
Microgrid sizing with combined evolutionary algorithm and MILP unit commitment

Bei Lia,∗, Robin Rochea, Abdellatif Miraouib

aFEMTO-ST, UMR CNRS 6174, and FCLAB, FR CNRS 3539, Université Bourgogne Franche-Comté, Belfort / UTBM, 90000,France
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Abstract

Microgrids are small scale power systems with local resources for generation, consumption and storage, that can operate connected
to the main grid or islanded. In such systems, optimal sizing of components is necessary to ensure secure and reliable energy supply
to loads at the least cost. Sizing results are however dependent on the energy management strategy used for operating the system,
especially when components with different dynamics are considered. Results are also impacted by uncertainty on load as well as
renewable generation. In this paper, we propose a combined sizing and energy management methodology, formulated as a leader-
follower problem. The leader problem focuses on sizing and aims at selecting the optimal size for the microgrid components. It
is solved using a genetic algorithm. The follower problem, i.e., the energy management issue, is formulated as a unit commitment
problem and is solved with a mixed integer linear program. Uncertainties are considered using a form of robust optimization
method. Several scenarios are modeled and compared in simulations to show the effectiveness of the proposed method, especially
with respect to a simple rule-based strategy.
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Nomenclature1

Acronyms2

BSS battery storage systems3

EA evolutionary algorithms4

EMS energy management systems5

ESS energy storage system6

FC fuel cell7

GA genetic algorithm8

HSS hydrogen storage systems9

LOH level-of-hydrogen10

LPSP loss of power supply probability11

MILP mixed integer linear programming12

PV photovoltaic panels13

RBS rule-based strategies14

RES renewable energy sources15

SOC state-of-charge16

UC unit commitment17

∗Corresponding author.
Email addresses: bei.li@utbm.fr (Bei Li), robin.roche@utbm.fr

(Robin Roche), abdellatif.miraoui@utbm.fr (Abdellatif Miraoui)

WT wind turbines18

Symbols19

α penalty value for load shedding20

β penalty value for curtailed PV output21

∆t sampling time22

ηbat BSS charging efficiency23

ηPV PV panels efficiency24

P̃load(t) actual load in time t25

P̃PV (t) actual output of PV in time t26

Bch
cost(t) BSS charging cost in time t27

Bdich
cost (t) BSS discharging cost in time t28

Cinv investment cost of components29

Cmnt annual maintenance costs of components30

CT PV temperature coefficient31

Ccap capital cost of microgrid32

Cmnt annual maintenance cost of microgrid33

Cop operation cost34

Cinv
bat investment cost for the BSS35

Cinv
ele investment cost of the electrolyzer36
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Co&m
ele operation and maintenance costs of the electrolyzer37

C start
ele startup cost of the electrolyzer38

Cinv
f c investment cost of the FC39

Co&m
f c operation and maintenance costs of the FC40

Co&m
f c startup cost of the FC41

CRF capital recovery factor42

EOC open-circuit voltage of one FC cell43

Erload error bound of load44

ErPV error bound of PV output45

F Faraday constant46

F(.) total cost function47

GA global solar radiation48

Hele
cost(t) utilization cost of the electrolyzer in time t49

H f c
cost(t) utilization cost of the FC in time t50

Iel(t) current of the electrolyzer in time t51

Iel(t)/Ael current density of the electrolyzer52

i f c(t) current density in one FC cell in time t53

Nbat,cyc number of cycles of the BSS54

Nele
bat,hr operation hours of the electrolyzer over its lifetime55

N f c
bat,hr operation hours of the FC over its lifetime56

Nel number of electrolyzer cells57

N f c number of FC cells58

ninv expected life span of the microgrid59

Pload(t) forecasted load in time t60

PPV (t) output power of PV panels in time t61

PS TC PV array rated power62

r real interest rate63

T working temperature of the electrolyzer64

TC temperature of panels65

Thor time horizon66

Vel(t) voltage of the electrolyzer in time t67

V f c(t) voltage of the FC in time t68

Vrev reverse voltage of the electrolyzer69

Variables70

∆δele status of the electrolyzer (starting or not)71

∆δ f c status of the FC (starting or not)72

δele(t) state (on or off) of the electrolyzer73

δ f c(t) state (on or off) of the FC74

ṅH2
el (t) production rate of hydrogen of the electrolyzer in time75

t76

ṅH2
f c (t) consumption rate of hydrogen of the FC in time t77

Cbat capacity of the BSS78

LOH(t) state of hydrogen tanks in time t79

NPV number of PV panels80

Pch(t) BSS charging power in time t81

Pcurt(t) curtailed PV output in time t82

Pdisch(t) BSS discharging power in time t83

Pel(t) input power of the electrolyzer in time t84

Pmax
el maximum input power of electrolyzer85

P f c(t) output power of th FC in time t86

Pmax
f c maximum output power of fuel cell87

P j(t) output power of unit j in time t88

PLS (t) shed load in time t89

S OC(t) state of BSS in time t90

Vmax
H2

maximum volume of hydrogen tanks91

Z j(t) actual output power of unit j in time t92

1. Introduction93

In order to limit global warming and reduce fossil fuel con-94

sumption, renewable energy sources (RES) such as photo-95

voltaic panels (PV) and wind turbines (WT) are more and more96

commonly used to generate electricity. The integration of such97

intermittent sources is a challenge for grid operators, as the bal-98

ance between generation and demand must be met in real-time.99

This is especially a concern for small power systems such as100

microgrids, that can operate islanded, i.e., not connected to the101

main grid. Microgrids typically include distributed generation102

and storage [1, 2], and are increasingly found in remote areas103

[3, 4] or where power system resilience is a crucial concern104

[5, 6].105

To enable RES integration, energy storage systems are con-106

sidered as a key solution, as they enable storing excess gener-107

ation for later use [7]. Battery storage systems (BSS) are typ-108

ically used for short-term storage [8], but seem inappropriate109

for long-term storage due to their low energy density and non-110

negligible self-discharge rate [9]. Hydrogen storage systems111
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(HSS), on the other hand, are used for long-term storage, such112

