
Your Proof Fails? Testing Helps to Find the Reason

Guillaume Petiot1, Nikolai Kosmatov1, Bernard Botella1,
Alain Giorgetti2, and Jacques Julliand2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France
firstname.lastname@cea.fr

2 FEMTO-ST/DISC, University of Franche-Comté, 25030 Besançon Cedex France
firstname.lastname@femto-st.fr

Abstract. Applying deductive verification to formally prove that a program re-
spects its formal specification is a very complex and time-consuming task due
in particular to the lack of feedback in case of proof failures. Along with a non-
compliance between the code and its specification (due to an error in at least one
of them), possible reasons of a proof failure include a missing or too weak specifi-
cation for a called function or a loop, and lack of time or simply incapacity of the
prover to finish a particular proof. This work proposes a complete methodology
where test generation helps to identify the reason of a proof failure and to exhibit
a counterexample clearly illustrating the issue. We define the categories of proof
failures, introduce two subcategories of contract weaknesses (single and global
ones), and examine their properties. We describe how to transform a formally
specified C program into C code suitable for testing, and illustrate the benefits
of the method on comprehensive examples. The method has been implemented
in STADY, a plugin of the software analysis platform FRAMA-C. Initial exper-
iments show that detecting non-compliances and contract weaknesses allows to
precisely diagnose most proof failures.

1 Introduction
Among formal verification techniques, deductive verification consists in establishing
a rigorous mathematical proof that a given program meets its specification. When no
confusion is possible, one also says that deductive verification consists in “proving a
program”. It requires that the program comes with a formal specification, usually given
in special comments called annotations, including function contracts (with pre- and
postconditions) and loop contracts (with loop variants and invariants). The weakest pre-
condition calculus proposed by Dijkstra [19] reduces any deductive verification prob-
lem to establishing the validity of first-order formulas called verification conditions.

In modular deductive verification of a function f calling another function g, the
roles of the pre- and postconditions of f and of the callee g are dual. The precondition
of f is assumed and its postcondition must be proved, while at any call to g in f , the
precondition of g must be proved before the call and its postcondition is assumed after
the call. The situation for a function f with one call to g is presented in Fig. 1. An arrow
in this figure informally indicates that its initial point provides a hypothesis for a proof
of its final point. For instance, the precondition Pref of f and the postcondition Postg

2

of g provide hypotheses for a proof of the postcondition Postf of f . The called function
g is proved separately.

// Pref assumed

f(<args>){

code1;

// Preg to be proved

g(<args>);

// Postg assumed

code2;

}

// Postf to be proved

Fig. 1: Proof of f that calls g

To reflect the fact that some contracts become hy-
potheses during deductive verification of f we use
the term subcontracts for f to designate contracts of
called functions and loops in f .

Motivation. One of the most important difficulties
in deductive verification is the manual processing of
proof failures by the verification engineer since proof
failures may have several causes. Indeed, a failure to
prove Preg in Fig. 1 may be due to a non-compliance
of the code to the specification: either an error in the
code code1, or a wrong formalization of the requirements in the specification Pref or
Preg itself. The verification can also remain inconclusive because of a prover incapacity
to finish a particular proof within allocated time. In many cases, it is extremely difficult
for the verification engineer to decide how to proceed: either suspect a non-compliance
and look for an error in the code or check the specification, or suspect a prover incapac-
ity, give up automatic proof and try to achieve an interactive proof with a proof assistant
(like COQ [41]).

A failure to prove the postcondition Postf (cf. Fig. 1) is even more complex to
analyze: along with a prover incapacity or a non-compliance due to errors in the pieces
of code code1 and code2 or to an incorrect specification Pref or Postf , the failure can
also result from a too weak postcondition Postg of g, that does not fully express the
intended behavior of g. Notice that in this last case, the proof of g can still be successful.
However, the current automated tools for program proving do not provide a sufficiently
precise indication on the reason of the proof failure. Some advanced tools produce a
counterexample extracted from the underlying solver that cannot precisely indicate if
the verification engineer should look for a non-compliance, or strengthen subcontracts
(and which one of them), or consider adding additional lemmas or using interactive
proof. So the verification engineer must basically consider all possible reasons one after
another, and maybe initiate a very costly interactive proof. For a loop, the situation is
similar, and offers an additional challenge: to prove the invariant preservation, whose
failure can be due to several reasons as well.

The motivation of this work is twofold. First, we want to provide the verification en-
gineer with a more precise feedback indicating the reason of each proof failure. Second,
we look for a counterexample that either confirms the non-compliance and demonstrates
that the unproven predicate can indeed fail on a test datum, or confirms a subcontract
weakness showing on a test datum which subcontract is insufficient.

Approach and goals. The diagnosis of proof failures based on a counterexample
generated by a prover can be imprecise since from the prover’s point of view, the code
of callees and loops in f is replaced by the corresponding subcontracts. To make this
diagnosis more precise, one should take into account their code as well as their con-
tracts. A recent study [42] proposed to use function inlining and loop unrolling (cf.
Sec. 6). We propose an alternative approach: to use advanced test generation techniques
in order to diagnose proof failures and produce counterexamples. Their usage requires

3

a translation of the annotated C program into an executable C code suitable for test-
ing. Previous work suggested several comprehensive debugging scenarios relying on
test generation only in the case of non-compliances [38], and proposed a rule-based
formalization of annotation translation for that purpose [37]. The cases of subcontract
weakness remained undetected and indistinguishable from a prover incapacity.

The overall goal of the present work is to provide a complete methodology for a
more precise diagnosis of proof failures in all cases, to implement it and to evaluate it
in practice. The proposed method is composed of two steps. The first step looks for a
non-compliance. If none is found, the second step looks for a subcontract weakness. We
propose a new classification of subcontract weaknesses into single (due to a single too
weak subcontract) and global (possibly related to several subcontracts), and investigate
their relative properties. Another goal is to make this method automatic and suitable for
a non-expert verification engineer.

The contributions of this paper include:
– a classification of proof failures into three categories: non-compliance (NC), sub-

contract weakness (SW) and prover incapacity,
– a definition and comparative analysis of global and single subcontract weaknesses,
– a new program transformation for diagnosis of subcontract weaknesses,
– a complete testing-based methodology for diagnosis of proof failures and genera-

tion of counterexamples, suggesting possible actions for each category, illustrated
on several comprehensive examples,

– an implementation of the proposed solution in a tool called STADY3, and
– experiments showing its capability to diagnose proof failures.

Paper outline. Sec. 2 presents the tools used in this work and an illustrative exam-
ple. Sec. 3 defines the categories of proof failures and counterexamples, and presents
program transformations for their identification. The complete methodology for the di-
agnosis of proof failures is presented in Sec. 4. Our implementation and experiments are
described in Sec. 5. Finally, Sec. 6 and 7 present some related work and a conclusion.

