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Abstract

We provide generating functions for the number of equivalence
classes of rooted planar maps where two maps are equivalent when-
ever their representations in shuffles of Dyck words coincide on all
occurrences of a given pattern.
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1 Introduction and notations

A map is defined topologically as a 2-cell imbedding of a connected graph,
loops and multiple edges allowed, in a 2-dimensional surface. A rooted planar
map is a map on a sphere with a distinguished edge, called the root, assigned
with an orientation. Figure 1(a) shows a rooted planar map with seven
edges. We refer to [1, 15, 16] for the enumeration of rooted planar maps
with respect to the number of edges. Planar maps have been widely studied
for their combinatorial structure and their links with other domains such
as theoretical physics where they appear in some models of 2-dimensional
quantum gravity for instance. From a combinatorial point of view, it is
proved in [8] that rooted planar maps are in one-to-one correspondence
with shuffles of Dyck words that avoid a specific pattern. Then, it becomes
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natural to extend to maps statistical studies on Dyck words (see [7, 9, 12,
10, 11, 13] for instance). It is one of the main purpose of this paper.

A Dyck word on the alphabet {a, ā} is a word generated by the context-
free grammar S → ε | aSāS where ε is the empty word. Let Da be the set
of all Dyck words on the alphabet {a, ā}, and let Db be the set of all Dyck
words on the alphabet {b, b̄}. It is well known that Dyck words of semilength
n are counted by Catalan numbers (A000108 in the on-line encyclopedia of
integer sequences [14]), and that any non-empty Dyck word w ∈ Da has a
unique decomposition of the form w = aαāβ where α and β are two Dyck
words in Da (see [7]). Also, a word w on the alphabet {a, ā} belongs to Da

if and only if the following two properties hold: (i) the number of letters
a is equal to the number of letters ā in w, and (ii) in any prefix of w, the
number of letters a is greater than or equal to the number of letters ā.

We say that an occurrence of the letter a matches an occurrence of ā
located to its right in w ∈ Da, whenever the subword of w consisting of all
letters between these two occurrences also belongs to Da. In this case, the
pair (a, ā) is called a matching in w. For instance, if w = aāaaāaaāāā, then
the second occurrence of the letter a matches the last occurrence of ā since
aāaaāā is a Dyck word.

A shuffle of two Dyck words v ∈ Da and w ∈ Db is a word s on the
alphabet {a, ā, b, b̄} where s is constructed by interspersing the letters of
v and w. Let S be the set of all shuffles of two Dyck words of Da and
Db. Shuffles of semilength n, n ≥ 0, in S are enumerated by the sequence
A005568 in [14]. The first values for n ≥ 0 are 1, 2, 10, 70, 588, 5544, 56628.
For instance, s = aabāāb̄abb̄ā is a shuffle of the two Dyck words aaāāaā ∈ Da

and bb̄bb̄ ∈ Db.
For any shuffle s, we denote by wa(s) (resp. wb(s)) the Dyck word in

Da (resp. Db) obtained from s by deleting the letters b and b̄ (resp. a and
ā). In the following, we will extend the definition of wa(s) and wb(s) for any
word in {a, ā, b, b̄}∗. In particular, if s is a prefix of shuffles, wa(s) (resp.
wb(s)) becomes a prefix of a Dyck word in Da (resp. Db). For instance, if
s = aabāāb̄abb̄ā, then wa(s) = aaāāaā and wb(s) = bb̄bb̄; and if s = aabā,
it is a prefix of a shuffle, and wa(s) = aaā and wb(s) = b are prefixes of
Dyck words. Then, a word s is a shuffle in S if and only if wa(s) ∈ Da and
wb(s) ∈ Db.

