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Abstract

In the development of numerical models, uncertainty quantification (UQ) can inform appropriate allocation of com-
putational resources, often resulting in efficient analysis for activities such as model calibration and robust design. UQ
can be especially beneficial for numerical models with significant computational expense, such as coupled models,
which require several subsystem models to attain the performance of a more complex, inter-connected system. In the
coupled model paradigm, UQ can be applied at either the subsystem model level or the coupled model level. When
applied at the subsystem level, UQ is applied directly to the physical input parameters, which can be computation-
ally expensive. In contrast, UQ at the coupled level may not be representative of the physical input parameters, but
comes at the benefit of being computationally efficient to implement. To be physically meaningful, analysis at the
coupled level requires information about how uncertainty is propagated through from the subsystem level. Herein,
the proposed strategy is based on simulations performed at the subsystem level to inform a covariance matrix for
UQ performed at the coupled level. The approach is applied to a four-subsystem model of mid-frequency vibrations
simulated using the Statistical Modal Energy Distribution Analysis, a variant of the Statistical Energy Analysis. The
proposed approach is computationally efficient to implement, while simultaneously capturing information from the
subsystem level to ensure the analysis is physically meaningful.

Keywords: uncertainty quantification, statistical energy analysis, statistical modal energy distribution analysis,
model reduction

1. Introduction

In design and analysis, numerical models have traditionally been pursued to gain insight into the performance
of structures that are costly to build, potentially shortening the design-build-test cycle. With modern-day computing
resources, it is now possible to develop more complex numerical models that are capable of incorporating a higher
fidelity representation of physics processes at resolutions that were previously impossible to achieve. In particular,
it has become common to pursue coupled models, whereby several numerical models are utilized to represent the
overall behavior of a more complex, inter-connected system. Herein, coupled models are those models whose physics
processes are simulated utilizing two or more numerical models, of either the same or differing physics. The output
of the individual numerical models are then integrated to obtain the desired quantities of interest. Such examples
can include sub-structuring analysis of a finite element (FE) simulation, or pursuing fluid-structure interaction with
computational fluid dynamics and FE simulations. It is emphasized, however, that there are unavoidable sources of
assumptions and uncertainty in the development of these numerical models that must be accounted for so that they can
be used reliably for decision-making purposes. In the development of these numerical models, assumptions enable
model development but simultaneously limit the ability of the model to replicate reality.

*morvan.ouisse @femto-st.fr

Preprint submitted to Mechanical Systems and Signal Processing February 21, 2017



The desire to utilize numerical models in a predictive capacity has given rise to uncertainty quantification (UQ),
which is a field of research that focuses on understanding how predictions of a numerical model are affected by sources
of uncertainty and assumptions inherent to the model. Such activities that contribute toward uncertainty quantification
include parametric studies, effect screening, sensitivity analysis, and the forward propagation of uncertainty, the goals
of which contribute to efficient numerical optimization and robust design. Thus far, UQ has gained much maturity for
models that require only one forward calculation. UQ of coupled numerical models has received some attention in the
published literature, however, it will undoubtedly continue to receive scientific interest due to the increased sources
of assumptions that are necessary in order to couple several models together.

The basic flowchart of the coupled model paradigm addressed in this manuscript is outlined in Figure 1. This
coupled model paradigm is commonly referred to as a weakly coupled model, where subsystem models are used to
generate inputs for coupled models. This is unlike strongly coupled models where there can be feedback between
models at the subsystem and coupled model levels. There are two levels of analysis that are identified in the figure.
The first level of analysis is where N subsystem models, y;; = fi; (655 psi), i = 1...N, are defined. Uncertain
calibration parameters, 6, ; , are those that are introduced by environmental conditions and modeling choices whereas
control parameters, p;; , are dimensions of the parameter space controlled by the analyst. The subsystem models
serve an integral purpose in order to calculate the final quantities of interest, for example, use of a computational fluid
dynamics code that might be used to determine forces that are applied to a finite element model, or a micro-scale
model of material behavior used to characterize the stress-strain characteristics of a macro-scale material model. The
subsystem level is thus the first level way of considering a system to compute primary responses of the system that
will serve the second level named the coupled level.

SUBSYSTEM LEVEL COUPLED MODEL LEVEL
Input parameters 6, - - - 6, Input parameters 6. - - - 6. p
Subsystem Solver 1 ) ( Coupled Model Solver 1 )
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Figure 1: Levels of Uncertainty of Coupled Models.

Generated from the subsystem models are outputs, y, which are then used to define the inputs for the M coupled
model solvers, as indicated in Figure 1. Note that there can be a different number of coupled models, y.; than there
are of subsystem models, y,;. The coupled model solvers are then used to obtain the final quantities of interest. In
addition, there may be multiple levels of coupled models before arriving at the final quantities of interest, for example,
one that might go from micro- to meso- to macro-scale behavior of a material.

