network
available in the knowledge base. Each point C}, of the phantom representing
the person measuring 1m70 will hence be equal to C}, = Interpolategya(Cy, 170, —5)
(—5 parameter representing the difference between the subject’s phantom size
and the most similar retrieved phantom’s size).

A cross validation has been performed with this approach [4]. This ap-
proach gave satisfying results since the errors were generally inferior to the
spatial resolution of the initial representation and have been validated by
IRSN experts.

The adaptation knowledge is thus composed of an ANN that must be
previously trained over the set of known phantoms. This training step, as-
sumed by the set of RtAs, is time-consuming; we first analyzed the learning
duration according to the number of phantoms at our disposal. As reported
in Figure 3, these results tend to prove that the learning delay follows an
affine function: time(nbPhantoms) = 4080 x nbPhantoms + 10500 seconds.
Thus, if there is only one retainer agent, the whole system is locked during
each ANN training. This is the reason why we must find a solution that



allows the use of the system even if an ANN training is in progress. This
solution consists in distributing and multiplying the agents. Nevertheless,
this implies that RtAs are able to launch ANN trainings concurrently, and
thus generating concurrent versions of the AK.

Figure 4 helps to understand the difficulties implied by this time-consuming
learning process of the ANN. In this figure, the strategy of one agent that
performs an ANN learning act every day at 8 o’clock is compared to the strat-
egy of one agent that performs an ANN learning act for every 5 new cases
when 8 new cases arrive every day. Let us call Ag the agent that performs
the ANN learning every day at 8 o’clock, and As the agent that performs the
ANN learning for every 5 new cases. Let us designate 8 o’clock as T'1 (time
1), when agent Ag launches an ANN learning, a process that will end at 72.
Thus, at T2, an ANN based on the learning experience gained from 3 sub-
jects is available. At T'3, since 5 new subjects have just been modelled, Aj;
launches an ANN learning that will end at T'5. Before that, Ag has already
launched (at 7'4) another process of adaptation knowledge that will end at
T6. At T7, A5 performs an ANN learning based on 10 subjects. This ANN
will be usable at T'9. Since there is only one agent available for this strategy,
and since this agent Ay is already involved in performing an ANN learning,
it cannot perform another one before the end of this second day when 15
subjects will have arrived (this situation occurs sometime between 7'7 and
T78). Finally, at T'11, A5 launches an ANN learning based on 20 subjects.
Nevertheless, at this timestamp, As has provided an ANN based on only 10
subjects, whereas Ag has provided an ANN based on 18 subjects (launched
at T8 and ended at T'10). Consequently, at T'11, the strategy of Ag is better
than that of As. Actually, the learning delays penalize the Aj strategy when
8 new cases arrive every day.

For this reason, the strategy of learning must be a real-time process
adapted to the variations of the context of use of EquiVox.

2.5. Fvolution and originality of this distributed version of EquiVox

As a matter-of-fact, it is necessary to adapt the number of agents (system
topology) and the learning strategies (load balancing) to the arrival flow in
real-time. The distributed platform must evolve into a self-adaptable system
that (1) observes its environment, (2) analyzes the situation, (3) schedules
the tasks and (4) undertakes any changes necessary in order to balance the
charge of the retainer agents that support the most time-consuming tasks.
This is precisely the task of the strategy agent.
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Figure 5 represents the communication flows between the agents of the
distributed platform. Each target case is taken in charge by one expert within
a pool of experts, which in turn communicates directly with one descriptor
agent within a pool of descriptor agents. The chosen descriptor agent trans-
mits the considered target case to one of the reminder agents and also signals
to the unique strategy agent that a new target case has arrived. The chosen
reminder agent then communicates the most similar retrieved source case
together with the target case to the adaptation agent which performs the
adaptation process in order to have an adapted phantom of the target case.
Afterwards, the adaptation agent sends this adapted phantom to one of the
expert agents who may or may not revise it before sending the final revised
target case to one of the activated retainers.