2 FRAMA-C Toolset and Illustrating Example
This work is realized in the context of FRAMA-C [31], a platform dedicated to analysis
of C code that includes various analyzers in separate plugins. The WP plugin performs
weakest precondition calculus for deductive verification of C programs. Various auto-
matic SMT solvers can be used to prove the verification conditions generated by WP.
In this work we use ALT-ERGO 0.99.1 and CVC3 2.4.1. To express properties over
C programs, FRAMA-C offers the behavioral specification language ACSL [4, 31]. Any
analyzer can both add ACSL annotations to be verified by other ones, and notify other
plugins about its own analysis results by changing an annotation status.

For combinations with dynamic analysis, FRAMA-C also supports E-ACSL [18,
40], a rich executable subset of ACSL suitable for runtime assertion checking. E-ACSL
can express function contracts (pre/postconditions, guarded behaviors, completeness
and disjointness of behaviors), assertions and loop contracts (variants and invariants).
It supports quantifications over bounded intervals of integers, mathematical integers

3 See also http://gpetiot.github.io/stady.html.

4

and memory-related constructs (e.g. on validity and initialization). It comes with an
instrumentation-based translating plugin, called E-ACSL2C [33, 30], that allows to eval-
uate annotations at runtime and report failures. The C code generated by E-ACSL2C is
inadequate4 for test generation, which creates the need for a dedicated translation tool.

For test generation, this work relies on PATHCRAWLER [43, 6, 32], a Dynamic Sym-
bolic Execution (DSE) testing tool. It is based on a specific constraint solver, COLIBRI,
that implements advanced features such as floating-point and modular integer arith-
metic. PATHCRAWLER provides coverage strategies like all-paths (all feasible paths)
and k-path (feasible paths with at most k consecutive loop iterations). It is sound, mean-
ing that each test case activates the test objective for which it was generated. This is
verified by concrete execution. PATHCRAWLER is also complete in the following sense:
if the tool manages to explore all feasible paths of the program, then the absence of a
test for some test objective means that the test objective is infeasible (i.e. impossible to
activate), since the tool does not approximate path constraints [6, Sec. 3.1].

Example. To illustrate various kinds of proof failures, let us consider the example
of C program in Fig. 2 coming from [23]. It implements an algorithm proposed in [3,
page 235] that sequentially generates Restricted Growth Functions (RGF). A function
a : {0, . . . , n − 1} → {0, ..., n − 1} is an RGF of size n > 0 if a(0) = 0 and
a(k) ≤ a(k − 1) + 1 for any 1 ≤ k ≤ n − 1 (that is, the growth of a(k) w.r.t. the
previous step is at most 1). It is defined by the ACSL predicate is_rgf on lines 1–2 of
Fig. 2, where the RGF a is represented by the C array of its values. For convenience of
the reader, some ACSL notations are replaced by mathematical symbols (e.g. keywords
\exists, \forall and integer are respectively denoted by ∃, ∀ and Z).

Fig. 2 shows a main function f and an auxiliary function g. The precondition of f

states that a is a valid array of size n>0 (lines 22–23) and must be an RGF (line 24).
The postcondition states that the function is only allowed to modify the values of array
a except the first one a[0] (line 25), and that the generated array a is still an RGF (line
26). Moreover, this (simplified) contract also states that if the function returns 1 then the
first modified value in RGF a has increased (lines 27–30). Here \at(a[j],Pre) denotes
the value of a[j] in the Pre state, i.e. before the function is executed.

We focus now on the body of the function f in Fig. 2. The loop on lines 36–37 goes
through the array from right to left to find the rightmost non-increasing element, that
is, the maximal array index i such that a[i] ≤a[i-1]. If such an index i is found, the
function increments a[i] (line 40) and fills out the rest of the array with zeros (call to
g, line 41). The loop contract (lines 33–35) specifies the interval of values of the loop
variable, the variable that the loop can modify as well as a loop variant that is used to
ensure the termination of the loop. The loop variant expression must be non-negative
whenever an iteration starts, and must strictly decrease after each iteration.

The function g is used to fill the array with zeros to the right of index i. In addition
to size and validity constraints (lines 7–8), its precondition requires that the elements
of a up to index i form an RGF (lines 9–10). The function is allowed to modify the

4 E-ACSL2C relies on complex external libraries (e.g. to handle memory-related annotations
and unbounded integer arithmetic of E-ACSL) and does not assume the precondition of the
function under verification, whereas the translation for test generation can efficiently rely on
the underlying test generator or constraint solver for these purposes [37].

5

1 /*@ predicate is_rgf(int *a, Z n) =
2 a[0] == 0 ∧ ∀ Z i; 1 ≤ i < n⇒

(0 ≤ a[i] ≤ a[i-1]+1); */
3

4 /*@ lemma max_rgf: ∀ int* a; ∀ Z n;
5 is_rgf(a, n)⇒ (∀ Z i; 0 ≤ i < n⇒

a[i] ≤ i); */
6

7 /*@ requires n > 0;
8 requires \valid(a+(0..n-1));
9 requires 1 ≤ i ≤ n-1;

10 requires is_rgf(a,i+1);
11 assigns a[i+1..n-1];
12 ensures is_rgf(a,n); */
13 void g(int a[], int n, int i) {
14 int k;
15 /*@ loop invariant i+1 ≤ k ≤ n;
16 loop invariant is_rgf(a,k);
17 loop assigns k, a[i+1..n-1];
18 loop variant n-k; */
19 for (k = i+1; k < n; k++) a[k] = 0;
20 }
21

22 /*@ requires n > 0;

23 requires \valid(a+(0..n-1));
24 requires is_rgf(a,n);
25 assigns a[1..n-1];
26 ensures is_rgf(a,n);
27 ensures \result == 1⇒
28 ∃ Z j; 0 ≤ j < n ∧
29 (\at(a[j],Pre) < a[j] ∧
30 ∀ Z k; 0 ≤ k < j⇒

\at(a[k],Pre) == a[k]); */
31 int f(int a[], int n) {
32 int i,k;
33 /*@ loop invariant 0 ≤ i ≤ n-1;
34 loop assigns i;
35 loop variant i; */
36 for (i = n-1; i ≥ 1; i--)
37 if (a[i] ≤ a[i-1]) { break; }
38 if (i == 0) { return 0; } // Last RGF.
39 //@ assert a[i]+1 ≤ 2147483647;
40 a[i] = a[i] + 1;
41 g(a,n,i);
42 /*@ assert ∀ Z l; 0 ≤ l < i⇒

\at(a[l],Pre) == a[l]; */
43 return 1;
44 }

Fig. 2: Successor function for restricted growth functions (RGF)

elements of a starting from the index i+1 (line 11) and generates an RGF (line 12).
The loop invariants indicate the value interval of the loop variable k (line 15), and state
that the property is_rgf is satisfied up to k (line 16). This invariant allows a deductive
verification tool to deduce the postcondition. The annotation loop assigns (line 17) says
that the only values the loop can change are k and the elements of a starting from the
index i+1. The term n-k is a variant of the loop (line 18).

The ACSL lemma on lines 4–5 states that if an array is an RGF, then each of its ele-
ments is at most equal to its index. Its proof requires induction and cannot be performed
by WP, which uses it to ensure the absence of overflow at line 40 (stated on line 39).