Extending UQ activities to coupled models is not as straightforward as it is with numerical models that require only
one forward calculation. Coupled simulations can be computationally more expensive to execute, and can be defined
using different model forms or structures. For example, in the coupled model framework illustrated in Figure 1, one
can envision that uncertainty can be introduced using either the parameters at the subsystem level, 6, ;, or parameters
at the coupled model level, 6. ;. In this sense, the numerical model can be defined using the subsystem level model
form or the coupled level model form. At the subsystem level the parameters may have a physical meaning, such
as material density or geometry, suggesting that UQ at this level will carry a physically meaningful interpretation.
However, this approach may be cost prohibitive to perform due to the computational expense required to execute the
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subsystem models several times. In comparison, UQ at the coupled model level is computationally cheaper to perform
but at the risk that the results will lose physical meaning.

One analysis that may be considered as a coupled model simulation is the Statistical Energy Analysis (SEA),
and some of the alternative methodologies that have been inspired by SEA for studying the mid- to high- frequency
vibration response of structures. SEA was first developed for application to satellite launch vehicles and has since
been extended to other applications, for example the design of cars, trains, and satellites [1, 2, 3]. The goal of SEA
is not to provide a high-fidelity simulation but rather to provide a statistical average of the vibratory behavior of the
structure of interest [4]. The basic premise of SEA is to reduce a structure down to single degree of freedom (SDOF)
oscillators that are analyzed through their subsystem responses. SEA offers computational efficiency by analyzing
SDOF oscillators, however, this simplification comes at the cost of losing spatial resolution of the system response.
The main assumptions needed for the analysis have been widely acknowledged [5] and include: (i) the need for
a large population of modes in the frequency band of interest (contested in [6]), (ii) modal equipartition, meaning
that no mode dominates the energy in the frequency band, (iii) the ratio of the coupling loss factor to the internal
loss factor is low, (iv) coupling between subsystems must be conservative, and (v) excitation must be wide-band,
spatially distributed and uncorrelated. Despite these assumptions, the method has been shown to work well in several
applications, however, different aspects of the method have been questioned due to the numerous assumptions.

To remedy the assumption of modal equipartition an alternate approach known as the Statistical Modal Energy
Distribution Analysis (SmEdA - the S, E, and A remain capitalized to emphasize its roots in the SEA approach) has
been proposed [7, 8]. SmEdA is one of several strategies developed to extend the statistical approaches to lower
frequencies and tackle the mid-frequency problem such as the Asymptotic Scaled Modal Analyses based on scaling
procedures [9, 10], or the Energy Distribution Methods [11] that propose alternatives to compute the SEA parameters.
SmEdA utilizes natural frequencies and mode shapes of the subsystems used to drive the analysis, rather than approxi-
mating the behavior of a structure using SDOF oscillators as is done in SEA. The natural frequencies and mode shapes
are typically obtained through FE analysis, however, any form of analysis, experimental or analytic, can be utilized
to provide modal information. When the SmEdA framework is implemented analytically, it can be considered as a
coupled model as described in Figure 1 whereby the material and geometric definition of the numerical model define
the subsystem level, and the natural frequencies and mode shapes define the coupled model level. Unlike in SEA,
the spatial information of the structure is retained and has the potential to contribute toward design criteria. Although
SmEdA overcomes the assumption of modal equipartition there are still several assumptions that are utilized in the
analysis that should be accounted for.

The goal of this manuscript is to compare the sensitivity analysis and uncertainty propagation of a structure
simulated in the SmEdA framework at both the subsystem and coupled levels. It is proposed to use a covariance
matrix that is informed by simulations at the subsystem level to perform uncertainty propagation at the coupled level.
The basic question to answer is: can analysis at the coupled model level provide physically meaningful results?
How to develop an uncertainty model at the coupled model level that properly reflects the uncertainty introduced at
the subsystem level, and the extent to which simulations defined at the subsystem level to inform a non-parametric
uncertainty model are needed is also addressed. The analysis is demonstrated on a four subsystem numerical model,
originally developed to demonstrate SmEdA [7] and slightly modified herein. The numerical mid-frequency model is
hence validated and used in this paper to illustrate the methodologies. The remainder of the manuscript is organized
as follows. A brief review of uncertainty quantification efforts, especially those pertaining to SmEdA, are discussed
in Section 2. Section 3 provides in-depth background of the techniques utilized herein, including SEA, SmEdA, effect
screening, and uncertainty propagation. The four subsystem numerical model is described in Section 4, along with
a comparison of UQ results obtained herein. Overall conclusions and suggestions for future work are presented in
Section 6.

2. Literature Review

The use of uncertainty quantification (UQ) techniques has long been pursued to understand the effects that sources
of uncertainty have on model-based decisions. In modeling and simulation applications, UQ typically entails the
use of parametric studies, whereby “sources of uncertainty” refer to those defined by the model parameters. These
techniques manifest themselves in effect screening, sensitivity analysis, and stochastic model updating, and have



become an essential part of the model development process [12, 13, 14]. As such, textbooks devoted to the topic, for
example References [15], [16], have been developed.

