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Abstract— This paper deals with a data-driven diagnostic and
prognostic method based on a Mixture of Gaussians Hidden
Markov Model. The prognostic process of the proposed method
is made in two steps. In the first step, which is performed off-
line, the monitoring data provided by sensors are processed to
extract features, which are then used to learn different models
that capture the time evolution of the degradation and therefore
of the system’s health state. In the second step, performed on-
line, the learned models are exploited to do failure diagnostic
and prognostic by estimating the asset’s current health state,
its remaining useful life and the associated confidence degree.
The proposed method is tested on a benchmark data related to
several bearings and simulation results are given at the end of
the paper.

I. INTRODUCTION

Failure prognostic activity aims at anticipating the failure
date by predicting the future health state of a given compo-
nent, sub-system or system and its Remaining Useful Life
(RUL). According to the International Standard Organization
[1], failure prognostic corresponds to the “estimation of the
time to failure and the risk for one or more existing and
future failure modes”. Several other definitions have been
proposed in the literature [2]–[6] during this last decade. All
the reported definitions agree about a prediction step and the
estimation of the time before the failure. This time is called
RUL in some of them, Estimated Time To Failure (ETTF)
in the ISO’s one [7] and in a small number of publications
[8], [9] it is defined as a probability that a machine operates
without a fault up to some future time.
Contrary to fault diagnostic which is a mature activity, well
developed and spread within the research and the industrial
communities, failure prognostic is a new research domain
[4], [10], [11]. However, the increasing interest accorded to
failure prognostic has led to numerous methods, tools and
applications during the last decade. According to what is
reported in the literature [4], [6], [12], failure prognostic
methods can be classified into three main approaches: model-
based, experience-based and data-driven prognostic.
Model-based prognostic approach relies on the use of an
analytical model (set of algebraic or differential equations)
to represent the behavior of the system including the degra-
dation phenomenon. The advantage of the methods used in
this approach is that they provide more precise prognostic
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results. However, their drawback dwells in the fact that real
systems are often nonlinear and the degradation mechanisms
are generally stochastic and difficult to obtain in the form
of analytical models. Consequently, the applicability of this
approach may be limited in practice.
Experience-based prognostic methods use mainly the data of
the experience feedback gathered during a significant period
of time (maintenance and operating data, failure times, etc.)
in order to adjust the parameters of some reliability models
(Weibull law, exponential law, etc.). These latter are then
used to estimate the time to failure or the RUL. The main
advantage of these methods is that they are not subordinated
to on-line sensors’ data, neither to complex mathematical
models of the system’s behavior. Instead, they are rather
based on the use of simple reliability functions. However,
the prognostic results they offer are less precise than those
provided by model-based and data-driven approaches, espe-
cially when the operating context is variable or in the case
of new systems because of a lack of experience data.
Data-driven methods aim at transforming the raw monitor-
ing data into relevant information and behavior models of
the system including the degradation. They use artificial
intelligence tools (neuronal networks, Bayesian networks,
Markovian processes, etc.) or statistical methods to learn the
degradation model and to predict the future health state and
the corresponding RUL of the system. These methods can be
considered as a trade-off between the model-based and the
experience-based methods. This is because, in one hand, in
real industrial applications getting reliable data is easier than
constructing physical or analytical behavior models. And in
the other hand, the generated behavioral models from real
monitoring data lead to more precise prognostic results than
those obtained from experience feedback data.
In this paper a data-driven prognostic method based upon the
use of Mixture of Gaussians Hidden Markov Model (MoG-
HMM) is proposed. The use of this tool is motivated by the
fact that it permits to handle complex emission probability
density functions (pdfs) generated by a set of continuous
features extracted from raw monitoring signals. The method,
presented in section 3, performed in two steps: an off-line
step where the raw data are used to learn a behavioral model
of the physical component’s condition, and an on-line step
in which the learned model is used to identify the current
condition of the component and to estimate its RUL. In
section 4 the method is tested on real operating data related
to bearings, and simulation results are given.
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II. MIXTURE OF GAUSSIANS HIDDEN MARKOV MODELS