Though there is no need for communication between agents such as de-
scriptor, reminder and adaptation agents, retainer agents, they must, on the
other hand, share information. Actually, the retainers must share some infor-
mation in order to know if it is activated, when to launch ANN training, and
not to undertake the same training sequence twice for the same training set.
These agents must all know what the current strategy is, which retainers are
activated, which agent is launching ANN training, with how many new cases,
at which launch date, etc. To divide the memory among the set of retainers,
we have chosen the Pilgrim protocol which is an efficient and secure protocol
for concurrent, cooperative and collaborative works with shared memory [11].
The agents are dispatched over a ring and a token is exchanged. The original-
ity in this protocol is the fact that the token carries each stored modification.
Each agent has a copy of the shared memory. In this protocol, the token is a
structured entity that is transmitted from agent to agent and is dispatched
over a logical ring in an order determined at the beginning of the cooperative
work. When an agent wants to modify the shared memory, it must place a
reservation flag above the token if there is not yet another flag above it. The
token continues its course over the ring and when the agent again receives
the token, it is allowed to write the modifications. Thus, all the other agents
receive these modifications during the next token revolution, after which all
the agents have exactly the same version of the shared memory even if two
or more agents want to modify it at the same time. Thus, before launching
ANN training, each retainer must verify whether it is activated and whether
another agent has not already launched a training.

The strategy agent is in charge of the choice of the retaining strategy
according to the entry rate fluctuation and thus, activates and deactivates
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the required retainers with the chosen learning strategy.

Figure 6 shows by means of a simplified sequence diagram how a retainer
is activated by the strategy agent. In fact, when the descriptor agent signals
to the unique strategy agent that a new case has arrived, the latter incre-
ments the actual number of cases being treated and calculates the entry rate
fluctuation. If this rate is higher than the tolerance threshold, meaning that
there are not enough activated retainers, the strategy agent signals to an
inactivated retainer agent that it will now be activated.

In contrast, Figure 7 shows how a retainer is deactivated by the strategy
agent. When the entry rate fluctuation is calculated lower than the tolerance
threshold, meaning that there are more activated retainers than required, the
strategy agent signals to one of the activated retainer agents that it is to stop
all activities and disable itself. Upon receiving this message, the selected
retainer finishes its learning sequence - if one had been in progress - waits
for the token and writes the data to be shared with the other retainers in
the token and passes into a disabled state. The strategy agent is then aware
that the system possesses one less retainer.

3. Results

In this section, we have first evaluated the different possible strategies
of capitalisation separately, and we have then evaluated the new adaptative
strategy.

3.1. Evaluation of the strategies separately

The study conducted previously [7] showed that the multiplication of all
agents was not necessary in order to improve the performance of the sys-
tem. Only the multiplication of agents responsible of capitalization affects
positively the performance of EquiVox.

Using this architecture, we then evaluated the different configurations at
the disposal of the strategy agent. These configurations are characterized by
three parameters:

e the arrival frequencys;
e the number of retainer agents;

e the learning frequency.
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In order to evaluate the possible configurations and to program the choices
to be made by the strategy agent, we studied different cases, combining
different possible values for each configuration parameter. We then counted
the number of phantoms our distributed platform was capable of taking into
account.

We considered different arrival frequencies:

2 subjects arrive each day (hospital context);
6 subjects arrive each day (hospital context);

12 subjects per day (large hospital or a minor radiation contamination
accident);

30 subjects per day (context of an accidental exposure to radiations);

80 subjects per day (context of a massive radiation contamination).