The functions of Fig. 2 can be fully proved using WP. Suppose now this example
contains one of the following four mistakes: the verification engineer either forgets to
specify the precondition on line 24, or writes the wrong assignment a[i]=a[i]+2; on
line 40, or puts a too general clause loop assigns i,a[1..n-1]; on line 34, or forgets
to provide the lemma on lines 4–5. In each of these four cases, the proof fails (for the
precondition of g on line 41 and/or the assertion on line 39) for different reasons. In
fact, the code and specification are not compliant only in the first two cases, while the
third failure is due to a too weak subcontract, and the last one comes from a prover
incapacity. This work proposes a complete testing-based methodology to automatically
distinguish the three reasons and suggest suitable actions in each case.

3 Categories of Proof Failures and Counterexamples
Let P be a C program annotated in E-ACSL, and f the function under verification in
P . Function f is assumed to be recursion-free. It may call other functions, let g denote
any of them. A test datum V for f is a vector of values for all input variables of f .
The program path activated by a test datum V , denoted πV , is the sequence of program
statements executed by the program on the test datum V . We use the general term of
a contract to designate the set of E-ACSL annotations describing a loop or a function.

6

1 /*@ requires P1;
2 ensures P2; */
3 Typeg g(...) {
4 code1;
5 }
6 /*@ requires P5;
7 ensures P6; */
8 Typef f(...) {
9 code2;

10 g(...);
11 //@ loop invariant P3;
12 while(b) {
13 code3;
14 }
15 code4;
16 //@ assert P4;
17 code5;
18 }

→

1 Typeg g(...) {
2 int pre_g; Spec2Code(P1, pre_g);
3 fassert(pre_g);
4 code1;
5 int post_g; Spec2Code(P2,post_g);
6 fassert(post_g);
7 }
8 Typef f(...) {
9 int pre_f; Spec2Code(P5, pre_f);

10 fassume(pre_f);
11 code2;
12 g(...);
13 int inv1; Spec2Code(P3, inv1);
14 fassert(inv1);
15 while(b) {
16 code3;
17 int inv2; Spec2Code(P3, inv2);
18 fassert(inv2);
19 }
20 code4;
21 int asrt; Spec2Code(P4, asrt);
22 fassert(asrt);
23 code5;
24 int post_f; Spec2Code(P6,post_f);
25 fassert(post_f);
26 }

Fig. 3: (a) An annotated code, vs. (b) its translation in PNC for DNC

A function contract is composed of pre- and postconditions including E-ACSL clauses
requires, assigns and ensures (cf. lines 22–30 in Fig. 2). A loop contract is composed
of loop invariant, loop variant and loop assigns clauses (cf. lines 15–18 in Fig. 2).

In Sec. 3.1, we define non-compliance and briefly recall the detection technique
published in [37]. Sec. 3.2 is part of the original contribution of this paper, which intro-
duces new categories of proof failures and a new detection technique.

3.1 Non-Compliance
Fig. 3 illustrates the translation of an annotated program P into another C program,
denoted PNC, on which we can apply test generation to produce test data violating some
annotations at runtime. In Fig. 3, f is the function under verification and g is a called
function. This translation is formally presented in [37]. PNC checks all annotations
of P in the corresponding program locations and reports any failure. For instance, the
postcondition Postf of f is evaluated by the following code inserted at the end of the
function f in PNC:

int post_f; Spec2Code(Postf, post_f); fassert(post_f); (†)
For an E-ACSL predicate P, we denote by Spec2Code(P, b) the generated C code that
evaluates the predicate P and assigns its validity status to the Boolean variable b (see [37]
for details). The function call fassert(b) checks the condition b and reports the failure
and exits whenever b is false. Similarly, preconditions and postconditions of a callee g
are evaluated respectively before and after executing the function g. A loop invariant
is checked before the loop (for being initially true) and after each loop iteration (for
being preserved by the previous loop iteration). An assertion is checked at its location.
To generate only test data that respect the precondition Pref of f , Pref is checked at
the beginning of f by an inserted code similar to (†) except that fassert is replaced by
fassume that assumes the given condition.

7

Definition 1 (Non-compliance). We say that there is a non-compliance (NC) between
code and specification in P if there exists a test datum V for f respecting its precon-
dition, such that the execution of PNC reports an annotation failure on V . In this case,
we say that V is a non-compliance counterexample (NCCE).

Test generation on the translated program PNC can be used to generate NCCEs.
We call this technique Non-Compliance Detection, denoted DNC. In this work we use
the PATHCRAWLER test generator that will try to cover all program paths. Since the
translation step added a branch for the false value of each annotation, PATHCRAWLER
will try to cover at least one path where the annotation does not hold. (An optimization
in PATHCRAWLER avoids covering the same fassert failure many times.) The DNC

step may have three outcomes. If an NCCE V has been found, it returns (nc,V , a)
indicating the failing annotation a and recording the program path πV activated by V on
PNC. Second, if it has managed to perform a complete exploration of all program paths
without finding any NCCE, it returns no (cf. the discussion of completeness in Sec. 2).
Otherwise, if only a partial exploration of program paths has been performed (due to a
timeout, partial coverage criterion or any other limitation), it returns ? (unknown).

3.2 Subcontract Weakness and Prover Incapacity

Following the modular verification approach, we assume that the called functions have
been verified before the caller f . To simplify the presentation, we also assume that the
loops preserve their loop invariants, and focus on other proof failures occurring during
the modular verification of f .

More formally, a non-imbricated loop (resp. function, assertion) in f is a loop (resp.
function called, assertion) in f lying outside any loop of f . A subcontract for f is the
contract of some non-imbricated loop or function in f . A non-imbricated annotation in
f is either a non-imbricated assertion or an annotation in a subcontract for f . For in-
stance, the function f of Fig. 2 has two subcontracts: the contract of the called function
g and the contract of the loop on lines 33–37. The contract of the loop in g on lines
15–19 is not a subcontract for f , but is a subcontract for g.

We focus on non-imbricated annotations in f and assume that all subcontracts for
f are respected: the called functions in f respect their contracts, and the loops in f
preserve their loop invariants and respect all imbricated annotations. Let cf denote the
contract of f , C the set of non-imbricated subcontracts for f , and A the set of all non-
imbricated annotations in f and annotations of cf . In other words, A contains the an-
notations included in the contracts C ∪ {cf} as well as the non-imbricated assertions in
f . We also assume that every subcontract of f contains a (loop) assigns clause. This is
not restrictive since such a clause is necessary to prove any nontrivial code.

Subcontract weakness. To apply testing for the contracts of called functions and
loops in C instead of their code, we use a new program transformation of P producing
another program P SW. The code of all non-imbricated function calls and loops in f is
replaced by the most general code respecting the corresponding subcontract as follows.