A shuffle s of two Dyck words v ∈ Da and w ∈ Db will be called cross-
ing whenever there exists a matching (a, ā) in v and a matching (b, b̄) in
w such that s can be written s = αbβaγb̄δāη where α, β, γ, δ and η belong
to {a, ā, b, b̄}∗. Then the occurrence bab̄ā will be called a pair of cross-
ing matchings. Let NCS ⊂ S be the subset of non-crossing shuffles in S,
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(b)(a)

aaabbāāb̄āb̄abb̄ā

Figure 1: A rooted planar map with 7 edges and its non-crossing shuffle
representation.

i.e., shuffles with no pair of crossing matchings. For instance, aābb̄aābb̄aā
is in NCS, while aābbb̄ab̄ā is not in NCS. Notice that non-crossing shuf-
fles are called canonical parenthesis-bracket systems in [17]. The shuffles of
semilength n ≥ 0 in NCS are enumerated by the sequence A000168 in [14]
whose first values for n ≥ 0 are 1, 2, 9, 54, 378, 2916, 24057, 208494. They
are in one-to-one correspondence with the rooted planar maps with n edges
[5, 6, 8, 17]. See Figure 1 for an example of rooted planar map with its
representation as a non-crossing shuffle in NCS. This one-to-one correspon-
dence is obtained by the following process. Starting with the root edge, we
follow or cross all edges of the map by making its tour in counter-clockwise
direction. Each edge in the map must be reached twice. If the final vertex
of the encountered edge has not yet been considered, then we follow this
edge and we write the letter a; otherwise, if the edge is reached for the first
time, then we write the letter b and we cross it; in the other cases the edge is
reached for the second time, and we write ā (resp. b̄) and we follow the edge
(resp. we cross the edge) whenever the first assignment of the edge was the
letter a (resp. b). Table 1 gives the correspondence between some patterns
of length at most two in a shuffle with their meaning in terms of map. For
instance, a pattern bb̄ in a shuffle of NCS corresponds to an empty loop
on a vertex of the corresponding rooted planar map. Also, the pattern ab̄
cannot occur in the shuffle representation of a rooted planar map because it
necessarily creates a pair of crossing matchings.

In a recent paper [3] (for equivalence classes of permutations see [2]), the
authors introduced an equivalence relation on the set of Dyck words where
two Dyck words are equivalent whenever the positions of the occurrences
of a given pattern are the same in both words. They provided generating
functions for the numbers of equivalence classes whenever the patterns are
of length two: aa, aā, āā and āa. See also [4] for a study of this equivalence
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Shuffle a aa aā b bb̄ āa ab̄

Map Does not appear

Table 1: Correspondence between patterns in a shuffle and patterns in a
rooted planar map.

relation on Motzkin words.
The motivation of this paper is to present a similar study for shuffles of

Dyck words and for rooted planar maps considered with their representation
by shuffles in NCS. So, we define the equivalence relation on S and NCS
for any pattern π of length at most two:

two shuffles with the same semilength are π-equivalent whenever they
coincide on the positions of occurrences of the pattern π.

For instance, the shuffle s = aabab̄ābāb̄ā is b̄ā-equivalent to s′ = aāabb̄āabb̄ā
since the occurrences of b̄ā appear in positions 5 and 9 in s and s′.

In Section 2, we show that the problem of the enumeration of the π-
equivalence classes in NCS is the same as in S whenever π is a pattern of
length at most two that does not belong to the set {b̄a, bā, ab̄, āb}. In Sections
3-6, we present enumerative results by providing generating functions for the
number of π-equivalence classes when π /∈ {b̄a, bā, ab̄, āb}. Using the one-to-
one correspondence between rooted planar maps and non-crossing shuffles
of Dyck words, this induces enumerative results for equivalence classes of
rooted planar maps relatively to the positions of some patterns. See Table 2
for an overview of these results. Notice that the pattern ab̄ does not appear
in any shuffle of a rooted planar map, and that we did not succeed to obtain
the number of π-equivalence classes in S and NCS for π ∈ {āb, b̄a, bā}. So,
we leave these cases as open problems.

Pattern Sequence Sloane an, 1 ≤ n ≤ 9

{a}, {ā}, {b}, {b̄} 1√
1−4x

Central binomial coeff.