We implemented a varied number of retainer agents: 1, 2, 3, 4, 5 or 10
agents. We tested the different learning frequencies: concerning the learning
delays, we assumed that performing one learning after the capitalization of
each case would quickly overload the entire system. Consequently, we tested
the following learning strategies for these retainer agents:

one learning process performed every 8 hours;

one learning process performed every evening at 8 p.m;

one learning process performed every 3 new cases capitalized;
one learning process performed every 4 new cases capitalized;
one learning process performed every 5 new cases capitalized;
one learning process performed every 10 new cases capitalized;
one learning process performed every 15 new cases capitalized;
one learning process performed every 20 new cases capitalized;

one learning process performed every 50 new cases capitalized.
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For this study, we assumed that there were 0 to 5 phantoms stored in the
initial case-base. Hence, we can assume this initial situation corresponds to
most of the initial situations in which EquiVox will be used. Indeed, when a
lot of phantoms are stored in the case-base, we can assume that the remaining
and adaptation phases are effective (a case very close to the subject can be
found in this case-base), and there are few revisions to be performed on the
adapted phantom proposed by the system.

Experiments have been made on a simulator developed with the GAMA
platform. GAMA is a modelling and simulation development platform that
is more especially used to spatially explicit agent-based simulations. It offers
a graphical interface and a specific language, GAML, which enables the de-
velopment of the Multi-Agent System. As the result of experiments, GAMA
can produce useful charts. In our case, agents are not situated in a space
environment, but our system is composed of distributed entities; GAMA can
handle this kind of system.

Figures 8, 9 and 10 show the number of phantoms that can be taken
into account in the customary hospital context and Figures 11 and 12 in the
deteriorated context of disasters. Since these phantoms are used by hospital
physicians, the latter’s work schedules (8 a.m. to 8 p.m. 5 days per week) are
taken into account. The tests were performed until a change took place in
the number of new subjects arriving. As long as 2 subjects per day arrived,
we stopped the series of tests at 30 subjects per strategy. When six new
subjects began arriving every day, we ran tests up to a total of 100 subjects.
For 12 new subjects who arrived every day we tested up to 150 subjects, and
in disaster-context, we reached 300 arrivals.

Figure 8 shows that with the arrival of 2 new cases every day, the highest
number of cases taken into account in the adaptation knowledge is obtained
when one or more retainer agents undertake a learning act every day at 8 p.m.
or for every 4 new cases, whereas a lower number of phantoms is taken into
account when one or more agents perform an adaptation knowledge update
for every 10 new cases. According to Figure 9, when 6 new cases arrive
every day, the best results are obtained when one or more agents perform an
update every 8 hours. Again, these best results are obtained, when at least 2
retainer agents perform an update every day at 8 p.m., or when more than 4
agents perform an ANN learning act for every 3 new cases. In contrast, the
worst results are obtained when a learning act is attempted for every 5 or 10
new cases. Figure 10 shows that when there are 12 new arrivals per day, all
strategies give more or less optimum results when ten agents are employed.
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However, this optimum is obtained from one agent that performs one ANN
learning every day at 8 p.m. or every 8 hours.

Figure 11 shows that when 30 new subjects arrive every day, the best
results are obtained when one agent or more perform an ANN learning act
every day at 8 p.m. Again, the best results are obtained when more than
4 agents perform adaptation knowledge updates every 8 hours. Best results
are also obtained when more than 5 agents perform learning acts at every
15 new cases or when 10 agents launch ANN learnings at every 10 new
cases. In contrast, performing learning acts every 3, 4 or 5 new cases are the
least efficient strategies, whatever the number of retainer agents activated.
According to Figure 12, when 80 new subjects arrive every day, best results
are obtained with more than 2 agents that learn every 50 cases, more than
4 agents every 20 cases, more than 5 agents every 4 cases, 10 agents every 3
cases, or 10 agents every 15 cases. However, the worst results are obtained
with only a single agent, whatever the strategy, and learning acts launched
every day at 8 p.m. or every 8 hours, whatever the number of subjects.