A MoG-HMM is primarily an Hidden Markov Model
(HMM) [13]. Thus, a brief introduction of HMMs would help
the reader getting an insight about the MoG-HMM and un-
derstanding the proposed prognostic method. An HMM [14]
is a statistical model used to represent stochastic processes.
An HMM is a Markov chain in which the states are not
directly observed. It can be of three types: ergodic, left-right
or parallel left-right. An example of a three states left-right
HMM is shown in Fig. 1. An HMM is completely defined
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Fig. 1. A three state left-to-right HMM [15].

by the following parameters [14]:

• N: number of states in the model. The individual states
are 1, 2, ..., N , and the state at time t is defined as st.

• M: the number of distinct observations for each state.
The observation symbols correspond to the physical out-
put of the modeled system. The individual observation
symbols are denoted as V = v1, v2, ..., vM .

• A: the state transition probability distribution, A = aij ,
where aij = P [st+1 = j |st = i ] , 1 ≤ i, j ≤ N.

• B: the observation probability distribution of a state i,
B = bi(k), where bi (k) = P [vk |st = i ] , 1 ≤ i ≤
N, 1 ≤ k ≤M.

• π: the initial state distribution π = πi, where πi =
P [sl = i] , 1 ≤ i ≤ N.

For simplicity and clarity of presentation, a compact
notation (λ = π, A,B) is used for each HMM. In practice,
HMMs are used to solve the following typical problems [14]:

• Problem 1: given a model λ and an observation se-
quence O = (O1, O2, ..., OT ), compute the probability
P (O|λ) of the sequence given the model. This problem
is known as the evaluation problem (in failure prog-
nostic, this is considered as a detection or a diagnostic
problem). The solution of this problem is obtained by
using the forward-backward algorithm [16].

• Problem 2: given an observation sequence O =
(O1, O2, ..., OT ), find the hidden state sequence S =
(S1, S2, ..., ST ) that have most likely produced the
observation sequence. This is the decoding problem and
is solved by using the Viterbi algorithm [17].

• Problem 3: find the model parameters (π, A,B) that
better fit the observation sequence O, i.e., that maximize
the probability P (O|λ). This is the learning problem
and is solved by using the Baum-Welch algorithm [18].

Discrete HMMs consider the observations as discrete
symbols chosen from a finite alphabet and use discrete prob-
ability densities to model the transition and the observation
probabilities. The problem with this approach, at least for
some applications, is that the observations are continuous
signals. In order to use a continuous observation density,
some restrictions must be placed to insure that the parameters
of the probability density function (pdf) can be re-estimated.
The most general representation of the pdf, for which a re-
estimation procedure has been formulated, is a finite mixture
of the form [14]:

bi(O) =
M∑

m=1

Cjmξ(O,µjm, Ujm), 1 ≤ j ≤ N (1)

where O is the observation vector being modeled, Cjm

is the mixture coefficient for the mth mixture in state i and
ξ is any log concave or elliptically symmetric density (e.g.
Gaussian) with mean vector µjm and covariance matrix
Ujm for the mth mixture component in state j. Usually
a Gaussian density is used for ξ and the corresponding
model is called a MoG-HMM. Similarly to an HMM, a
MoG-HMM is completely defined by four parameters:
the number of states, the A matrix, the B matrix and
the initial probability distribution π. For a MoG-HMM
the observation matrix B is modeled by a Gaussian
density with a mean µ, a standard deviation σ and a mixture
matrix M . An illustration of a MoG-HMM is given in Fig. 2.

1S 2S 3S

1M 2M 3M

2O1O 3O

Fig. 2. A Mixture of Gaussians HMM [13].