A000984
2, 6, 20, 70, 252, 924, 3432, 12870, 48620

{aā}, {bb̄} 1−x
1−3x+x2 Shift of A001519 2, 5, 13, 34, 89, 233, 610, 1597, 4181

{āa}, {b̄b} 1−2x
1−3x+x2 A001519 1, 2, 5, 13, 34, 89, 233, 610, 1597

{aa}, {āā}, {bb}, {b̄b̄} 1+x−
√
1−2x−3x2

2x2+3x−1+
√
1−2x−3x2

Bisection of A191385 1, 2, 5, 12, 31, 81, 216, 583, 1590

{ab}, {ba}, {āb̄}, {b̄ā} −2
√
3 sin(1/3 arcsin(3/2

√
3x))

4 (sin(1/3 arcsin(3/2
√
3x)))

2−3x
A138164 1, 2, 4, 9, 20, 47, 109, 262, 622

Table 2: Enumeration of π-equivalence classes for shuffles and rooted planar
maps.
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2 Some preliminary results

In this section, we prove that for some specific patterns π the numbers of
π-equivalence classes in S and NCS are the same.

Lemma 1 Let w = αāβγ be a Dyck word in Da with βγ in {a, ā}∗. Then
the word w′ = αβāγ is also in Da.

Proof. The Dyck word w′ is obtained from w by a shift on the right of a
letter ā. So, the number of a and the number of ā remains unchanged in
w′. Moreover, in any prefix of w the number of a is greater than or equal
to the number of ā and this property remains satisfied in w′. Using the
characterization of a Dyck word given in the introduction, w′ is in Da. 2

Lemma 2 Let w = αaβāγ be a Dyck word in Da. If β = β1β2 . . . βk is in
Da then for any i, 1 ≤ i ≤ k, the word w′ = αaβ1 . . . βi−1āβi . . . βkγ is also
in Da.

Proof. Since w is in Da, (i) the number of a and the number of ā are equal
in w, and in any prefix (ii) the number of a is greater than or equal to the
number of ā. Since β is in Da, the number of a in any prefix of αaβ1 . . . βi−1
is strictly greater than the number of ā. This means that αaβ1 . . . βi−1ā
satisfies Condition (ii). Then, w′ satisfies (ii) which implies that w′ belongs
to Da. 2

Of course, the last two lemmas also hold if we replace the letter a with
b. So, we use them indifferently for a and b.

Theorem 1 Let s be a shuffle in S and π be a pattern of length at most
two not in {ab̄, āb, b̄a, bā}. Then, there exists a shuffle s′ in NCS with the
same semilength as s so that s and s′ are π-equivalent.

Proof. Let s be a shuffle in S that does not lie in NCS, i.e. s contains a pair
of crossing matchings. Then, s can be decomposed s = αbβaγb̄δāη so that
α, β, γ, δ and η are in {a, ā, b, b̄}∗ and the crossing matching bab̄ā is chosen
the leftmost possible in s.

We distinguish three cases: (i) π ∈ {a, aa, ab, ba}; (ii) π = aā; and (iii)
π = āa. The other cases are easily obtained using classical symmetries on
shuffles ( a↔ b and mirror).
Case (i): Let us consider the word s′ = αbβaγāδb̄η obtained from s by an
exchange of ā and b̄. With Lemma 1 and Lemma 2, s′ is also a shuffle of
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two Dyck words. The two shuffles s and s′ belong to the same π-equivalence
class since this operation cannot create or delete a pattern in {a, aa, ab, ba}.
Moreover the leftmost pair of crossing matchings in s′ is shifted on the right
compared to s. We repeat the process for as long as required, and we obtain
a shuffle in NCS with the same semilength as s, which is π-equivalent to s.
Case (ii): Let us assume that s = s1s2 . . . s2k for some k ≥ 1 with si ∈
{a, ā, b, b̄}, 1 ≤ i ≤ 2k. We obtain s′ from s by the following process: we
preserve the positions of all occurrences of the pattern aā; the other letters
of s′ are chosen so that the restriction of s′ to them is the Dyck word of the
form b`b̄` for some ` ≥ 0. It is straightforward to see that s′ ∈ NCS and
that the two shuffles s and s′ belong to the same aā-equivalence class.
Case (iii): Let us assume that s = s1s2 . . . s2k for some k ≥ 1 with si ∈
{a, ā, b, b̄}, 1 ≤ i ≤ 2k. We obtain s′ from s by the following process: we
preserve the positions of all occurrences of the pattern āa and we set s′1 = a
and s′2k = ā; the other letters of s′ are chosen so that the restriction to them
is the Dyck word of the form a`ā` for some ` ≥ 0. It is straightforward to
see that s′ ∈ Da ⊂ NCS and that the two shuffles s and s′ belong to the
same āa-equivalence class. 2