As shown in Figures 8, 9 and 10, one agent that learns every day at 8
p-m. or 2 agents that learn every 8 hours will always take into account a
maximum number of phantoms in all customary hospital contexts, whereas
the other strategies, in order to be optimal, require 10 agents. Furthermore,
in this particular context they are not always efficient as just two agents.
Indeed, these strategies are well suited to physicians’ work schedules.

In contrast, Figures 11 and 12 show that when arrivals are more numerous,
these two strategies are progressively of lower efficiency than strategies based
on 5 agents or more and learning acts performed at every 3, 4, 15 or 50 new
cases. Hence, it is important to retain that the most efficient strategies in
hospital contexts are the worst in the case of disasters, whereas the strategies
that are the most efficient in a disaster context are the worst when used in a
normal hospital context.

3.2. Evaluation of the adaptative strategy

These results drive us to the conclusion that there is not a single config-
uration that can handle all the situations. Indeed, the number of agents and
their learning strategies must be adapted as soon as a variation of the num-
ber of arrivals is detected. Thus, a new type of agent has been introduced
into the system and the RtAs now communicate, share information and act
according to a concurrency management protocol. Considering these results,
we have finally chosen to implement the configurations and adaptations of
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Table 2: when there are less than 4 arrivals per day, the strategy agent ac-
tivates 2 RtAs that launch ANN trainings every day at 8 p.m., when the
strategy agent detects 4 to 9 arrivals per day, it activates 4 RtAs that launch
ANN trainings every 8 hours and deactivates all the other RtAs. One more
RtA is activated when the strategy agent detects 9 to 40 new subjects per
day. Finally, when more than 40 arrivals per day are detected, this strategy
agent activates 10 RtAs that launch ANN trainings every 15 new cases and
deactivates all the other RtAs. As presented in Figures 8, 9, 10, 11 and 12,
we could have chosen other optimized configurations.

In order to validate these choices, we conducted further investigations on
our proposed system through three specific scenarios corresponding to three
use cases whereby all the characteristics of these use cases differ from each
other. In order to measure the performance of the system, we have recorded
the number of subjects taken into account by the ANN in the different pro-
posed strategies. We recall that the interpolations of the ANN will be better
provided that a more significant number of source cases already exists in the
case-base. The numbers of subjects to treat are shown on these curves and
we have assumed that every subject is to be revised and retained by the
system.

In the first scenario (Figure 13), the number of subjects arriving is at first
low, then increases very rapidly after ten hours before becoming low again.
This scenario corresponds to the case of an occasional radiological accident
involving twenty subjects and occurring after a moderate utilization of the
system. In this scenario, the strategy, "a learning every 8 hours” is more
efficient than the one based on ”a learning every 15 cases” up to 37 hours of
utilization. The trend then reverses until the 61" hour of utilization before
becoming strictly identical. The introduction of a Strategy Agent helps to
provide an agreement and be always very close to the optimal number of
subjects for the exploited ANN (identical to the strategy ”a learning every 8
hours” until the 33" hour of utilization, then a subject less than the strategy
”a learning every 15 cases” until the end of the simulation).

In the second scenario (Figure 14), the system is utilized moderately for
several days before a radiological accident involving twenty subjects occurs.
The strategy ”a learning every 8 hours” is better than the one proposing
"a learning every 15 cases”. Again, the introduction of a "strategy agent”,
helps to stick to this optimum and to propose during the entire ANN scenario
based on as much, even more, subjects than this optimal strategy.

Finally, in the third scenario (Figure 15), the system is put into operation
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when a major radiological accident happens. The system’s knowledge base
contains initially five cases and is enriched by the modeled subjects involved
in this major radiological accident. The strategy ”a learning every 15 cases”
offers more often trained ANNs on much more subjects than the strategies
"a learning every 8 hours” and "a learning every day at 8 a.m”. However,
as soon as the number of subjects arriving decreased, the strategy based on
"a learning every 8 hours” becomes better. Here again, the introduction of a
Strategy Agent optimizes the number of subjects taken into account by the
operational ANN from the beginning till the end of the scenario, despite the
fact that the inflow decreases.