For the contract c ∈ C of a called function g in f , the program transformation
(illustrated by Fig. 4) generates a new function g_sw with the same signature whose
code simulates any possible behavior respecting the postcondition in c, and replaces all
calls to g by a call to g_sw. First, g_sw allows any of the variables (or, more generally,

8

1 /*@ assigns k1,...,kN;
2 @ ensures P; */
3 Typeg g(...){ code1; }
4

5

6

7

8 Typef f(...){ code2;
9 g(Argsg);

10 code3; }

→

1 Typeg g_sw(...){
2 k1=Nondet(); ... kN=Nondet();
3 Typeg ret = Nondet();
4 int post; Spec2Code(P, post);
5 fassume(post); return ret;
6 } //respects contract of g
7 Typeg g(...){ code1; }
8 Typef f(...){ code2;
9 g_sw(Argsg);

10 code3; }

Fig. 4: (a) A contract c ∈ C of callee g in f , vs. (b) its translation for DSW

1 Typef f(...){ code1;
2 /*@ loop assigns x1,...,xN;
3 @ loop invariant I; */
4 while(b){ code2; }
5 code3; }

→

1 Typef f(...){ code1;
2 x1=Nondet(); ... xN=Nondet();
3 int inv1; Spec2Code(I, inv1);
4 fassume(inv1 && !b); //respects loop contract
5 code3; }

Fig. 5: (a) A contract c ∈ C of a loop in f , vs. (b) its translation for DSW

left-values) listed in the assigns clause of c to change its value (line 2 in Fig.4(b)). It can
be done by assigning a non-deterministic value of the appropriate type using a dedicated
function, denoted here by Nondet() (or simply by adding an array of fresh input variables
and reading a different value for each use and each function invocation). If the return
type of g is not void, another non-deterministic value is read for the returned value
ret (line 3 in Fig.4(b)). Finally, the validity of the postcondition is evaluated (taking
into account these new non-deterministic values) and assumed in order to consider only
executions respecting the postcondition, and the function returns (lines 4–5 in Fig.4(b)).

Similarly, for the contract c ∈ C of a loop in f , the program transformation replaces
the code of the loop by another code that simulates any possible behavior respecting
c, that is, ensuring the “loop postcondition” I ∧ ¬b after the loop, as shown in Fig. 5.
In addition, the transformation treats in the same way as in PNC all other annotations
in A: preconditions of called functions, initial loop invariant verifications and the pre-
and postcondition of f (they are not shown in Fig. 4(b) and 5(b) but an example of such
transformation is given in Fig. 3).

Definition 2 (Global subcontract weakness). We say that P has a global subcontract
weakness for f if there exists a test datum V for f respecting its precondition, such that
the execution of PNC does not report any annotation failure on V , while the execution
of P SW reports an annotation failure on V . In this case, we say that V is a global
subcontract weakness counterexample (global SWCE) for the set of subcontracts C.

Remark 1. Notice that we do not consider the same counterexample as an NCCE and
an SWCE. Indeed, even if it is arguable that some counterexamples may illustrate both
a subcontract weakness and a non-compliance, we consider that non-compliances usu-
ally come from a direct conflict between the code and the specification and should be
addressed first, while subcontract weaknesses are often more subtle and will be easier
to address when non-compliances are eliminated.

Again, test generation can be applied on P SW to generate global SWCE candi-
dates. When it finds a test datum V such that P SW fails on V , we use runtime assertion

9

1 int x;
2 /*@ ensures x ≥ \old(x)+1; assigns x;*/
3 void g1() { x=x+2; }
4 /*@ ensures x ≥ \old(x)+1; assigns x;*/
5 void g2() { x=x+2; }
6 /*@ ensures x ≥ \old(x)+1; assigns x;*/
7 void g3() { x=x+2; }
8 /*@ ensures x ≥ \old(x)+4; assigns x;*/
9 void f() { g1(); g2(); g3(); }

(a) Absence of single SWCEs for any subcon-
tract does not imply absence of global SWCEs

1 int x;
2 /*@ ensures x ≥ \old(x)+1; assigns x;*/
3 void g1() { x=x+1; }
4 /*@ ensures x ≥ \old(x)+1; assigns x;*/
5 void g2() { x=x+1; }
6 /*@ ensures x ≥ \old(x)+1; assigns x;*/
7 void g3() { x=x+2; }
8 /*@ ensures x ≥ \old(x)+4; assigns x;*/
9 void f() { g1(); g2(); g3(); }

(b) Global SWCEs do not help to find precisely
a too weak subcontract

Fig. 6: Two examples where the proof of f fails due to subcontract weaknesses

checking: if PNC fails on V , then V is classified as an NCCE, otherwise V is a global
SWCE (cf. Remark 1). We call this technique Global Subcontract Weakness Detection
for the set of all subcontracts, denoted DSW

global. The DSW
global step may have four out-

comes. It returns (nc,V , a) if an NCCE V has been found for the failing annotation a,
and (sw,V , a,C) if V has been finally classified as an SWCE, where a is the failing
annotation and C is the set of subcontracts. The program path πV activated by V and
leading to the failure (on PNC or P SW) is recorded as well. If DSW

global has managed to
perform a complete exploration of all program paths without finding a global SWCE, it
returns no. Otherwise, if only a partial exploration of program paths has been performed
it returns ? (unknown).

A global SWCE does not explicitly indicate which single subcontract c ∈ C is too
weak (cf. Remark 2 below). To do so, we propose another program transformation of
P into an instrumented program P SW

c . It is done by replacing only one non-imbricated
function call or loop by the most general code respecting the postcondition of the corre-
sponding subcontract c (as indicated in Fig. 4 and 5) and transforming other annotations
in A in the same way as in PNC.

Definition 3 (Single subcontract weakness). Let c be a subcontract for f . We say
that c is a too weak subcontract (or has a single subcontract weakness) for f if there
exists a test datum V for f respecting its precondition, such that the execution of PNC

does not report any annotation failure on V , while the execution of P SW
c reports an

annotation failure on V . In this case, we say that V is a single subcontract weakness
counterexample (single SWCE) for the subcontract c in f .

For any subcontract c ∈ C, test generation can be separately applied on P SW
c to

generate single SWCE candidates. If such a test datum V is generated, it is checked
on PNC to classify it as an NCCE or a single SWCE (cf. Remark 1). This technique,
applied for all subcontracts one after another until a first counterexample V is found, is
called Single Contract Weakness Detection, and denoted DSW

single. The DSW
single step may

have three outcomes. It returns (nc,V , a) if an NCCE V has been found for a failing
annotation a, and (sw,V , a, {c}) if V has been finally classified as a single SWCE,
where a is the failing annotation and c is the single too weak subcontract. The program
path πV activated by V and leading to the failure (on PNC or P SW

c) is recorded as well.
Otherwise, it returns ? (unknown).

10

Global vs. single subcontract weaknesses. Even after an exhaustive path testing,
the absence of a single SWCE for any subcontract c cannot ensure the absence of a
global SWCE, as detailed in the following remark.

Remark 2. A proof failure can be due to the weakness of several subcontracts, while
no single one of them is too weak. In other words, the absence of single SWCEs does
not imply the absence of global SWCEs. When a single SWCE exists, it can indicate a
single too weak subcontract more precisely than a global SWCE.