as seasonal storage. HSS combine an electrolyzer to produce113

hydrogen from electricity, an hydrogen storage tank and a fuel114

cell (FC) to produce electricity from hydrogen. [10] discusses115

FC systems, while [11] researches about the PV/FC hybrid sys-116

tems. In [12], a Matlab/Simulink model is built to simulate such117

a PV/FC hybrid energy system. [13] also builds a simulation118

model of another PV/FC/ultacapacitors stand-alone microgrid.119

In this work, we focus on the optimal sizing of microgrids120

where PV panels are used as the primary energy source, and121

BSS and HSS are used as storage units (Fig. 2). Finding the122

optimal size for each of these components, i.e., finding the ca-123

pacity or rated power for each component that ensures adequate124

supply at minimum cost, is a challenge because the sizing result125

is affected not only by the architecture of the system, but also126

by the adopted energy management strategy [14]. Depending127

on how components such as storage units are used, the neces-128

sary capacity may change significantly, which in turn impacts129

the size of other components as well as overall costs. Another130

aspect to consider is the impact of uncertainty on PV output and131

load. Forecasting errors change the input data profiles and lead132

to suboptimal scheduling results, which in turn influences siz-133

ing results. To address these challenges, this paper presents a134

leader-follower co-optimization method to size islanded micro-135

grids, which also considers uncertainty on input data.136

The optimal sizing problem is a non-convex and non-linear137

combinatorial optimization problem [15], and for the solution138

of this problem, various optimization methods have been pre-139

sented in [16]. In [17], authors review 68 computer tools which140

can be used for analyzing RES integration, but the results show141

that there is no tool that can address all aspects of hybrid mi-142

crogrid system. As the part of artificial intelligence, evolution-143

ary algorithms (EA) are optimization algorithm which can be144

used to solve combinatorial and nonlinear optimization prob-145

lems. For example, [18, 15] compare several EA for the opti-146

mal sizing of a hybrid system, where the objective function is147

the total annual cost. Other papers use various metaheuristics,148

[19] uses ant colony optimization (ACO) to get size values of149

PV/wind hybrid system. In [20], artificial bee swarm optimiza-150

tion (ABSO) used to solve the sizing problem of PV/WT/FC151

hybrid system considering loss of power supply probability152

(LPSP). Simulated annealing and tabu search (TS) are used in153

[3]. [21] studies the performance of different particle swarm154

optimization (PSO) algorithm variants to determine the size re-155

sults of hybrid (PV/wind/Batt) system.156

In most of these papers, a simple control strategy is selected:157

when there is surplus power, the excess energy is stored in the158

ESS, and when there is a shortage of power, the ESS discharges,159

or controllable generators (diesel gensets or FC) are turned on.160

Economic criteria are not considered in most cases. Some pa-161

pers use more advanced strategies based on rules (rule-based162

strategies (RBS)) to control energy flows. Various algorithms163

are used, such as a multi-objective genetic algorithm (GA) [22],164

a hybrid GA [23], or an improved bat algorithm [24]. How-165

ever, the limits of RBS are quickly reached when more than a166

few components are included in the system, as the number of167

required rules significantly increases. Moreover, these strate-168

gies cannot provide optimal results regarding how the state-of-169

charge of storage units is controlled over time. More advanced170

energy management systems (EMS), that primarily focus on171

economic dispatch with EA, are also presented in the litera-172

ture. [25] presents a decentralized energy management strat-173

egy based on multi-agent systems and fuzzy cognitive Maps.174

In [26], authors propose a non-cooperative game theory-based175

EMS. [27] proposes a bi-level optimization energy management176

approach of multiple microgrids. Economic dispatch is solved177

in each microgrid, and then a secondary-level optimization is178

used to seek the minimum operation cost for the set of micro-179

grids. Multiperiod ABCO [28], multi-layer ACO [29], multi-180

period gravitational search algorithm [30], and multi-period im-181

perialist competition algorithm [31] are also used for economic182

dispatch applications. [32] presents an operational architec-183

ture for Real Time Operation (RTO) of an islanded microgrid.184

A limit of economic dispatch approaches for EMS is that set185

points are determined only based on current conditions, but fu-186

ture conditions are not considered.187

An improved method for energy management, that can take188

into account multiple objectives and constraints, is thus re-189

quired. Model-predictive control (MPC) offers a solution, and190

is commonly used in power systems in the form of unit com-191

mitment (UC). UC enables scheduling the use of multiple gen-192

eration units over a given time horizon [33], for example over a193

day. It can also be extended to consider storage units and other194

devices. For example, in [9], the authors present a UC opti-195

mization method to economically schedule BSS and HSS. [34]196

studies the thermal power plant UC problem integrated with a197

large scale ESS. In [35], an integrated framework for a stand-198

alone microgrid with objectives of increasing stability and reli-199

ability and reducing costs is described. The UC method is used200

to determine generators outputs for the next day. [36] presents201

a two-stage planning and design method for microgrids. GA is202

used to solve the optimal design problem and a mixed integer203

linear programming (MILP) algorithm enables determining the204

optimal operation strategy.In [37], a mixed integer nonlinear205

programming (MINLP) approach for day-ahead scheduling a206

combined heat and power plant is proposed. Another MINLP-207

based EMS algorithm is presented in [38]. [39] describes an208

approach for security-constrained UC with integrated ESS and209

wind turbines. Overall, the above research papers show that the210

UC method is commonly used and adequate for scheduling the211

use of microgrid components, including energy storage units.212

However, contrary to works focusing on sizing that primarily213

focus on EA, papers on UC mainly use classical non-linear or214

linear programming techniques (MINLP or MILP) [40, 37].215

A UC algorithm does however rely on forecast data to216

compute schedules. As forecasting errors are inevitable, the217

scheudling algorithm must consider these errors. In the case218

studied in this paper, errors on PV output and load impact219

schedules as well as sizing results. Two main approaches220

to consider forcasting uncertainty are found in the literature:221

scenario-based method [41, 42, 43] and robust optimization222

[44, 45, 46, 47]. [41] presents a stochastic method based on223

cloud theory to handle uncertainty, and uses a krill herd al-224

gorithm to solve the optimization problem. [42] describes225
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a stochastic optimization for microgrid energy and reserve226