III. MOG-HMM BASED PROGNOSTIC METHOD

An integrated diagnostic and prognostic method to esti-
mate the current health state of a physical component and
its remaining useful life is proposed in this section. The
method is based on a nondestructive control and uses the data
provided by sensors installed to monitor the component’s
condition. The originality of the proposed method dwells in
the fact that in the generated MoG-HMM the states’ stay
durations are not assumed to be a geometrically decaying
functions [19] (which is the case in traditional HMM based
prognostic methods), but are learned from the monitoring
data (note that multiple observations are considered for both
learning and simulation phases, instead of the traditional
mono observation approach). Moreover, in the proposed
method there is no limitation for the type of the generated
MoG-HMM (the model can be an ergodic, a left-right or
a parallel left-right). The principle of the proposed method
relies on two main phases, as shown in Fig. 3: a learning
phase and an exploitation phase.
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Fig. 3. MoG-HMM prognostic implementation steps.

In the first phase, which is executed off-line, the raw data
recorded by sensors during the condition monitoring of the
physical component are processed in order to extract appro-
priate features. These features are then used to learn several
behavior models (in the form of MoG-HMMs) corresponding
to different initial states and operating conditions of the
component. Indeed, each raw signal (or data history) cor-
responding to a given component’s condition is transformed
to a feature matrix F , by using a feature extraction procedure
(F.E). In the matrix F , each column vector (of C features
at time t) corresponds to a snapshot on the raw signal, and
each cell fct represents the feature c at time t (2).

Raw signal F.E−−→ F = (f1t f2t · · · fct)
′

with 1 � t � T and 1 � c � C
(2)

The extracted features are then used to estimate the
parameters (π, A and B) and the temporal parameters (stay
duration in each state) of the MoG-HMMs. The advantage
of using several features instead of only one dwells in the
fact that it can happen that a single feature may not capture
all the information related to the behavior of the component.
The parameters (π, A and B) of each MoG-HMM are
learned by using the well known Baum-Welch algorithm
[16], whereas the temporal ones are estimated by using the
Viterbi algorithm [17]. In addition, this latter permits to
obtain the state sequence and to compute the time duration
for which the component has been in each state of the
corresponding MoG-HMM (Fig. 4). Thus, by assuming that
the state duration in each state follows a normal law, it is
possible to estimate the mean duration (3) and the corre-
sponding standard deviation (4) by computing the duration
and the number of visits in each state. Moreover, the Viterbi
algorithm permits to identify the final state which represents
the physical component’s failure state.

µ (D (Si)) =

Ω∑
w=1

D (Siw)

Ω
(3)

σ (D (Si)) =

Ω∑
w=1

[D (Siw)− µ (D (Si))]
2

Ω
(4)

D(S31)

1

2

3

Time

State

D(S32) D(S33)

D(S21) D(S22) D(S23)

D(S11) D(S12)

Fig. 4. Example of Viterbi decoding state.

In (3) and (4) D(·) stands for the visit duration, i is the
state index, w is the visit index and Ω corresponds to the total
of visits. A compact representation of each learned MoG-
HMM used to perform diagnostic and prognostic is given by
the following expression:

λ = (π, A, B, µ (D (Si)) , σ (D (Si)) , Sfinal) (5)

where Sfinal is the final state (corresponding to the end
of the considered condition monitoring history), µ(D(Si)) is
the mean state duration for the state i and σ(D(Si)) is the
standard deviation over the state duration for the state i.
The second phase, which is performed on-line, consists in
exploiting the learned models to detect the component’s
current condition (using the Viterbi algorithm) and to com-
pute the corresponding RUL. The processed data and the
extracted features are thus continuously fed to the learned
models in order to select the one that best represents the
observed data and therefore the corresponding component’s
condition. The selection process is based on the calculation
of a likelihood P (O|λ) of the model over the observations.
Finally, by knowing the current condition and by using the
stay durations learned in the off-line phase, the component’s
RUL and its associated confidence value can be estimated.
The generated MoG-HMMs are used during the on-line
phase to estimate the RUL and the associated confidence
value of the physical component by using a dedicated pro-
cedure whose steps are the following:

• The first step consists in detecting the appropriate MoG-
HMM that best fits and represents the on-line observed
sequence of features. Indeed, the features are contin-
uously fed to the set of learned models (completely
defined) and a likelihood is calculated in order to select
the appropriate model. The selected model is then used
to compute the RUL (Fig. 5).