Corollary 1 Let π be a pattern of length at most two not in {b̄a, bā, ab̄, āb}.
For each word length the number of π-equivalence classes in S is also the
number of π-equivalence classes in NCS.

This corollary allows us to limit our study of the general case to shuffles in
S and patterns π not in {b̄a, bā, ab̄, āb}. All results in the following sections
will hold for both sets S and NCS.

3 Equivalence modulo π ∈ {a, b, ā, b̄}
The results for π ∈ {b, ā, b̄} are deduced from the ones for π = a by using
the classical symmetries (mirror and a↔ b) on shuffles. So, we set π = a in
this section.

LetA be the set of shuffles in S defined by the grammarA → Da | DabDab̄A
where Da is the set of Dyck words on the alphabet {a, ā}.

Lemma 3 The set A and the set of a-equivalence classes of S are in length-
preserving one-to-one correspondence.

Proof. For k ≥ 1 let s = s1s2 . . . s2k be a shuffle in S\A with si ∈ {a, ā, b, b̄}
for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s′ ∈ A (with the
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same semilength as s) such that s and s′ belong to the same a-equivalence
class. We define the word s′ by performing the following process on s for i
from 1 to 2k:

- If si = a then we set s′i = a;
- Otherwise, we distinguish three cases:
(i) If wa(s′1 . . . s

′
i−1) /∈ Da then we set s′i = ā;

(ii) If wa(s′1 . . . s
′
i−1) ∈ Da and wb(s

′
1 . . . s

′
i−1) /∈ Db then we set s′i = b̄;

(iii) If wa(s′1 . . . s
′
i−1) ∈ Da and wb(s

′
1 . . . s

′
i−1) ∈ Db then we set s′i = b.

It is worth noticing that wa(s′1 . . . s
′
i) (resp. wb(s

′
1 . . . s

′
i)) is a prefix of a

Dyck word in Da (resp. Db) for all i, 1 ≤ i ≤ 2k. Moreover, at the end of
the process we necessarily have wa(s′1 . . . s

′
2k) ∈ Da and wb(s

′
1 . . . s

′
2k) ∈ Db

which means that s′ belongs to S.
Since the process preserves the occurrences of the letter a in s and do

not introduce other letters a in s′, s and s′ belong to the same a-equivalence
class. Moreover, s′ necessarily lies in A. Indeed, the process sets s′i = ā
whenever wa(s′1 . . . s

′
i−1) is not a Dyck word of Da; in all other cases, it sets

s′i = b or s′i = b̄ alternatively. If s′ does not contain any occurrence of b,
then s′ ∈ Da ⊂ A; otherwise, the previous construction ensures that s′ has
a prefix of the form αbβb̄ with α and β in Da. This means that s′ satisfies
the grammar A → Da | DabDab̄A. Thus, we have s′ ∈ A.

Now, it suffices to prove that two distinct shuffles s and s′ with the same
semilength in A are not a-equivalent. For a contradiction, let us assume
that s and s′ belong to the same class.