4. Discussion and related works

These evaluations, therefore, show that the introduction of a Strategy
Agent optimizes the number of subjects taken into account by operational
ANNS, thus optimizing adaptation accuracies made by EquiVox even in case
of big variations of the input stream.

EquiVox is a distributed CBR [3]. According to the classification proposed
by E. Plaza and L. McGinty, the distributed version of EquiVox enables in-
creasing the capabilities of calculation following the Muitiple Agents model,
provided that a centralized knowledge in a Single Case Base be used.

A large number of CBR systems designed for Health Science (CBR-HS)
combined with Artificial Intelligence (Al) tools are now available [12, 13, 14].
Moehrle and Raskob propose a CBR. approach which helps to identify solu-
tions and cons-measures in case of nuclear disasters [15]. The special feature
of their proposal rely on the fact that it is not only based on cases but also
on scenarios. Like other systems [16, 17, 18], EquiVox provides a prototypical
case for under-represented cases of a class using an ANN [19] based on its
adaptation process [4].

A.Pla et al. propose a distributed version of their previous CBR tool de-
signed for the medical sector [20]. Like in the real life, where multidisciplinary
meetings, are used by physicians to concert on a particular case, the goal of
their tool is the same here. When a physician has to pronounce a diagnos-
tic on a complicated case, he has to take into consideration the opinions of
his fellow physicians working on the same case. In their tool, physicians are
agents. Fach agent will use its own case-base. Once, all diagnostics gathered,
they are transmitted to a coordinator agent which is responsible to take the



final decision. The ditference between their architecture and ours lies in the
fact that there isn’t any adaptation process in theirs.

-Following the example of J. Hu et al. [21], we have designed a process
that increases adaptation accuracy when the set of phantoms stored in the
knowledge database grows [5]. We have proposed and have implemented an
original method in order to optimise the accuracy of the adapted phantoms
[6]. The main drawback of this method resides in the fact that it is time-con-
suming. This is one of the reasons why we propose here a distributed version
of EquiVox based on the use of agents [7].

GI Hawe et al. designed an application where agents are used to simulate
emergency responses in order to determine resource allocation in case where
two major incidents would occur at the same time but situated at ditferent
locations [22]. An important point to highlight is that resources are limited
and hence we need to make some compromises resulting in a solution closest
to the optimal one. Furthermore, maintaining the case base and updating
the entire knowledge base during the capitalization process is of the utmost
importance for CBR-systems [23].

Most of the designed distributed CBR systems are composed of CBR-
based agents that compare solutions provided by different CBR~engines and
a decision policy is defined to decide which solution is best-suited to the
proposed problem [24, 25, 26, 27, 28, 29]. In some approaches, a single agent
coordinates, selects and delivers the tasks to the others [30]. The agent
assuming this role can be chosen by the distributed system itself according
to the situation [31, 32].

EquiVox ditfers from other approaches in several points. First of all, our
platform combines several Al concepts therein: general operation according
to the CBR, adaptation phase performed by an ANN, and process distribu-
tion following an agent-based model. One of the originalities of EquiVox lies
in the ability of the system to postpone the knowledge capitalization phase at
the end of a CBR cycle, while maintaining an optimum level of performance.
Indeed, in other approaches of distributed CBR or systems integrating ANNs,
the capitalization phase is systematically done at the end of each CBR cycle.
In EquiVox, capitalization of adaptation knowledge is initiated depending in
the system input stream. Several capitalization phases have been defined and
tested. Optimal strategies have been identified according to the contexts in
which EquiVox will be used. Finally, EquiVox can automatically change its
knowledge capitalization strategy without any human interaction.