• The second step of this procedure concerns the identifi-
cation of the current state of the component (diagnostic
phase). The Viterbi algorithm is thus applied on the
selected model in order to find the state sequence, which
corresponds to the observation sequence, and to identify
the current state of the component by choosing the most
persistent state in the last observations (6).
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Fig. 5. Competitive model selection.

state sequence = (S1, S2, · · · , St) ,

with t = current time.
Last states = (St−l, · · · , St−2, St−1, St) ,

with l = past observations factor.

(6)

• The third step consists in using the current identified
state, the final state (the failure state) and the probability
transition matrix A of the selected MoG-HMM to find
the critical path, which goes from the current state
to the end state. The idea is to identify all the non-
zero probabilities in the transition matrix as potential
transitions, and then to choose the minimal path among
all the possible ones (Fig. 6) with only one visit per
state. In the same way, it is possible to find the longest
path by considering a maximum number of states in the
path with only one visit per state. The shortest path is
assimilated to the pessimistic path (rapid evolution to
the failure), whereas the longest path is taken as the
optimistic scenario.

S1

S2 S3

S4

S5 S6

Actual state

Final state

Shortest path

Longest path

Fig. 6. Path estimation.

• Finally, in the fourth step the paths identified previously
are used to estimate the RUL. This latter is obtained
using the temporal parameters of the stay duration in
each state. In addition, a confidence value over the RUL
is calculated based on the standard deviation values of
the stay durations. Thus, three values are calculated for
each path (7): the upper RUL (µ + σ), the mean RUL,
and the lower RUL (µ− σ).

RULupper =
N∑

i=current state

[µ (D (Si)) + n · σ (D (Si))],

RULmean =
N∑

i=current state

µ (D (Si)),

RULlower =
N∑

i=current state

[µ (D (Si))− n · σ (D (Si))],

∀i ∈ state in the active path, n = confidence coef.
(7)

IV. APPLICATION AND SIMULATION RESULTS

The failure prognostic method presented previously is
tested on a rich condition monitoring data base taken from
[20] and containing several bearings tested until the fail-
ure. The choice of bearings can be explained by the fact
that these components are considered as the most common
mechanical elements in industry and are present in almost
all industrial processes, especially in those using rotating
elements and machines. Moreover, bearings are the main
components which most frequently fail in rotating machines
[21] (Fig. 7). Thus, the prediction of the time to failure of
these components may help improving the reliability, the
availability and the safety of the rotating machines while
reducing their maintenance costs.
The test data extracted from [20] correspond to several tests

41%

37%

10%
12% Bearings

Stator-related (primarily the widing)

Rotor-related (including slip rings and commutators)

Other

Fig. 7. Failure distribution of motors of power greater than 200 hp [21].

under constant conditions. Four bearings were installed on
one shaft. The angular velocity was kept constant at 2000

ha
l-0

05
25

07
3,

 v
er

si
on

 1
 - 

11
 O

ct
 2

01
0



rpm and a 6000 lb radial load was applied onto the shaft
and bearings (Fig. 8). For simulation purposes (learning and
on-line failure prognostic) twelve condition monitoring data
histories are used (eleven for learning and one for test), each
bearing was considered failed at the end of its associated
history. The simulation results shown hereafter are obtained
from the data corresponding to three tests.

Fig. 8. The bearing benchmark [20].