Indeed, consider the example in Fig. 6a, where the proof of the postcondition of f
fails. If we apply DSW

single to any of the subcontracts, we always have x ≥\old(x)+5 at
the end of f (we add 1 to x by executing the translated subcontract, and add 2 twice
by executing the other two functions’ code), so the postcondition of f holds and no
weakness is detected. If we run DSW

global to consider all subcontracts at once, we only get
x≥\old(x)+3 after executing the three subcontracts, and can exhibit a global SWCE.

On the other hand, running DSW
global produces a global SWCE that does not indicate

which of the subcontracts is too weak, while DSW
single can sometimes be more precise.

For Fig. 6b, since the three callees are replaced by their subcontracts for DSW
global, it is

impossible to find out which one is too weak. Counterexamples generated by a prover
suffer from the same precision issue: taking into account all subcontracts instead of the
corresponding code prevents from a precise identification of a single too weak subcon-
tract. In this example DSW

single can be more precise, since only the replacement of the
subcontract of g3 also leads to a single SWCE: we can have x ≥\old(x)+3 by execut-
ing g1, g2 and the subcontract of g3, exhibiting the contract weakness of g3. Thus, the
proposed DSW

single technique can provide the verification engineer with a more precise
diagnosis than counterexamples extracted from a prover.

We define a combined subcontract weakness detection technique, denoted DSW, by
applying DSW

single followed by DSW
global until the first counterexample is found. In other

words, DSW looks first for single, then for global subcontract weaknesses. DSW may
have the same four outcomes as DSW

global. It allows us to be both precise (and indicate
when possible a single subcontract being too weak), and complete (able to find global
subcontract weaknesses even when there are no single ones).

Prover incapacity. When neither a non-compliance nor a global subcontract weak-
ness exists, we cannot demonstrate that it is impossible to prove the property.

Definition 4 (Prover incapacity). We say that a proof failure in P is due to a prover
incapacity if for every test datum V for f respecting its precondition, neither the exe-
cution of PNC nor that of P SW reports any annotation failure on V . In other words,
there is no NCCE and no global SWCE for P .

4 Diagnosis of Proof Failures using Structural Testing
In this section, we present an overview of our method for diagnosis of proof failures
using the detection techniques of Sec. 3, illustrate it on several examples and provide a
comprehensive list of suggestions of actions for each category of proof failures.

The method. The proposed method is illustrated by Fig. 7. Suppose that the proof
of the annotated program P fails for some non-imbricated annotation a ∈ A. The first
step tries to find a non-compliance using DNC. If such a non-compliance is found, it

11

P DNC(P)

1 Non-compliance

(nc, V , a)

DSW(P)
no / ? DNC(P) = no ∧

DSW(P) = no
no / ?

3 Prover incapacity

true

4 Unknown

false

2 Subcontract weakness

(sw, V , a, S)(nc, V , a)

Fig. 7: Combined verification methodology in case of a proof failure on P

generates an NCCE (marked by 1 in Fig. 7) and classifies the proof failure as a non-
compliance. If the first step cannot generate a counterexample, the DSW step combines
DSW

single and DSW
global and tries to generate single SWCEs, then global SWCEs, until the

first counterexample is generated. It can be classified either as a non-compliance 1
(that is possible if path testing in DNC was not exhaustive, cf. Remark 1 and Def. 2,
3) or a subcontract weakness 2 . If no counterexample has been found, the last step
checks the outcomes. If both DNC and DSW have returned no, that is, both DNC and
DSW

global have performed a complete path exploration without finding a counterexam-
ple, the proof failure is classified as a prover incapacity 3 (cf. Def. 4). Otherwise, it
remains unclassified 4 .

Fig. 8 illustrates the method on several variants of the illustrating example. It details
the lines modified in the program of Fig. 2 to obtain the new variant, the intermediate
results of deductive verification, DNC and DSW, and the final outcome. The final out-
come includes the proof failure category and, if any, the generated counterexample V ,
the recorded path πV , the reported failing annotation a and a set of too weak subcon-
tracts S. This outcome can be extremely helpful for the verification engineer. Suppose
we try to prove in WP a modified version of the function f of Fig. 2 where the precondi-
tion at line 24 is missing (cf. #1 in Fig. 8). The proof of the precondition on line 10 (for
the call of g on line 41) fails without indicating a precise reason. The DNC step gener-
ates an NCCE (case 1) where is_rgf(a,n) is clearly false due to a[0] being non-zero,
and indicates the failing annotation (coming from line 10). That helps the verification
engineer to understand and fix the issue.

Let us suppose now that the clause on line 34 has been erroneously written as fol-
lows: loop assigns i, a[1..n-1]; (cf. #2 in Fig. 8). The loop on lines 36–37 still pre-
serves its invariant. The DNC step does not find any NCCE, as this modification did
not introduce any non-compliance between the code and its specification. Thanks to the
spec-to-code replacement shown in Fig. 5, DSW

single for the contract of this loop will de-

tect a single subcontract weakness for the loop contract (case 2), leading to a failure
of the precondition of g (on line 10) for the call on line 41. With this indication, the
verification engineer will try to strengthen the loop contract and find the issue.

Suppose now the lemma on lines 4–5 is missing (cf. #4 in Fig. 8). The proof of the
assertion at line 39 of Fig. 2 (stating the absence of overflow at line 40) fails without
giving a precise reason, since the prover does not perform the induction and cannot de-
duce the right bounds on a[i]. Neither DNC nor DSW produces a counterexample, and
as the initial program has too many paths, their outcomes are ? (unknown) (case 4).
For such situations, we introduce the possibility to reduce the input domain for test gen-
eration by using a new ACSL clause typically. The verification engineer can insert the

12

#
Modified lines Intermediate outcome

Final outcome of STADY

Line New (added) clause
Proof

(failing
annot.)

DNC DSW

0 – – 3 – – Proved

1 24 (deleted)
? (l.39, 41,

26)
nc –

V = 〈n=1; a[0]=-214739〉 is an
NCCE

2 34
loop assigns

i,a[1..n-1];

? (l.39, 41,
42, 26–30)

? sw for
l.33–34

V = 〈 n=2; a[0]=0; a[1]=0;

nondeta[1]=97157;
nondeti=0 〉 is an SWCE

3 4–5 (deleted) ? (l.39) no no Prover incapacity (for the
after 22 typically n<5;(added) program with reduced domain)

4 4–5 (deleted) ? (l.39) ? ? Unknown

Fig. 8: Method results for different versions of the illustrating example

clause typically n<5; after the line 22 to reduce the array size for test generation (this
clause is ignored by the proof). Running STADY now allows the tool to perform a com-
plete exploration of all program paths (for n<5) both for DNC and DSW without finding
a counterexample. STADY classifies the proof failure for the program with the reduced
domain as a prover incapacity (case 3 , cf. #3 in Fig. 8). That gives the verification en-
gineer more confidence that the proof failure has the same reason on the initial program
for bigger sizes n. She may now try an interactive proof or add additional lemmas or
assertions, and does not waste her time looking for a bug or a subcontract weakness.