However, in these distributed platforms, either the system is capable of



treating a large number of problems though its actual solutions based on
knowledge that may not always be up-to-date or is perhaps unshared, or
the system can furnish a highly accurate solution but uses a time-consuming
process. Actually, both of these abilities must be treated by the distributed
version of EquiVox, since most hospitals dispose of fewer than ten new sub-
jects each day with which to generate and accurately capitalise 3D phantoms.
In contrast, in the cases of massive exposure to radiation, hundreds of sub-
jects must be treated as soon as possible. In addition to these approaches,
an interesting multi-agent system is also proposed by E. F. de O. Sandes et
al. in which agents must balance the charge of the different nodes working in
parallel [33]. Both this approach and ours treat the system load balancing by
means of a multi-agent system (MAS), but in two different manners. In the
system of E. F. de O. Sandes et al., a set of balancers modifies the job queue
of each executor agent, whereas our study makes use of a unique agent to
regulate the frequencies of time-consuming computations and also the num-
ber of agents devoted to these tasks. The resulting distributed platform is
self-adaptable since it is capable of observing its environment, analyzing the
situation, scheduling the necessary changes in topology and agent charges,
and finally of implementing these changes in real-time without any human
intervention.

A future improvement of the EquiVox platform may consist in multiplying
the number of case-bases in order to increase the initial number of phantoms
and thus increase the accuracy of the adaptation process. Another option
may consist in adapting 3D voxel phantoms and transfering them afterwards
to the central server. For that purpose, the security and robustness of the
images transmission becomes a central concerns. Hence, a robust protocol
like REPRO [34] including techniques of reduction and expansion of medical
images, the saving of bandwidth used for images transmission and also an
optimisation of the adaptation of the received images to different types of
terminals will have to be integrated.

5. Conclusion

Our work is based on a simple proposition: the distribution of our CBR
system called EquiVox. We describe how a multi-agent paradigm has been
used in order to design our distributed version of EquiVox. In this study, we
demonstrated the performances of our system, considering different environ-
ments and constraints (number of known cases and speediness of arrivals).



In this article, we have introduced a new agent: the strategy agent. The
strategy agent is in charge of the choice of the retaining strategy according
to the entry rate fluctuation and thus activates and deactivates the required
retainers with the chosen learning strategy. Moreover, we have created a
group of retainers to be activated or deactivated depending on the strategy
agent’s policy.

We have shown that the strategy agent brings consequent improvement
to our platform in terms of adaptability. Thus the system now reacts in
function of the number of subjects arriving.
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Highlights

EquiVox provides 3D representations of human bodies in very different
contexts.

This multi-agent system uses case-base reasoning and artificial neural net-
works.

The training of artificial neural networks is a time-consuming process of
EquiVox.

We explored different learning strategies depending on the context of use
of EquiVox.

We designed a new version that can automatically change the learning strat-
egy.
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Figure 8: Number of phantoms taken into account during the adaptation knowledge in
the customary context of hospitals (2 subjects per day).
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Figure 9: Number of phantoms taken into account during the adaptation knowledge in
the customary context of hospitals (6 subjects per day).
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Figure 10: Number of phantoms taken into account during the adaptation knowledge in
the customary context of hospitals (12 subjects per day).
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Figure 13: Number of subjects taken into account by the EquiVox adapation module in
scenario 1.
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Figure 14: Number of subjects taken into account by the EquiVox adapation module in
scenario 2.
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Figure 15: Number of subjects taken into account by the EquiVox adapation module in
scenario 3.
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Phantom | height age gender | under chest chest
ID (cm) | (years) circumference | circumference

(cm) (cm)

P, 167.54 48 Female 85.6 99.9

P, 173.18 26 Female 74.7 90.7

Py 185.25 31 Male 80.7 88.3

Table 1: Examples of phantoms initially stored in the EquiVox case base.

Arrival frequencies | Number of activated | ANN training frequencies
(subjects per day) RtAs
less than 4 2 every day at 8 p.m.
4t09 4 every 8 hours
9 to 40 D every 8 hours
more than 40 10 every 15 new cases

Table 2: Implemented adaptation strategies.
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