For both learning and prognostic phases, temporal features
(mean, root mean square, skew and kurtosis) [22] have been
extracted from the raw signals (vibration signals). The princi-
ple of the procedure for feature extraction with an example
of rms feature are shown in Fig. 9. During the learning

Feature extraction�
(e.g.�RMS)

Raw signal for the bearing 1 in the test # 2 at 10 minutes

Samples

A
cc

el
er

at
io

n

RMS for the bearing 1 in the test # 2

R
M

S

Time (min)

Fig. 9. Feature extraction principle.

phase, three states are defined for each MoG-HMM. The
parameters of each MoG-HMM are first randomly initialized
and then the continuous extracted features are fed to the
learning algorithms in order to re-estimate the initialized
parameters (π, A and B). The number of mixtures in each
MoG-HMM is set to two, which allows a trade-off between
precision and computation time. Eleven MoG-HMMs are

thus obtained by using the Baum-Welch algorithm. The re-
estimated numerical values of the parameters π, A and M
of a MoG-HMM related to bearing one in the test #1 are
given below:

π =




0
1
0




A =




0.9973 0.0013 0.0013
0.0014 0.9973 0.0014
0.0014 0.0001 0.9985




M =




0.3883 0.6117
0.4607 0.5393
0.5188 0.4812




The corresponding decoded state sequence of the bearing
one in test #1 is shown in Fig. 10. The mean state duration,
the standard deviation and the final state for this history are
presented below.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

1

2

3

Time (min)

St
at

e

Fig. 10. Decoded state sequence.




S1

S2

S3


 =




µ(S1), σ(S1)
µ(S2), σ(S2)
µ(S3), σ(S3)


 =




3720, 860
3635, 295
3425, 145


 min

Sfinal = S3

In order to simulate an on-line failure prognostic a condi-
tion monitoring data history is taken randomly from the five
existing ones. The selection process shown in Fig. 5 is then
applied on the data history corresponding to the bearing 2 in
the test #2 in order to identify the “best MoG-HMM” and
to estimate the RUL. A simulation result of the predicted
RUL is shown in Fig. 11, where the data history used to
perform the test correspond to a faulty bearing that ends at
9840 min. The associated error is shown in Fig. 12.

From Fig. 11 and Fig. 12 one can see that the precision
of the estimated RUL increases as the prediction time is
approaching the real failure time. Similarly, after 3470
min the mean estimation error drops below 24.5 % and
continues to decrease as the real failure time approaches.
After 8070 min the mean error stabilizes arround the
value of 2.03 %, whereas when considering the upper
RUL limit the error drops to 0.6 %. The 68 % confidence
interval keeps the RUL estimation limits near acceptable
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Fig. 11. RUL estimation for the bearing 2 in test #2.
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Fig. 12. RUL error associated to the bearing 2 in test #2.

values, a wide confidence intervals (95 % and 99.5 %) will
give more sparse limits and will increase the prediction error.

V. CONCLUSION

A failure prognostic method is proposed in this paper. It
deals with real monitoring data provided by sensors installed
on a physical component. The raw signals are processed in
order to extract useful information and transform them to
relevant models that are used to represent the behavior of
the system and to learn its degradation phenomenon. The
derived models are then used to perform predictions and
to estimate the RUL of the system. The choice of MoG-
HMMs instead of traditional discrete HMMs is motivated
by the fact that a set of continuous features allow to keep
a maximum information of the raw signals and thus lead to
more precise results. Moreover, the stay durations in each
state of the model are not considered as constant and are
learned from the monitoring data. Indeed, in real systems,
the degradation phenomenon is strongly stochastic and the
stay duration in each state is not necessarily governed by an
exponential law.
Future works include a comparison of the proposed method
with existing ones using the same data in order to assess its
performance and limits. Furthermore, it would be interesting
to test the method on a real industrial system with a real
possibility of on-line failure prognostic and integration of
maintenance actions.
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