We distinguish two cases:
- If s ∈ Da or s′ ∈ Da with the same positions of the occurrences of a

then we have s = s′.
- Otherwise, s can be written s = αbβb̄γ with α and β in Da and γ in

A. Also, s′ can be written s′ = α′bβ′b̄γ′ with α′ and β′ in Da and γ′ in A.
Since α and α′ belong to Da and have the same positions of occurrences

of the letter a, we necessarily have α = α′. The same argument for β implies
that β = β′. We complete the proof by induction on the length for γ and γ′

in A and we conclude s = s′. 2

Theorem 2 The generating function for the set of a-equivalence classes in
S (or in NCS) with respect to the semilength is given by

1√
1− 4x

=
∑
n≥0

(
2n

n

)
xn.

Proof. By Lemma 3, it suffices to provide the generating function A(x) of
the set A, with respect to the semilength. Every nonempty shuffle s ∈ A is
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obtained by the grammar A → Da | DabDab̄A where Da is the set of Dyck
words on the alphabet {a, ā}. This induces the functional equation:

A(x) = D(x) + xD(x)2A(x)

where D(x) = 1−
√
1−4x
2x is the Catalan generating function for the set Da,

which implies the required result. 2

4 Equivalence modulo π ∈ {aā, bb̄, āa, b̄b}
The results for π ∈ {bb̄, b̄b} are deduced from the ones for π = aā and π = āa
by using the classical symmetries. Then, we study in this section the two
cases π = aā and π = āa.

Let B be the subset of S defined by the grammar B → aāB | bB′b̄B | ε
where B′ → aāB′ | ε. It is worth noticing that the set B′ consists of words
of the form (aā)k for all k ≥ 0. Moreover, it is straightforward to see that
for any s ∈ B we have wb(s) = (bb̄)i for some i ≥ 0 and wa(s) = (aā)j for
some j ≥ 0. Finally, if X = aā then the set B consists of all shuffles of words
Xi, i ≥ 0, with Dyck words of the form (bb̄)j , j ≥ 0, where the occurrences
of X = aā are never split. For instance, baāaāb̄aābb̄ belongs to B, while
baāab̄āaābb̄ /∈ B.

Lemma 4 The set B and the set of aā-equivalence classes of S are in length-
preserving one-to-one correspondence.

Proof. For k ≥ 1 let s = s1s2 . . . s2k be a shuffle in S\B with si ∈ {a, ā, b, b̄}
for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s′ ∈ B (with the same
semilength as s) such that s and s′ belong to the same class. We define the
word s′ by performing the following process on s:

- all occurrences of the pattern aā in s are preserved in s′;
- for i from 1 to 2k such that si does not belong to a pattern aā in s, we

distinguish two cases:
(i) if wb(s

′
1 . . . s

′
i−1) = (bb̄)j for some j ≥ 0, then we set s′i = b,

(ii) if wb(s
′
1 . . . s

′
i−1) = (bb̄)jb for some j ≥ 0, then we set s′i = b̄.

For all i (1 ≤ i ≤ 2k) we have either wb(s
′
1 . . . s

′
i) = (bb̄)j or wb(s

′
1 . . . s

′
i) =

(bb̄)jb for some j ≥ 0. Moreover, we have wa(s′1 . . . s
′
i) = (aā)` for some ` ≥ 0

so that a and ā appear necessarily adjacent in s′ in an occurrence aā. This
means that s′ is a shuffle that lies in B. Since the process preserves the
occurrences of the pattern aā, s and s′ belong to the same aā-equivalence
class.
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Less formally, s′ is obtained from s by fixing the occurrences of aā and
by replacing all other letters by a Dyck word of the form (bb̄)j for some
j ≥ 0. Therefore, the definition of B ensures us that s′ is the unique element
in B that lies into the same aā-equivalence class as s. 2

Theorem 3 The generating function for the set of aā-equivalence classes
in S with respect to the semilength is given by

1− x
1− 3x+ x2

=
∑
n≥0

F2n+1x
n

where Fm is the m-th Fibonacci number (defined by Fm = Fm−1+Fm−2 with
F0 = 0 and F1 = 1).