scheduling. Wind and PV generation fluctuations for each hour227

are represented by 5-interval discrete probability distribution228

functions. A scenario tree technique is then used to combine229

different states of wind and PV fluctuations. [43] presents a230

scenario-based robust energy management method. Taguchis231

orthogonal array testing method is used to provide possible test-232

ing scenarios, and determine the worst-case scenario. At last,233

the Monte Carlo method is used to verify the robustness of the234

approach. In [44], uncertainty is quantified in terms of pre-235

diction intervals by a non-dominated sorting genetic algorithm236

(NSGA-II) trained by a neural network. Robust optimization is237

then used to seek the optimal solution to the problem. [45] uses238

robust optimization-based scheduling for multiple microgrids239

considering uncertainty. The problem is transformed to a min-240

max robust problem, and is then solved using linear duality the-241

ory and the Karush-Kuhn-Tucker (KKT) optimality conditions.242

[47] presents a robust EMS for microgrids. Authors use a fuzzy243

prediction interval model to obtain the uncertainty boundary of244

wind output, and then the upper and lower boundaries of wind245

energy are interpreted as the best and worst-case operating con-246

ditions. In the above papers, scenario-based methods usually247

require generating many scenarios , which can take a lot of time248

to simulate. On the other hand, robust methods are used to find249

the worst case, which requires less computation time, although250

results are more conservative. As a consequence, in this paper,251

a robust optimization method is selected to find the worst case252

and best case based on the forecasting error.253

The above review of the state-of-the-art has shown that a254

sizing methodology needs to use an appropriate energy man-255

agement or scheduling approach, and that MPC-based UC fits256

these needs. Several papers have considered such combina-257

tions of sizing and energy management algorithms. For exam-258

ple, [48] presents a co-optimization method to size stand-alone259

microgrids with two GA: one for the sizing, and another one260

for the scheduling. In [49], authors present a co-optimization261

method for microgrid planning in electrical power systems. The262

leader problem optimizes the planning decisions for the micro-263

grids and the main grid, and, with the proposed plan, the short-264

term and economic operation subproblems are solved to check265

whether constraints are met or not. In [50], authors also present266

a microgrid planning model. The problem is decomposed into267

an investment master problem and an operation subproblem.268

The two problems are linked via the benders decomposition269

method. Finally, in [51], the authors present a bi-level program270

for the sizing of islanded microgrids with an integrated com-271

pressed air energy storage (CAES). The upper level problem is272

solved using GA, and the lower level problem is solved using273

the MILP technique.274

This paper introduces a general method to size a stand-alone275

microgrid (PV-BSS-HSS) considering technical and economic276

criteria, with a combination of EA and UC optimization. Com-277

pared to existing literature, contributions include:278

1. A bi-level optimization method to perform microgrid siz-279

ing. A genetic algorithm is used to compute the sizing of280

the components to minimize the total annual cost (capital,281

maintenance and operation) of the system. Each candi-282

date solution (set of components sizes) is evaluated with283

a MILP UC algorithm. The design bi-level optimization284

framework is shown in Fig. 1.285

2. The used UC optimization is used to control energy flows286

considers technical and economic criteria, such as the op-287

eration costs of the components, the startup costs of the288

fuel cell and the electrolyzer, the state-of-charge (SOC) of289

the BSS, the level-of-hydrogen (LOH) of hydrogen tanks.290

In addition to these, the load shedding and PV power cur-291

tailments resulting from sizing values are determined and292

used to evaluate candidate solutions.293

3. A 1-hour resolution rolling-horizon simulation is used to294

verify the validity of the obtained sizing solutions, and to295

adjust the sizing values if required, especially as the sizing296

algorithm input data uses a 1-week resolution to improve297

computation speed.298

4. Uncertainty on PV generation and load is taken into ac-299

count using a robust method. Sizing results are adjusted300

depending on forecasting errors.301

5. The impact of different initial states for SOC and LOH and302

different penalty values for load shedding and power cur-303

tailments is assessed to determine the sensitivity of results304

with respect to these parameters.305

6. Finally, results are compared with a rule-based strategy306

commonly used in the literature, in order to further evalu-307

ate the performance of the algorithm.308

Figure 1: Bi-level optimization framework.

The rest of this paper is structured as follows. Section 2 in-309

troduces the system model. Section 3 describes the UC strategy310

and Section 4 the EA-based sizing problem formulation. Fi-311

nally, Section 5 presents the simulation results while Section 6312

concludes the paper.313
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2. System model314

A stand-alone microgrid with four main components is con-315

sidered (Fig. 2): PV panels, a BSS, an HSS (with an elec-316

trolyzer, hydrogen tanks and a fuel cell), and a load correspond-317

ing to a building. Static converters are not modeled, as their318

impact is negligible on sizing results.319

Figure 2: Microgrid architecture.

2.1. PV panels320

The output of the PV panels is calculated using [52, 11]:

PPV (t) = NPV ·ηPV ·PS TC ·
GA(t)
GS TC

· (1 + (TC(t)−TS TC) ·CT ) (1)

where NPV is the number of panels, ηPV is the panels efficiency,321

PS TC is the PV array rated power in Wp under standard test322

conditions (STC), GA is the global solar radiation received by323

the panels in kW/m2, GS TC is the solar radiation under STC (1324

kW/m2), TC is the temperature of the panels, TS TC is the STC325

temperature, and CT is the PV temperature coefficient.326

2.2. Battery327

The state of the BSS is represented by its state-of-charge:

S OC(t) = S OC(t − ∆t) +
ηb · Pch(t) · ∆t

Cbat
−

Pdisch(t) · ∆t
Cbat

(2)

where ηbat is the charging efficiency, Pch(t) is charging power,328

Pdisch(t) is the discharging power, ∆t is the sampling time, and329

Cbat is the capacity of the battery pack.330

2.3. Electrolyzer331

Electrolyzers are used to produce hydrogen (H2) from elec-
tricity. The characteristic of the electrolyzer can be described
as follows [53, 54]:

Vel(t) = Nel · Vrev + (r1 + r2 · T ) ·
Iel(t)
Ael

+
(
s1 + s2 · T + s3 · T 2

)
× log

(
1 +

(
t1 +

t2
T

+
t3
T 2

)
·

Iel(t)
Ael

) (3)

where Vel(t) is the voltage of the electrolyzer, Nel is the number332

of cells, Vrev is the reversible cell potential, T is the working333

temperature (assumed constant), and Iel(t)/Ael (in A/m2, with334

Ael the area) is the current density. Variables r1, r2, s1, s2, s3,335

t1, t2, t3 are empirical constant coefficients.336

The production rate of hydrogen of the electrolyzer is then
given by Faraday’s law:

ṅH2
el (t) = ηF(t)

Nel Iel(t)
2F

(4)

where F is the Faraday constant, and Iel is the current in the
electrolyzer. ηF is Faraday’s efficiency, which provides a re-
lation between the actual production rate of hydrogen and its
theoretical value, namely:

ηF(t) =
(Iel(t)/Ael)2

f1 + (Iel(t)/Ael)2 f2 (5)

where f1 and f2 are empirical coefficients.337

Using the above equations, an equation relating Pel(t) and
ṅH2

el (t) is obtained, in the form of:

Pel(t) = f (ṅH2
el (t)) (6)

where f (.) is a nonlinear function. Due to constraints described
in Section 3, this function is linearized, such that:

Pel(t) = kel · ṅ
H2
el (t) (7)

where kel is a constant. The linearization is done via a linear338

regression on the curve obtained from (6). The maximum value339

of Pel is noted Pmax
el .340

2.4. Fuel cell341

Fuel cells consume H2 and oxygen to produce electricity and
water [10, 11, 12, 55]. A simple electrical model is used to
describe the characteristic voltage curve of the FC [55]:

V f c(t) = (EOC − r f c · i f c(t)− a · ln(i f c(t))−m · es·i f c(t)) · N f c (8)

where V f c is the voltage of the FC, EOC is the open-circuit volt-342

age of one cell, i f c(t) is the current density in one cell, N f c is the343

number of cells, and r f c, s, a, and m are empirical coefficients.344

The hydrogen consumption of the FC depends on its current
and is given by:

ṅH2
f c (t) =

N f c I f c(t)
2 F U

(9)

where U is the utilization efficiency of hydrogen by the fuel345

cell.346

As for the electrolyzer, the model is linearized to obtain:

P f c(t) = k f c · ṅ
H2
f c (t) (10)

where k f c is a constant. The maximum value of P f c is noted347

Pmax
f c .348
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2.5. Hydrogen tank349

Hydrogen tanks are used to store the hydrogen produced by
the electrolyzer. The stored hydrogen is then supplied to the FC
to generate electricity. Similarly to the BSS, a quantity named
level of hydrogen (LOH) is used to represent the state of the
tank:

LOH(t) = LOH(t − ∆t) + ṅH2
el (t) · ∆t − ṅH2

f c (t) · ∆t (11)

Then, using the ideal gas law (PV = nRT ), the volume of the350

tank VH2 can easily be determined.351

3. Scheduling strategy352

As the results of the sizing process depend on how the differ-353

ent components are used (i.e., what is their output), an appro-354

priate control strategy is required. Contrary to classical com-355

ponents, ESS introduce a temporal link between time steps and356

scheduling algorithms have to consider this link to ensure that357

the SOC remains within allowed bounds. This constraint is nec-358

essary to ensure that the results of the sizing are adequate, and359

components oversizing is avoided. As a consequence, it is nec-360

essary to predict the evolution of the entire system, including361

the PV generation which is the primary source of energy for the362

microgrid.363

This paper uses a form of MPC to plan the operation of the364

system in advance, using forecasts. This MPC strategy is a UC365

algorithm. Due to the presence of mixed logical and integer366

variables, the problem is expressed as a MILP problem.367

3.1. Cost function368

In order to achieve economically efficient operation, the uti-
lization cost of the BSS and the HSS need to be quantified and
minimized over a given time horizon [9, 56, 48]. For the BSS,
aging is a major concern that limits the lifetime of the device.
As a consequence, the investment cost and the degradation of
the BSS have to be taken int account in the operation cost. The
utilization cost for charge and discharge are then implemented
as follows [56]:

Bch
cost(t) =

Cinv
bat · Pch(t) · ηb

2 · Nbat,cyc
(12)

Bdisch
cost (t) =

Cinv
bat · Pdisch(t)
2 · Nbat,cyc

(13)

where Cinv
bat is the investment cost for the BSS, and Nbat,cyc the369

number of cycles over its lifetime.370

For the HSS, the O&M and the startup costs must also be
considered. The utilization cost of the electrolyzer and the FC
can be computed as follows [56]:

Hele
cost(t) =

 Cinv
ele

Nele
bat,hr

+ Co&m
ele

 · δele(t) + C start
ele · ∆δele(t) (14)

H f c
cost(t) =

 Cinv
f c

N f c
bat,hr

+ Co&m
f c

 · δ f c(t) + C start
f c · ∆δ f c(t) (15)

where Cinv
ele and Cinv

f c are the investment costs for the electrolyzer
and the FC. Co&m

ele and Co&m
f c are the operation and maintenance

costs of both components. Similarly, C start
ele and C start

f c are their
startup cost. Nbat,hr represents the number of hours of operation
of the HSS over its lifetime. δele(t) and δ f c(t) describe their state
(i.e., 1 for on, 0 for off). Finally, ∆δi represents whether the unit
is starting or not, and is defined as:

∆δi(t) = max{δi(t) − δi(t − 1), 0}, i = {ele, f c} (16)

Based on the previous cost functions, the total operation cost
function for the entire microgrid, over a time horizon of Thor

steps, can be built:

Cop =

Thor∑
t=1

(
Bch

cost(t) + Bdis
cost(t) + Hele

cost(t) + H f c
cost(t)

+ α · PLS (t) + β · Pcurt(t))

(17)

where PLS (t) is the shed load, Pcurt(t) is the curtailed PV output,371

and α and β are the corresponding penalty values. Load shed-372

ding (LS) and PV curtailment (PVC) are two means of flexibil-373

ity to ensure a balance between generation and demand. How-374

ever, their use has to be minimized due to their impact on cus-375

tomer comfort and system efficiency, respectively. The values376

of penalty coefficients α and β are thus chosen to discourage the377

use of LS and PVC. A form of demand response could however378

also be used [57, 58], but is kept for future work.379

3.2. Constraints380

The operation of the various components is subject to several
constraints, as is the islanded operation of the system. In the
following equations, i = {ele, f c} and j = {ele, f c, ch, disch}.
First, all component outputs have to be between their minimum
and maximum values:

Pmin
j ≤ P j(t) ≤ Pmax

j (18)

In order to consider the status of each device (on or off), the
above equation becomes:

δ j(t) · Pmin
j ≤Z j(t) = δ j(t) · P j(t) ≤ δ j(t) · Pmax

j (19)

Due to linearity constraints, this equation can then in turn be
transformed into the following two inequalities:

Z j(t) ≤ P j(t) − (1 − δ j(t)) · Pmin
j

Z j(t) ≥ P j(t) − (1 − δ j(t)) · Pmax
j

(20)

Another constraint is that the electrolyzer and the FC should
not be working at the same time, i.e., the HSS is either charging
or discharging:

δele(t) + δ f c(t) ≤ 1 (21)

A similar constraint is used for the BSS:

δch(t) + δdisch(t) ≤ 1 (22)
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The SOC and LOH constraints also have to be verified:

S OCmin ≤ S OC(t) ≤ S OCmax (23)

Vmin
H2
≤ VH2 (t) ≤ Vmax

H2
(24)

Then, equation (16) can be rewritten as:

∆δi(t) = δi(t) · (1 − δi(t − 1)), i = {ele, f c} (25)

From [59], the above nonlinear equation can be transformed381

into the following linear constraints:382

−δi(t) + ∆δi(t) ≤ 0 (26)
−(1 − δi(t − 1)) + ∆δi(t) ≤ 0 (27)

δi(t) + (1 − δi(t − 1)) − ∆δi(t) ≤ 1 (28)

Finally, as the system is islanded, the balance between gen-
eration and demand has to be met at all time steps, so:

PPV (t) − Pcurt(t) − (Pload(t) − PLS (t))
= Zele(t) − Z f c(t) + Zch(t) − Zdis(t)

(29)

3.3. Problem formulation383

Using the above cost function and constraints, the microgrid
UC problem can be summarized as follows, where S̃ is the set
of variables:

min
S̃
{Cop} s.t. (2), (7), (10), (11), (18) − (29) (30)

4. Sizing algorithm384

The scheduling strategy presented in the previous section re-385

quires several input variables. Some of these variables corre-386

spond to the maximum rating or capacity of each component,387

what are the results of the sizing algorithm. Other inputs are388

parameters set by the user, such as the initial SOC and LOH389

values, and the penalty coefficients α and β. The impact of390

these parameters on results will be discussed in Section 5.391

4.1. Leader-follower structure392

The sizing problem aims at finding the optimal size of the PV,393

BSS, electrolyzer and FC components to achieve the most cost-394

effective solution over a given time period. Let NPV ∈ NPV,395

Cbat ∈ Cbat, Vmax
H2
∈ VH2 , Pmax

el ∈ Pel, Pmax
f c ∈ Pfc. Set U repre-396

sent the whole set, namely, U = NPV ∪ Cbat ∪ VH2 ∪ Pel ∪ Pfc,397

and U ∈ U.398

The problem can then be formulated as a leader-follower
problem [60]. The leader problem (the sizing problem) is as
follows:

min
U∈U
{F(U)} (31)

where F(.) is a function representing the total cost of the system399

over the simulation duration.400

The follower problem (the scheduling problem), is defined
as:

min
U∗,S̃
{Cop} s.t. (2), (7), (10), (11), (18) − (29) (32)

where U∗ is the set of sizing values obtained from the leader.401

In other words, the leader first returns a candidate set of val-402

ues for NPV , Cbat, Vmax
H2

, Pmax
el , and Pmax

f c . Then the follower uses403

these values to calculate the total operation cost using the algo-404

rithm described in Section 3. Based on this cost information,405

the leader adjusts the sizing values until an optimal value that406

minimizes the overall cost is found.407

4.2. Leader problem objective function408

To obtain a valid estimate of the actual cost of the system,
operation cost is insufficient as capital and maintenance costs
must also be considered [15, 48, 18]. In order to convert the
initial capital cost to an annual capital cost, the capital recovery
factor (CRF) is used [15]:

CRF =
r(1 + r)ninv

(1 + r)ninv − 1
(33)

where r is the real interest rate and ninv is the expected life span409

of the microgrid.410

The total capital cost corresponds to the cost of buying the
equipment, given by:

Ccap = CRF · (NPV ·Cinv
PV + Pmax

f c ·C
inv
f c + Pmax

el ·C
inv
ele

+ VH2 ·C
inv
tank + Cbat ·Cinv

bat)
(34)

where Cinv variables represent the prices of the PV, FC, elec-411

trolyzer, hydrogen tanks and battery components.412

Similarly, the annual maintenance cost is given by:

Cmnt = NPV ·Cmnt
PV + VH2 ·C

mnt
tank + Cbat ·Cmnt

bat (35)

where Cmnt variables represent the annual maintenance costs of413

the PV, hydrogen tanks and battery components. As the O&M414

cost of the FC and the electrolyzer are considered in the opera-415

tion strategy equations (12) to (15), they are not included in the416

annual cost.417

The fitness function of the leader problem is thus the total
cost function F(.) given by:

F = Ccap + Cop + Cmnt (36)

418

Finally, the overall problem can be formulated as:

min
U∈U
{Ccap + min

U∗,S̃
{Cop} + Cmnt}

s.t. (2), (7), (10), (11), (18) − (29)
(37)

4.3. Simulation process419

In order to obtain the optimal sizing for the system, the420

MILP-based scheduling algorithm and the EA-based sizing al-421

gorithm are combined.422

A GA [23, 61] is used to solve the leader problem. GA are423

based on the natural selection process similar to biological evo-424

lution. Operators such as mutations, crossover and selection425

enable generating candidate solutions. The decision variables426

of the GA are rounded to the nearest higher value for use in the427

UC MILP algorithm.428

The simulation process is shown in Fig. 3:429
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1. The population of N candidate solutions for the GA is ran-430

domly initialized.431

2. Each of these solutions is then used with the follower prob-432

lem. The UC MILP optimization is run. If the solution is433

infeasible, a new candidate solution is generated.434

3. The GA fitness function value is then computed to deter-435

mine the total cost of each candidate solution.436

4. The process continues until any stopping criterion is met.437

An adaptive method is selected. Firstly, if the fitness func-438

tion values for two consecutive steps are the same, then439

counter Num is incremented. If Num exceeds a given max-440

imum value (here Nummax = 50), the simulation stops as441

the fitness function is not improving anymore. The sec-442

ond criterion is on the number of iterations, for which a443

maximum number (here Genmax = 200) is set.444

Figure 3: Optimization process outline.