Suggestions of actions. Based on the possible outcomes of the method (illustrated
in Fig. 7), we are able to suggest the most suitable actions to help the verification en-
gineer with the verification task. A reported non-compliance (nc, V , a) means that
there is an inconsistency between the precondition, the annotation a and the code of
the path πV leading to a. Thanks to the counterexample, the user will understand the
issue by tracing the values of variables along πV , or exploring them in a dubugger
[35]. In FRAMA-C, the execution on V can be conveniently explored using VALUE or
PATHCRAWLER [31]. If an NCCE is generated, there is no need to try an automatic or
interactive proof, or look for a subcontract weakness — it will not help.

A reported subcontract weakness (sw, V , a, S) for a set of subcontracts S means
that at least one of them has to be strengthened. By Def. 2 and 3, the non-compliance
is excluded here, that is, the execution of PNC on V respects the annotation a. Thus
the suggested action is to strengthen the subcontract(s) of S. In the case of a single
subcontract weakness, S is a singleton so the suggestion is very precise and helpful to
the user. Again, trying interactive proof or writing additional assertions or lemmas will
be useless here since the property can obviously not be proved.

For a prover incapacity, the verification engineer may add lemmas, assertions or
hypotheses that can help the theorem prover to succeed, or try another theorem prover,
or use a proof assistant like COQ, even if it can be more complex and time-consuming.

Finally, when the verdict is unknown, i.e. test generation for DNC and/or DSW

times out, the verification engineer may strengthen the precondition for test generation
to reduce the input domain, or extend the timeout to give STADY more time to conclude.

13

Proof DNC DSW DNC + DSW

#mut #3 % t3 t? #7 % t7 t? #7 % t7 t? % t #?

Total 928 80 8.6 776 91.5 48 66.7 97.2 24/928 /848 /72
Max 20.8 6 4.4 6 61.3 96.2 6 9.4 6 8.3 100.0 6 6.4 6 11.6 100.0 6 19.9

Mean 8 ≈ 2.6 ≈ 13.0 92.6 ≈ 2.4 ≈ 2.5 80.0 ≈ 2.4 ≈ 6.3 98.1 ≈ 2.7

Fig. 9: Summarized experiments of proof failure diagnosis for mutants with STADY

5 Implementation and Experiments
Implementation. The proposed method for diagnosis of proof failures has been im-
plemented as a FRAMA-C plugin, named STADY. It relies on other plugins: WP [31]
for deductive verification and PATHCRAWLER [6] for structural test generation. STADY
currently supports a significant subset of the E-ACSL specification language, including
requires, ensures, behavior, assumes, loop invariant, loop variant and assert clauses.
Quantified predicates \exists and \forall and builtin terms as \sum or \numof are trans-
lated as loops (recall that E-ACSL allows only finite intervals of quantification). Logic
functions and named predicates are treated by inlining. The \old and \at(-,Pre) con-
structs are treated by saving the initial values of formal parameters and global variables
at the beginning of the function. Validity checks of pointers are partially supported due
to the current limitation of the underlying test generator: we can only check the valid-
ity of input pointers and global arrays. The assigns clauses are considered only during
the DSW phase: we do not try to fix an incomplete assigns clause (with missing vari-
ables, leading to a non-compliance) because provers usually give a sufficiently clear
feedback about that; but we do try to identify a too weak (i.e. too permissive) assigns

clause since provers would report a failure elsewhere in this case. Inductive predicates,
recursive functions and real numbers are not yet supported.

The research questions we address in our experiments are the following.

RQ1 Is STADY able to precisely diagnose most proof failures in C programs?
RQ2 What are the benefits of the DSW step (in particular, with respect to DNC)?
RQ3 Is STADY able to generate NCCEs or SWCEs even with a partial testing coverage?
RQ4 Is STADY’s execution time comparable to the time of an automatic proof?

Experimental protocol. The evaluation used 20 annotated programs from an inde-
pendent benchmark [7], whose size varies from 35 to 100 lines of annotated C code.
These programs manipulate arrays, they are fully specified in ACSL and their specifi-
cation expresses non-trivial properties of C arrays. To evaluate the method presented
in Sec. 4 and its implementation, we apply STADY on systematically generated altered
versions5 (or mutants) of correct C programs. Each mutant is obtained by performing
a single modification (or mutation) on the initial program. The mutations include: a bi-
nary operator modification in the code or in the specification, a condition negation in
the code, a relation modification in the specification, a predicate negation in the spec-
ification, a partial loop invariant or postcondition deletion in the specification. Such
mutations model frequent errors in the code and specification (e.g. confusions between
+ and −, ≤ and <, ≤ and ≥, a missing loop invariant, pre- or postcondition, etc.)

5 Available at: https://github.com/gpetiot/StaDy/tree/master/TAP_2016/benchmark

14

that can lead to proof failures. In this study, we do not mutate the precondition of the
function under verification, and restrict possible mutations on binary operators to avoid
creating absurd expressions, in particular for pointer arithmetic.

The first step tries to prove each mutant using WP. In our experiments, each prover
tries to prove each verification condition during at most 40 seconds. The proved mu-
tants respect the specification and are classified as correct. Second, we apply the DNC

method on the remaining mutants. It classifies proof failures for some mutants as non-
compliances and indicates a failing annotation. The third step applies the DSW method
on remaining mutants, classifies some of them as subcontract weaknesses and indicates
a weak subcontract. If no counterexample has been found by the DSW, the mutant
remains unclassified. The results are summarized in Fig. 9. The columns present the
number of generated mutants, and the results of each of the three steps: the number
(#) and ratio (%) of classified mutants, maximal and average execution time of the step
over classified mutants (t3 or t7) and over non-classified mutants (t?) at this step. The
ratios are computed with respect to the number of unclassified mutants remaining after
the previous step. The DNC + DSW columns sum up selected results after both DNC

and DSW steps: the average and maximal time (t) are shown globally over all mutants.
The time is computed until the proof is finished or until the first counterexample is
generated. The final number of remaining unclassified mutants (#?) is given in the last
column.

Experimental results. For the 20 considered programs, 928 mutants have been
generated. 80 of them have been proved by WP. Among the 848 unproven mutants,
DNC has detected a non-compliance induced by the mutation in 776 mutants (91.5%),
leaving 72 unclassified. Among them, DSW has been able to exhibit a counterexample
(either an NCCE or an SWCE) for 48 of them (66.7%), finally leaving 24 programs
unclassified.

Regarding RQ1, STADY has found a precise reason of the proof failures and pro-
duced a counterexample in 824 of the 848 unproven mutants, i.e. classifying 97.2%.
Exploring the benefits of detecting a prover incapacity requires to manually reduce the
input domain, to try additional lemmas or an interactive proof, so it was not sufficiently
investigated in this study (and probably requires another, non mutational approach).

Regarding RQ2, DNC alone diagnosed 776 of 848 unproven mutants (91.5%). DSW

diagnosed 48 of the 72 remaining mutants (66.7%) bringing a significant complemen-
tary contribution to a better understanding of reasons of many proof failures.