Proof. By Lemma 4, it suffices to provide the generating function B(x) of
the set B, with respect to the semilength. Every shuffle s ∈ B is obtained
by the grammar B → aāB | bB′b̄B | ε where B′ → aāB′ | ε. This induces the
functional equation:

B(x) = 1 + xB(x) + xB(x)B′(x)

where B′(x) = 1 + xB′(x) is the generating function for the set B′.
A simple calculation provides the result. 2

Now we consider the equivalence relation for the pattern π = āa. Let B′′
be the set B′′ = aBā | ε where B is defined at the beginning of this section.

Lemma 5 The set B′′ and the set of āa-equivalence classes of S are in
length-preserving one-to-one correspondence.

Proof. Let s = s1s2 . . . s2k (k ≥ 1) be a nonempty shuffle in S\B′′ with
si ∈ {a, ā, b, b̄} for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle
s′ ∈ B′′ (with the same semilength as s) such that s and s′ belong to the
same āa-equivalence class.

We define the shuffle s′ as follows:
- we set s′1 = a and s′2k = ā;
- all occurrences of the pattern āa in s are preserved in s′;
- for i from 2 to 2k− 1 such that si does not belong to a pattern āa, we

distinguish two cases:
(i) if wb(s

′
1 . . . s

′
i−1) = (bb̄)j for some j ≥ 0, then we set s′i = b,

(ii) if wb(s
′
1 . . . s

′
i−1) = (bb̄)jb for some j ≥ 0, then we set s′i = b̄.
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For all i, 1 ≤ i ≤ 2k we have either wb(s
′
1 . . . s

′
i) = (bb̄)j or wb(s

′
1 . . . s

′
i) =

(bb̄)jb for some j ≥ 0. Moreover, we have wa(s′1 . . . s
′
i) = (aā)` for some

` ≥ 0 so that a and ā appear necessarily adjacent in s′ in an occurrence āa,
except for s′1 = a and s′2k = ā. This means that s′ belongs to B′′. Since the
process preserves the occurrences of the pattern āa, s and s′ belong to the
same āa-equivalence class.

This process ensures us that s′ is the unique element in B′′ that lies into
the same āa-equivalence class as s. 2

Theorem 4 The generating function for the set of āa-equivalence classes
in S with respect to the semilength is given by

1− 2x

1− 3x+ x2
=
∑
n≥0

F2n−1x
n

where Fm is the m-th Fibonacci number (with F−1 = 1).

Proof. By Lemma 5, it suffices to provide the generating function for B′′ =
aBā | ε which is B′′(x) = xB(x) + 1 = 1−2x

1−3x+x2 . 2

5 Equivalence modulo π ∈ {aa, āā, bb, b̄b̄}
The results for π ∈ {āā, bb, b̄b̄} are deduced from the ones for π = aa by
using the classical symmetries.

Let C be the subset of S defined by the grammar C → C′ | C′bC′b̄C where
C′ → aaāC′āC′ | a(C′\ε)āC′ | ε. In fact, the set C′ consists of Dyck words
in Da such that every occurrence of the letter a is contiguous with another
occurrence of a.

Lemma 6 The set C and the set of aa-equivalence classes of S are in length-
preserving one-to-one correspondence.

Proof. Let s = s1s2 . . . s2k (k ≥ 1) be a shuffle in S\C with si ∈ {a, ā, b, b̄}
for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s′ ∈ C (with the same
semilength as s) such that s and s′ belong to the same class. We define the
word s′ by performing the following process on s:

- all occurrences of the pattern aa in s are preserved in s′;
- for i from 1 to 2k such that si does not belong to a pattern aa, we

distinguish three cases:
(i) If wa(s′1s

′
2 . . . s

′
i−1) ∈ Da and wb(s

′
1s
′
2 . . . s

′
i−1) = (bb̄)jb for some

j ≥ 0, then we set s′i = b̄;
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(ii) If wa(s′1s
′
2 . . . s

′
i−1) ∈ Da and wb(s

′
1s
′
2 . . . s

′
i−1) = (bb̄)j for some

j ≥ 0, then we set s′i = b;
(iii) If wa(s′1s

′
2 . . . s

′
i−1) /∈ Da then s′i = ā.