5. Simulation results445

In order to validate the sizing methodology, we run several446

simulation cases.447

5.1. Simulation setup448

Simulations are performed using Matlab R2014a and Gurobi449

6.5.1, running on a desktop computer with an Intel Xeon450

3.1 GHz processor, 16 GB RAM, and Microsoft Windows 7.451

Input data profiles for solar radiation and load (Fig. 4) are452

obtained and adapted from a research building located on the453

UTBM campus in Belfort, France. In order to analyze the sen-454

sitivity of sizing results to load levels, we use two load profiles.455

As shown in Fig. 4, load profile 2 is 50% larger than load profile456

1. Component parameters used in the simulations are given in457

Table 1.458

In order to keep simulation time to reasonable durations,459

weekly average data is used for the input data. The approxi-460

mate duration for each run is then of approximately 30 min-461

utes. Although resolutions of 1 hour or more could be used,462

simulation durations would increase significantly and could not463

be performed on a regular computer.464

Figure 4: Weekly average solar radiation and load profiles.

5.2. Cases overview465

To evaluate the impact of initial conditions and parameters,466

five cases are compared. Each case assumes different values467

for S OCini, LOHini, α and β, and one of the two load profiles.468

Case assumptions are summarized in Table 2. Cases 1A and469

1B, and Cases 2A and 2B are designed to compare the influ-470

ence of different initial states for SOC and LOH on the sizing471

results. Case 2 is also used to analyze the influence of different472

load levels on the sizing of the HSS and the BSS. Case 3 is de-473

signed to analyze the influence of the penalty values (α and β)474

on sizing results, with values ranging from 105 to 101. Results475

are summarized in Table 3.476

5.3. Results for Case 1477

For Case 1A, the sizing results return 52 PV panels, a 6 kW478

FC, a 7 kW electrolyzer, tanks with a capacity of 7178 Nm3,479

and 189 kWh of batteries, for a total cost of e 201,970. Here,480

unit Nm3 corresponds to the volume under normal conditions (1481

bar, 0oC). Based on the ideal gas law, we can estimate the vol-482

ume for a higher pressure and temperature. For example, under483

700 bar/15oC, the above volume would amount to 10.82 m3.484

Convergence results of the GA are shown in Fig. 5, and indi-485

cate that 200 generations seem sufficient. Similar convergence486

results are obtained for other cases.487

Fig. 6 shows the scheduling results. The HSS is more fre-488

quently used than the BSS, as the HSS is cheaper to use when489

the power gap between PV output and load demand is large.490
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Table 1: Component and simulation parameters.
Fuel cell [10, 11, 12, 55, 48]

A 0.03
r f c 2.45 × 10−4

m 2.11 × 10−5

n 0.008
Cinv

f c 4,000 e /kW
Co&m

f c 0.2 e /h
Life cycles 30,000h

Pmin
f c 1kW

Electrolyzer [53, 54, 48]
r1 0.0015
r2 -6.019 × 10−6

s1 2.427
s2 -0.0307
s3 3.9 × 10−4

t1 0.214
t2 -9.87
t3 119.1
f1 150
f2 0.99

Cinv
ele 3,200 e /kW

Co&m
f c 0.2 e /h

Life cycles 30,000h
Pmin

ele 1kW
Battery [48]

Cinv
bat 470 e /kWh

Cmnt
bat 1 e /kW.year

Nbat,cyc 2,000
S OCmin 0.5
S OCmax 0.9

Hydrogen tanks [48]
Cinv

tank 150 e /Nm3

Cmnt
tank 10 e /Nm3.year

Vmin
H2

1Nm3

PV panels[48]
Cinv

PV 7,400 e /kW
Cmnt

PV 6 e /kW.year
CRF [48]

ninv 20 years
r 0.05

Table 2: Simulation cases assumptions.
Cases 1A 1B 2A 2B 3
S OCini 0.5 0.9 0.5 0.9 0.5
LOHini 5000 3000 8000 7000 5000
α 105 105 105 105 103

β 105 105 105 105 103

Load profile 1 1 2 2 1

Fig. 7 shows the change in hydrogen level in the tanks. As in491

winter the PV output is insufficient, the HSS discharges mostly492

to supply the load, but in summer, PV output is large enough493

to enable the HSS to recharge and store hydrogen. Due to the494

large penalty values (105) for LS and PVC, these two options495

are almost not used.496

Fig. 7 also shows the SOC profile of the BSS, that is used497

as an auxiliary storage system to ensure the balance between498

generation and demand, while avoiding load shedding and PV499

curtailment.500

For Case 1B, the initial SOC is larger and the initial LOH501

lower. The capacity of the hydrogen tank decreases to 5283502

Nm3, while the battery capacity decreases to 179 kWh. Conse-503

quently, the total cost also decreases toe 160,070. The schedul-504

ing results for Case 1B are similar to the ones obtained for Case505

1A, and are thus not shown. Fig. 8 shows the LOH and SOC506

levels. As the initial SOC is larger than for 1A, the total re-507

quired capacity is lower. For the LOH, the profile is almost the508

same as in Case 1A. For the SOC, in Case 1A, the initial state509

is the minimum SOC, so the BSS cannot discharge at the be-510

ginning, but for Case 1B, the initial state is the maximum SOC511

and the BSS can then discharge.512

Figure 5: Comparison of the convergence of all three EA for Case 1A.

Figure 6: Scheduling results for case 1A. The curve labelled ’Power’ corre-
sponds to the PV output minus the load.
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Table 3: Sizing results.