To address RQ3, we set a timeout for any test generation session to 5 seconds (i.e.
one session for the DNC step, and several sessions for DSW steps), and limit the number
of explored program paths using the k-path criterion (cf. Sec. 2) with k = 4. Both the
session timeout and k-path heavily limit the testing coverage but STADY still detects
97.2% of faults in the generated programs. That demonstrates that the proposed method
can efficiently classify proof failures and generate counterexamples even with a partial
testing coverage and can therefore be used for programs where the total number of paths
cannot be limited (e.g. by the typically clause).

Concerning RQ4, on the considered programs WP needs on average 2.6 sec. per
mutant (at most 4.4 sec.) to prove a program, and spends 13.0 sec. on average (at most

15

61.3 sec.) when the proof fails. The total execution time of STADY is comparable: it
needs on average 2.7 sec. per unproven mutant (at most 19.9 sec.).

Summary. The experiments show that the proposed method can automatically clas-
sify a significant number of proof failures within an analysis time comparable to the
time of an automatic proof and for programs for which only a partial testing cover-
age is possible. The DSW technique offers an efficient complement to DNC for a more
complete and more precise diagnosis of proof failures.

6 Related Work
Assisting program verification and generation of counterexamples have been addressed
in different research work (e.g. [2, 5, 8, 10, 13, 17, 20, 21, 28, 29, 34, 36, 39]). We detail
below a few projects most closely related to the present work.

Understanding proof failures. When SMT solvers fail on some verification con-
ditions and provide a counter-model to explain that failure, the counter-model can be
turned into a counterexample for the program under verification. This non-trivial task
is designed in [29] and implemented for SPARK, a subset of Ada targeted for formal
verification. This static analysis is complementary to our combination of static and dy-
namic analyses. It would be useful to adapt it to C/ACSL programs. For C programs,
SMT models are already exploited, for instance by the CBMC model checker [26].

A two-step verification in [42] compares the proof failures of an Eiffel program with
those of its variant where called functions are inlined and loops are unrolled. It reports
code and contract revision suggestions from this comparison. Inlining and unrolling
are respectively limited to a given number of nested calls and explicit iterations. If that
number is too small the semantics is lost and a warning of unsoundness is reported.
A bigger number of inlinings often overpasses the capacity of the solver, while DSE,
focusing on one path at a time, can be expected to be more efficient. Another benefit
of DSE is the possibility to use concrete values (e.g. discovered in a previous execu-
tion) even when the constraints become very complex and the solver cannot generate a
counterexample.

DAFNY has also been recently extended with tools for diagnosing proof failures [12].
When the proof times out, an algorithm decomposes it and tries to diagnose on which
part the user has to focus to prevent the timeout. Then, if the proof fails, following
the approach we proposed in our previous work [37], a DSE tool is used to try to find
counterexamples demonstrating non-compliance between program and specification.
But, when no counterexample is found, the user must manually try to find the reason
of the proof failure (with the Boogie Verification Debugger), whereas we extend the
approach by further exploiting DSE to automatically identify subcontract weaknesses.
The notions of global and single SW and their comparison are also new.

Proof tree analysis. More precision can be statically obtained by analyzing the
unclosed branches of a proof tree. The work [24] is performed in the context of KEY
and its verification calculus that applies deduction rules to a dynamic formula mixing a
program and its specification. It proposes falsifiability preservation checking that helps
to distinguish whether the branch failure comes from a programming error or from a
contract weakness. However this technique can detect bugs only if contracts are strong
enough. Moreover it is automatic only if a prover (typically, an SMT solver) can decide

16

the non-satisfiability of the first-order formula expressing the falsifiability preservation
condition. The test generation proposed in [22] exploits the proof trees built by the KEY
prover during a proof attempt. The relevance of generated tests depends on the quality
of the provided specification, and it does not allow to distinguish non-compliances from
specification weaknesses.

Combination of static and dynamic analysis. Static and dynamic analysis work
better when used together, as in SYNERGY [27], its interprocedural and compositional
extension in SMASH [25], the method SANTE [9] and the present method. Static anal-
ysis maintains an over-approximation that aims at verifying the correctness of the sys-
tem, while dynamic analysis maintains an under-approximation trying to detect an er-
ror. Both abstractions help each other in a way similar to the counterexample guided
abstraction refinement method (CEGAR) [16]. The work [10] combines symbolic exe-
cution, testing and automatic debugging, through the identification of counterexamples
violating metamorphic relations for the program under test. The debugging builds a
cause-effect chain to a failure, by analysis of some path conditions. Comparatively, our
method focuses on deductive verification rather than on symbolic execution, and aims
at verifying behavioral pre-post specifications rather than metamorphic relations.

Counterexamples for non-inductive invariants. Counterexamples can be gen-
erated to show that invariants proposed for transition systems are too strong or too
weak [15]. Differences with our work are the focus on invariants, the formalism of
transition systems, and the use of random testing (with QUICKCHECK).

Other verification feedbacks. Our goal was to find input data to illustrate proof
failures. A complementary work [35] proposed to extend a runtime assertion checker
to use it as a debugger to help the user understand complex counterexamples. For NC
errors in the code, [11] proposed to analyze a trace formula to identify the fragments of
code that can cause them. Our approach is complementary on two points. First, we de-
tect either NC or SW errors. Second, we consider that the origin of an NC can be either
in the code or in the specifications. Combining our method with such a localization of
causes of NC errors, extended to specifications, would be another contribution.

Checking prover assumptions. Axioms are logic properties used as hypotheses
by provers and thus usually not checked. Model-based testing applied to a computa-
tional model of an axiom can permit to detect errors in axioms and thus to maintain
the soundness of the axiomatization [1]. This work is complementary to ours because it
tackles the case of deductive verification trivially succeeding due to an invalid axiomati-
zation, whereas we tackle the case of inconclusive deductive verification. [14] proposed
to complete the results of static checkers with dynamic symbolic execution using PEX.
The explicit assumptions used by the verifier (absence of overflows, non-aliasing, etc.)
create new branches in the program’s control flow graph which PEX tries to explore.
This approach permits to detect errors out of the scope of the considered static check-
ers, but does not provide counterexamples in case of a specification weakness.

The present work continues previous efforts to facilitate deductive verification by
generating counterexamples. We propose an original detection technique of three cate-
gories of proof failure that gives a more precise diagnosis than in the previous work
using testing. That is due to dedicated detection methods for non-compliances and
subcontract weaknesses, as well as the definition and detection of single and global

17

subcontract weaknesses. To the best of our knowledge, such a complete testing-based
methodology, automatically providing the verification engineer with a precise feedback
on proof failures was not studied, implemented and evaluated before.

The different techniques of assisting deductive verification (in particular, by gener-
ating counterexamples using solvers’ counter-models or by test generation) being rela-
tively recent and intrinsically incomplete, further work is still required to better compare
them and understand in which cases which technique is more practical.