For all i, 1 ≤ i ≤ 2k we have either wb(s
′
1s
′
2 . . . s

′
i) = (bb̄)j or wb(s

′
1s
′
2 . . . s

′
i) =

(bb̄)jb for some j ≥ 0; wa(s′1s
′
2 . . . s

′
i) is a prefix of a Dyck word in Da,

wa(s′1s
′
2 . . . s

′
2k) ∈ Da and wb(s

′
1s
′
2 . . . s

′
2k) = (bb̄)j for some j ≥ 0. So, the

word s′ is a shuffle in S. Moreover, any occurrence of the letter a in s′ is al-
ways contiguous with another occurrence of a. Let i1 ≥ 1 (resp. i2 > i1) be
the position of the leftmost b (resp. b̄) in s′; then the prefix wa(s′1s

′
2 . . . s

′
i1−1)

(resp. wa(s′1s
′
2 . . . s

′
i2−1)) lies into Da which implies that the shuffle s′ is of

the form αbβb̄γ with α and β in C′ and γ in C; thus we have s′ ∈ C.
The process preserves the positions of the occurrences of aa. So, s and

s′ belong to the same aa-equivalence class.
The proof for the unicity of s′ in C is obtained mutatis mutandis from

the proof of Lemma 3. 2

Theorem 5 The generating function for the set of aa-equivalence classes
in S with respect to the semilength is given by

1 + x−
√

1− 2x− 3x2

2x2 + 3x− 1 +
√

1− 2x− 3x2
.

This sequence corresponds to the values of even ranks in A191385 ([14]),
and the first values for n ≥ 1 are 1, 2, 5, 12, 31, 81, 216, 583, 1590.
Proof. By Lemma 6, it suffices to provide the generating function C(x) of the
set C, with respect to the semilength. Every nonempty shuffle s ∈ C is ob-
tained by the grammar C → C′ | C′bC′b̄C where C′ → aaāC′āC′ | a(C′\ε)āC′ | ε.
Let C ′(x) be the generating function for the set C′. From the above gram-
mar, we deduce the functional equation:

C ′(x) = x2C ′(x)2 + x(C ′(x)− 1)C ′(x) + 1

and
C(x) = C ′(x) + xC ′(x)2C(x)

which provides C ′(x) = x+1−
√
1−2x−3x2

2x(x+1) and C(x) = 1+x−
√
1−2x−3x2

2x2+3x−1+
√
1−2x−3x2

. 2

6 Equivalence modulo π ∈ {ab, ba, āb̄, b̄ā}
The results for π ∈ {ba, āb̄, b̄ā} are deduced from the ones for π = ab by
using the classical symmetries.
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Let E be the set of shuffles in S defined by the grammar E → E ′ | E ′bE ′b̄E
where E ′ → abE ′b̄E ′āE ′ | ε. In fact, the set E ′ consists of shuffles s in S such
that every occurrence of a letter x ∈ {a, b} appears in a pattern ab, and
there is no matchings (a, ā) and (b, b̄) such that abāb̄ appears in s.

Lemma 7 The set E and the set of ab-equivalence classes of S are in length-
preserving one-to-one correspondence.

Proof. Let s = s1s2 . . . s2k (k ≥ 1) be a shuffle in S\E with si ∈ {a, ā, b, b̄}
for 1 ≤ i ≤ 2k. Let us prove that there exists a shuffle s′ ∈ E (with the same
semilength as s) such that s and s′ belong to the same class. We define the
shuffle s′ by performing the following process on s:

- all occurrences of the pattern ab in s are preserved in s′;
- for i from 1 to 2k such that si does not belong to a pattern ab, we

distinguish two cases:
(i) If wb(s

′
1s
′
2 . . . s

′
i−1) ∈ Db and wa(s′1s

′
2 . . . s

′
i−1) ∈ Da, then we set

s′i = b;
(ii) If wb(s

′
1s
′
2 . . . s

′
i−1) /∈ Db or wa(s′1s

′
2 . . . s

′
i−1) /∈ Da then there is a

letter x ∈ {a, b} which is not matched in the prefix s′1s
′
2 . . . s

′
i−1 (we choose

x the rightmost possible). If x = a, we set s′i = ā, otherwise we set s′i = b̄.