Case Load S OCi LOHi Total Cost [e ] Cop [e ] Ccap [e ] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

1A 1 0.5 5000 201970 1697.8 127980 52 6 7 7178 189
1B 1 0.9 3000 160070 1663.2 105070 52 6 7 5283 179
2A 2 0.5 8000 219410 1725.1 137210 50 11 6 8000 158
2B 2 0.9 7000 200290 1674.5 128090 54 10 7 7000 190
3 1 0.5 5000 205160 4562.2 125120 52 7 7 7515 2

RBS 1 0.5 5000 276560 151.9 174640 57 7 8 10100 407

Figure 7: LOH and SOC for Case 1A.

Figure 8: LOH and SOC for Case 1B.

5.4. Results for Case 2513

For Cases 2A and 2B, the second load profile with a 50%514

higher demand is used. For Case 2A, the sizing results return515

50 PV panels, a 11 kW FC, a 6 kW electrolyzer, tanks with a516

capacity of 8000 Nm3, and 158 kWh of batteries, for a total cost517

of e 219,410. Fig. 9 shows the scheduling results, and Fig. 10518

the LOH and SOC profiles. The HSS is sufficient to provide519

energy to the load, especially at the beginning, so the needed520

battery capapcity is lower. However, in Case 2B, the HSS is521

insufficient to meet the load, so more PV panels and battery522

energy are needed. We can also see that the rating of the FC523

is larger than in Case 1. As more energy is needed, it becomes524

cheaper to use the FC than the battery, hence the higher FC525

rating.526

For Case 2B, the sizing results return 54 PV panels, a 10 kW527

FC, a 7 kW electrolyzer, tanks with a capacity of 7000 Nm3,528

and 190 kWh of batteries, for a total cost of e 200,290. As the529

load is higher than that of Case 1, more storage, in the form530

of BSS and HSS is needed. As the cost of the energy initially531

contained in the storage units is not accounted for, the algorithm532

increases the size of the storage units rather than increasing the533

number of PV panels. The obtained scheduling results are close534

to the ones shown in Fig. 9. Fig. 11 shows the LOH and SOC535

profiles. Due to slight differences in the scheduling results, the536

SOC curve is difference from the one in Case 2A. However, the537

curves for LOH is similar, as the HSS operates as a longer term538

storage unit.539

Figure 9: Scheduling results for Case 2A. The curve labelled ’Power’ corre-
sponds to the PV output minus the load.

5.5. Results for Case 3540

In this case, as the penalty values are lower (103 instead of541

105), more energy is shed or curtailed. As a consequence, the542
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Figure 10: LOH and SOC for Case 2A.

Figure 11: LOH and SOC for Case 2B.

sizing results return 52 PV panels, a 7 kW FC, a 7 kW elec-543

trolyzer, tanks with a capacity of 7515 Nm3, and 2 kWh of bat-544

teries, for a total cost of e 205,160. Detailed LS, PVC, LOH545

and SOC profiles are shown in Fig. 15.546

The size of the battery is significantly smaller than in other547

cases. This can be explained by the lower values of the penalties548

for LS and PVC, which make these two options more competi-549

tive compared to using the BSS. In order to futher evaluate the550

influence of the different penalty values, we simulate different551

combinations of α and β with Case 1A. The results are shown552

in Table4 and Figs. 12 and 13, and indicate that the smaller the553

values of α and β, the larger the magnitude of LS and PVC,554

respectively.555

Scheduling results are shown in Fig. 14, where we observe556

that limited LS and PVC occur, although for Cases 1 and 2557

the BSS was used to supply the load (due to its cheaper cost).558

As expected, the algorithm choses the most economical way to559

operate the system.560

Figure 12: Load shedding vs. α & β.

Figure 13: Curtailed power vs. α & β.

Figure 14: Scheduling results for Case 3. The curve labelled ’Power’ corre-
sponds to the PV output minus the load
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Table 4: Sizing results with different penalty values for Case 1A.

Case 3
∑Thor

t=1 PLS (t) [kW]
∑Thor

t=1 Pcurt(t) [kW] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

α = 105, β = 103 0 4.4576 51 7 7 6823 58
α = 105, β = 101 0 84.8847 50 7 1 5026 2
α = 104, β = 101 0 84.7377 50 7 2 5543 2
α = 104, β = 103 0.0839 2.4054 55 7 8 8341 2
α = 104, β = 104 0.0352 0 52 6 7 7601 170
α = 104, β = 105 0.1297 0 59 7 8 11123 113
α = 103, β = 101 0 84.1643 50 7 2 7015 2
α = 103, β = 103 2.209 0.7691 52 7 7 7515 2
α = 103, β = 104 3.0844 0 52 7 8 10978 11
α = 103, β = 105 1.9553 0 54 7 8 8315 38
α = 101, β = 101 57.3662 89.4729 50 2 2 5793 2
α = 101, β = 103 60.5996 0 50 2 7 9110 1
α = 101, β = 104 60.3302 0 50 2 7 9023 2
α = 101, β = 105 60.5804 0 50 2 7 9157 2

Figure 15: Shed and curtailed power, LOH and SOC profiles for Case 3.

5.6. Discussion of Cases 1 to 3561

From the summary of results shown in Table 3, it can be ob-562

served that the sizing results and the total cost are impacted by563

the use of different input data and initial states. A comparison of564

the breakdown of costs for all cases is shown in Fig. 16. Results565

indicate that the capital costs are the highest, while O&M costs566

remain relatively small. As the only primary energy source is567

PV, these results are not surprising. The initial energy contained568

in the BSS and the HSS is however not considered. Case 3 has569

the largest O&M cost, due to the penalty values combined to570

LS and PVC. For Case 2A, more fuel cell and hydrogen tanks571

are needed, which results in the largest capital and total cost.572

Simulations also show that the HSS is more appropriate for573

long term (seasonal) storage, as expected. This is especially574

valid as FC and electrolyzers have limited dynamics, and re-575

quire BSS or other fast dynamics storage units to complement576

them and act as an auxiliary unit. On the other hand, because577

the discharge and charge power of the HSS are separate, the578

Figure 16: Comparison of costs for all cases.

degration of the HSS will be slower than for the BSS.579

Regarding LS and PVC penalty values, results have shown580

that values in the range of value [103, 105] are reasonable and581

enable limiting the use of LS and PVC only to necessary cases.582

Values larger than 105 result in no LS or PVC at all, which can583

be problematic are they can be seen as flexibility means of last584

resort.585

5.7. Comparison with a rule-based operation strategy586

In order to compare the obtained results with a simpler, refer-587

ence case, we implement a rule-based operation strategy (RBS)588

[13, 62]. The outline of the algorithm is shown in Fig.17. The589

principle is to use the HSS first, and if it is unavailable, to use590

the BSS. It should be noted that the algorithm does not try to591

maintain the SOC or LOH level for future use, contrary to the592

proposed algorithm. Case 1A is run again with the RBS. Re-593

sults, also given in Table 3, show that because using HSS is594

cheaper, the operation cost is low, but then more BSS capacity595

is required to ensure power balance. As a consequence, the total596

capital cost is the largest of all cases.597
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Figure 17: Rule-based strategy algorithm.