7 Conclusion and Future Work
We proposed a new approach to improve the user feedback in case of a proof failure.
Our method relies on test generation and helps to decide whether the proof has failed
or timed out due to a non-compliance (NC) between the code and the specification, a
subcontract weakness (SW), or a prover weakness. This approach is based on a spec-
to-code program transformation that produces an input program for the test generation
tool. Our experiments show that our implementation – in a FRAMA-C plugin, STADY–
was able to diagnose over 97% of unproven programs. In particular, the subcontract
weakness detection (DSW) proposed in this paper was able to diagnose 66.7% of proof
failures that remained unclassified after the non-compliance detection (DNC).

One benefit of the proposed approach is the ability to provide the verification engi-
neer with a precise reason and a counterexample that facilitate the processing of proof
failures. Generated counterexamples illustrate the issue on concrete values and help to
find out more easily why the proof fails. The method is completely automatic, relies on
the existing specification and does not require any additional manual specification or in-
strumentation task. As a consequence, this method can be adopted by less experienced
verification engineers and software developers.

While the complete method requires to have the source code of called functions, the
global subcontract weakness detection (DSW

global) remains applicable even without their
source code. Another limitation is related to a potentially big number of program paths,
which cannot be explored. However, our initial experiments show that in practice most
proof failures can be automatically classified even after test generation with a partial
test coverage, within a testing time comparable to the time of the proof attempt.

We are convinced that the proposed methodology facilitates the verification task and
lowers the level of expertise required to conduct deductive verification, removing one
of the major obstacles for its wider use in industry. Future work includes further evalu-
ation of the proposed technique, a study of optimized combinations of DNC and DSW

for subsets of annotations and subcontracts, experiments on a larger class of programs
and a better support of E-ACSL constructs in our implementation. In the DEWI project,
we apply STADY to verification of protocols of wireless sensor networks. An experi-
mental comparison of STADY with the inlining-based technique of [42] is another work
perspective that will require the implementation of that technique in FRAMA-C.

Acknowledgment. Part of the research work leading to these results has received funding for
DEWI project (www.dewi-project.eu) from the ARTEMIS Joint Undertaking under grant agree-
ment No. 621353. The authors thank the FRAMA-C and PATHCRAWLER teams for providing the
tools and support. Special thanks to François Bobot, Loïc Correnson, Julien Signoles and Nicky
Williams for many fruitful discussions, suggestions and advice.

18

References

1. Ahn, K.Y., Denney, E.: Testing first-order logic axioms in program verification. In: TAP
(2010)

2. Arlt, S., Arenis, S.F., Podelski, A., Wehrle, M.: System testing and program verification. In:
Softw. Eng. & Management (2015)

3. Arndt, J.: Matters Computational - Ideas, Algorithms, Source Code [The fxtbook] (2010),
http://www.jjj.de

4. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

5. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: SEFM (2004)
6. Botella, B., Delahaye, M., Hong Tuan Ha, S., Kosmatov, N., Mouy, P., Roger, M., Williams,

N.: Automating structural testing of C programs: Experience with PathCrawler. In: AST
(2009)

7. Burghardt, J., Gerlach, J., Lapawczyk, T.: ACSL by Example (2016),
https://gitlab.fokus.fraunhofer.de/verification/open-acslbyexample/blob/master/ACSL-
by-Example.pdf

8. Chamarthi, H.R., Dillinger, P.C., Kaufmann, M., Manolios, P.: Integrating testing and inter-
active theorem proving. In: ACL2 (2011)

9. Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances a verifica-
tion technique combining static and dynamic analysis. In: SAC (2012)

10. Chen, T.Y., Tse, T.H., Zhou, Z.Q.: Semi-proving: An integrated method for program proving,
testing, and debugging. IEEE Transactions on Software Engineering (2011)

11. Christ, J., Ermis, E., Schäf, M., Wies, T.: Flow-sensitive fault localization. In: VMCAI (2013)
12. Christakis, M., Leino, K.R.M., Müller, P., Wüstholz, V.: Integrated environment for diagnos-

ing verification errors. In: TACAS (2016)
13. Christakis, M., Emmisberger, P., Müller, P.: Dynamic test generation with static fields and

initializers. In: RV (2014)
14. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with explicit

assumptions. In: FM (2012)
15. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: TAP (2008)
16. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction re-

finement for symbolic model checking. J. ACM (2003)
17. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of necessary pre-

conditions. In: VMCAI (2013)
18. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for static and

dynamic analysis of C programs. In: SAC (2013)
19. Dijkstra, E.W.: A Discipline of Programming. In: Series in Automatic Computation, Prentice

Hall, Englewood Cliffs (1976)
20. Dimitrova, R., Finkbeiner, B.: Counterexample-guided synthesis of observation predicates.

In: FORMATS (2012)
21. Dybjer, P., Haiyan, Q., Takeyama, M.: Combining testing and proving in dependent type

theory. In: TPHOLs (2003)
22. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: TAP (2007)
23. Genestier, R., Giorgetti, A., Petiot, G.: Sequential generation of structured arrays and its

deductive verification. In: TAP (2015)
24. Gladisch, C.: Could we have chosen a better loop invariant or method contract? In: TAP

(2009)
25. Godefroid, P., Nori, A.V., Rajamani, S.K., Tetali, S.D.: Compositional may-must program

analysis: unleashing the power of alternation. In: POPL (2010)

19

26. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain. In: CAV
(2004)

27. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYNERGY: A new
algorithm for property checking. In: FSE (2006)

28. Guo, S., Kusano, M., Wang, C., Yang, Z., Gupta, A.: Assertion guided symbolic execution
of multithreaded programs. In: ESEC/FSE (2015)

29. Hauzar, D., Marché, C., Moy, Y.: Counterexamples from proof failures in SPARK. In: SEFM
(2016), to appear

30. Jakobsson, A., Kosmatov, N., Signoles, J.: Fast as a shadow, expressive as a tree: hybrid
memory monitoring for C. In: SAC (2015)

31. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: A software
analysis perspective. Formal Asp. Comput. 27(3), 573–609 (2015), http://frama-c.com

32. Kosmatov, N.: Online version of PathCrawler. (2010–2015), http://pathcrawler-online.com/
33. Kosmatov, N., Petiot, G., Signoles, J.: An optimized memory monitoring for runtime asser-

tion checking of C programs. In: RV (2013)
34. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a theorem

prover. In: FASE (2009)
35. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:

FM (2011)
36. Owre, S.: Random testing in PVS. In: AFM (2006)
37. Petiot, G., Botella, B., Julliand, J., Kosmatov, N., Signoles, J.: Instrumentation of annotated

C programs for test generation. In: SCAM (2014)
38. Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How test generation helps software spec-

ification and deductive verification in Frama-C. In: TAP (2014)
39. Podelski, A., Wies, T.: Counterexample-guided focus. In: POPL (2010)
40. Signoles, J.: E-ACSL: Executable ANSI/ISO C Specification Language, http://frama-

c.com/download/e-acsl/e-acsl.pdf
41. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr
42. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Program checking with less hassle. In:

Verified Software: Theories, Tools, Experiments (2014)
43. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation of path

tests by combining static and dynamic analysis. In: EDCC (2005)