Now, let us prove that this process produces a shuffle in E . We distinguish
two cases.

- Let us assume that any letter x ∈ {a, b} belongs to an occurrence ab
in s′. If s′i /∈ {a, b} then s′i = ā (resp. s′i = b̄) whenever the rightmost non-
matched x ∈ {a, b} in s′1s

′
2 . . . s

′
i−1 is x = a (resp. x = b). So, s′1s

′
2 . . . s

′
i−1s

′
i

can be written either abαb̄βā or abαb̄ according to the value of s′i (ā or b̄),
such that wa(α) ∈ Da, wa(β) ∈ Da, wb(α) ∈ Db and wb(β) ∈ Db. Moreover,
α and β also satisfy the property that any x ∈ {a, b} belongs to an occurrence
ab. Then, s′ can be generated by the grammar E ′ → abE ′b̄E ′āE ′ | ε.

- Now, let us assume that there exists an occurrence b that does not lie
in a pattern ab (the process ensures that any occurrence of the letter a lies
into a pattern ab in s′). We choose the leftmost b with this property. Then,
s′ can be written s′ = αbβb̄γ where α ∈ E ′, β ∈ E ′ and γ ∈ {a, b, ā, b̄}∗.
By induction, we have γ ∈ E and s′ can be generated by the grammar
E → E ′bE ′b̄E .

Considering the two cases, s′ can be generated by the grammar E →
E ′ | E ′bE ′b̄E where E ′ → abE ′b̄E ′āE ′ | ε.

It is clear that two shuffles s and s′ in E ′ lying into the same ab-
equivalence class are necessarily identical. Using a recursive argument, this
induces the unicity of a shuffle in E for a given ab-equivalence class. 2
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Theorem 6 The generating function for the set of ab-equivalence classes
in S with respect to the semilength is given by

−2
√

3 sin
(
1/3 arcsin

(
3/2
√

3x
))

4
(
sin
(
1/3 arcsin

(
3/2
√

3x
)))2 − 3x

.

This is the sequence A138164 in [14], and the first values for n ≥ 1 are
1, 2, 4, 9, 20, 47, 109, 262, 622.
Proof. By Lemma 7, it suffices to provide the generating function E(x) of
the set E , with respect to the semilength. Every nonempty shuffle s ∈ E is
obtained by the grammar E → E ′ | E ′bE ′b̄E where E ′ → abE ′b̄E ′āE ′ | ε.

Let E′(x) be the generating function for the set E ′. From the above
grammar, we deduce the functional equation

E′(x) = 1 + x2E′(x)3

and
E(x) = E′(x) + xE′(x)2E(x).

The generating function E′(x) is known (see A001764 in [14]) and given
by

E′(x) =
2
√

3 sin
(
1/3 arcsin

(
3/2
√

3x
))

3x
.

A simple calculation gives

E(x) =
−2
√

3 sin
(
1/3 arcsin

(
3/2
√

3x
))

4
(
sin
(
1/3 arcsin

(
3/2
√

3x
)))2 − 3x

.

2

7 Going further

Our study focused on the enumeration of the π-equivalence classes of rooted
planar maps in shuffle representation for a pattern π of length at most two
not in {ab̄, āb, bā, b̄a}. Since the pattern ab̄ does not occur in any shuffle
of a rooted planar map, only three patterns are left as open enumeration
problems.

The positions of the occurrences of the pattern π involve our equivalence
relation. So, it would be interesting to study the weaker equivalence rela-
tion where two maps are equivalent when they have the same number of
occurrences of a given pattern in their shuffle representations.

More generally, such a study could be made on maps using other repre-
sentations and patterns.
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