5.8. Influence of time resolution598

In the above simulation, one-week average data is used. A599

better time resolution (for example, one day or one hour) may600

provide more accurate results; however, this would also signif-601

icantly increase computation time to several days or more. In602

order to check the validity of the obtained results with more pre-603

cise input data, a rolling-horizon scheduling simulation with a604

1-hour time resolution is conducted. This resolution is selected605

as it is the maximum resolution available for the input data. In606

summary, the algorithm runs a scheduling task with 1-hour data607

over 1 day, and repeats this every day for a year.608

Results are shown in Figs. 18 (SOC, LOH, LS and PVC)609

and 19 (scheduling results from 2000 hour to 2300 hour). From610

these curves, it can be observed that large LS and PVC occur611

during some periods of the year. As LS and PVC use are sup-612

posed to remain rare, this means that the sizing results are insuf-613

ficient. A reason for this result is that the average data reflects614

the average load in the system, but does not consider peak load615

situations. A similar reasoning may be used for PV generation.616

In order to adjust sizing results, the difference between PV617

output and load demand is computed and shown in Fig. 20.618

Then we adopt the maximum shortage value (i.e., the minimum619

value in Fig. 20) as the capacity of fuel cell, and the maximum620

surplus value (i.e., the maximum value in Fig. 20) as the capac-621

ity of electrolyzer. And sizing value of the HSS are adjusted, so622

that Pmax
f c = 13, Pmax

ele = 37.623

After this adjustment, the rolling-horizon simulation is run624

again. Fig. 21 shows the resulting SOC, LOH, LS and PVC,625

and Fig. 22 shows the scheduling results from 2000 hour to626

2300 hour with the new sizing values. After adjusting the sizing627

value based on the peak load demand, no LS or PVC occur.628

And with the adjusted sizing values, we run MILP scheduling629

for case1A, and total cost is e 212160, operation cost Cop is630

e 1788.7, and capatical cost Ccap is e 138080.631

Figure 18: One-hour one-day rolling horizon scheduling simulation.

Figure 19: One-hour one-day rolling horizon scheduling simulation (2000 h-
2300 h). The curve labelled ’Power’ corresponds to the PV output minus the
load.

5.9. Influence of uncertainty632

As discussed earlier, uncertainty on forecasts of PV output633

and load can impact sizing results. To account for this uncer-634

tainty, the upper bound and lower bounds of estimated values635

are used. In the following, P̃PV (t) and P̃load(t) are the actual636

PV output and load values, and ErPV and Erload the error on637

PV output and load, respectively. The lower and upper bounds638

are then obtained with P̃PV (t) = PPV (t) ± PPV (t) · ErPV and639

P̃load(t) = Pload(t) ± Pload(t) · Erload.640

Two cases are defined. The worst case (the case where the641

difference between PV output and load is the largest) is when642
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Figure 20: PV output minus load demand.

Figure 21: One-hour one-day rolling horizon scheduling simulation with the
new sizing value of HSS.

PV output is equal to the upper bound value, and load is equal643

to the lower bound value; or when PV output is equal to the644

lower bound value, load is equal to the upper bound value. For645

the best case (the case where the difference between PV output646

and load is the lowest), the opposite is used.647

Values for P̃PV (t) minus P̃load(t) are shown in Fig. 23. If the648

sizing results can satisfy the worst and best cases, then others649

cases can also be satisfying by the obtained sizing results. This650

means that the worst and best case data must be used to run651

the co-optimization method and obtain the sizing results. Table652

5 shows the sizing results when ErPV = Erload = 0.1. For653

the worst-case, the HSS used frequently because it is cheaper654

than BSS. For the best case, the BSS is used frequently due to655

limitations of the HSS (minimum startup power), so more BSS656

capacity is needed.657

Figure 22: One-hour one-day rolling horizon scheduling simulation with the
new sizing value of HSS (2000 h-2300 h). The curve labelled ’Power’ corre-
sponds to the PV output minus the load.

Figure 23: Difference between PV output and load demand in 4 cases.

6. Conclusion658

In this paper, we present a methodology to determine the659

optimal sizing for a stand-alone microgrid. This methodology660

combines an EA for sizing and MILP for scheduling, and en-661

ables considering advanced energy management strategies, ca-662

pable of anticipating decisions (especially with respect to stor-663

age), compared to classical rule-based approaches. Results664

show that the operation strategy, initial conditions, time reso-665

lution as well as uncertainty on input data influence the sizing666

of the components, and consequently the total cost of the micro-667

grid. A comparison with a rule-based operation strategy is run,668

and sizing results show that co-optimization method performs669

better. A rolling-horizon simulation is used to adjust the sizing670

values due to the influence of input data time resolution. At last,671

forecasting errors are taken into account using a robust method,672

to further adjust sizing results. With the proposed method and673

complements, the proposed method can therefore be used for674

14



Table 5: Sizing results considering uncertainty. The worst case is defined as the case where the difference between PV output and load is the largest, and the lowest
for the best case.

Case Total Cost [e ] Cop [e ] Ccap [e ] NPV Pmax
f c [kW] Pmax

el [kW] VH2 [N.m3] Cbat [kWh]

Worst case 279270 1761.7 166960 50 8 8 11022 11
Best case 174400 1617.2 113450 50 6 6 5875 269

economically sizing a microgrid containing PV panels, a BSS675

and an HSS.676
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