Most applications that consider UQ involve model formulations whereby the model requires one forward calcula-
tion to obtain the output of interest. There are a vast number of successful studies implementing UQ in the literature,
especially for structural dynamics applications pursued with finite element models [17, 18]. There are also instances
where UQ has been extended to coupled model simulations, however, in many cases assumptions are utilized to justify
introducing uncertainty at either the subsystem model level or at the coupled model level, for example in [19]. The
main issue with UQ studies is that they can be computationally expensive to conduct due to the need to sample the
model several times with different settings of the input parameters. When trying to identify parameters most influ-
ential to model output, two types of analyses can be performed: effect screening, whereby the parameters are ranked
qualitatively, and sensitivity analysis, whereby parameters are ranked quantitatively. The motivation for pursuing an
effect screening technique originates in the reduced computational demand. In the analysis of coupled numerical
models, the computational expense is often an important factor to consider thus making effect screening techniques
more attractive, however, it is important to utilize best practices to ensure the results are defensible [20].

The importance of pursuing UQ studies has been acknowledged in the simulation of numerical models within the
medium-frequency range as the effects of uncertainties increase with frequency. Some previous studies based on para-
metric or non-parametric processes have been dedicated to the UQ in the statistical energy analysis (SEA) framework,
however, UQ has yet to be extended to the statistical modal energy distribution analysis (SmEdA) framework. In SEA,
it is necessary to reduce a structure into single degree of freedom subsystems and then couple them together utilizing
coupling loss factors (CLFs) and internal loss factors (ILFs). The CLF and ILF values can vary based on the definition
of the subsystems, and changing the CLF and ILF values can impact the SEA energy predicted by the analysis. In
Reference [21], the authors propose an approach to find a robust estimation of the CLFs taking into account the vari-
ation in the subsystem properties. The authors utilize a combination of finite element (FE) modeling and component
mode synthesis to approximate the CLF values. An important assumption, however, is that the authors claim that the
choice of exercising variability on the physical properties of the FE model, component modal properties, or system
modal properties may be unimportant, and that it is important to include some randomness rather than assume a mean
performance of the CLF based on FE analysis. Using this assumption, the authors are able to perform only one FE
analysis and draw random modal statistics to propagate in their model. In [22] the stochastic finite element method
which consists in representing in a parametric and probabilistic form random uncertainties [23] has been extended to
upper frequency applications using the energy operator approach for model reduction.

Another approach to considering the effect of random variability is in Reference [24], where the authors analyt-
ically incorporate statistics into the SEA equations as a convenient alternative to parametric studies to predict the
response statistics of the method. The authors demonstrate that doing so makes it possible to evaluate the robustness
of existing vehicle design to variations in the design parameters, and propose utilizing the information acquired for
the development of future designs. In [25] a nonparametric probabilistic model is used for the reduced matrices in-
volved in the dynamic equations and combined with the matrix model developed for the medium-frequency range.
References [26] and [27] both consider how the predicted energies will vary as the model inputs are allowed to vary.
In Reference [26], the CLF’s and ILF’s are propagated through the model using a central composite design of experi-
ments. Sensitivity coefficients are then obtained by fitting a regression model according to the output from the Central
Composite Design to determine the parameters most influential to the calculated SEA energies. In Reference [28, 27],
the authors pursue methods to predict the lower and upper bounds of predictions given that the input parameters are
allowed to vary and treated in a non-deterministic way. The parameters include the material properties (Young’s mod-
ulus, density), physical properties (speed of sound), and the internal loss factors of SEA. Two approaches are pursued:
(i) a two-level, full-factorial sampling method, and (ii) by sampling data to train a polynomial metamodel, which
is subsequently utilized to find the minimum and maximum performance values of the simulation. The approaches
are successfully demonstrated using three applications: (i) a system of two linear equations, (ii) a two subsystem
problem used to predict performance of a plate-acoustic system, and (iii) a three subsystem problem used to predict
sound transmission loss of a plate. However, the methods proposed by [27] have the potential to be computationally
expensive once applied to more computationally demanding numerical models.

In References [21] and [26], heavy emphasis is placed on reducing computational demand of the simulation by
using simplifying assumptions to justify the level at which UQ studies are performed. Herein, the goal is to study
more directly whether the assumptions are warranted by comparing analysis performed at the subsystem level with
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analysis performed at the coupled model level.

3. Methodology

The basic question addressed in this paper is the level at which parametric studies should be applied for UQ of
coupled models. Herein, the analysis is applied to the simulation performed in the framework of SmEdA, however,
the approach is flexible enough that it can be applied to other coupled model frameworks that follow the formulation
outlined in Figure 1. The approaches pursued previously in [26] and [21] have already demonstrated that it is possible
to propagate uncertainty in a computationally efficient way within the statistical energy analysis (SEA) framework, by
considering the coupling loss factors (CLFs) used at the coupled level of the formulation. This study verifies whether
the resulting uncertainty on the outputs of interest are in fact representative of the uncertainty that would be obtained
if the subsystem parameters had been utilized.

The flowchart of activities performed in this manuscript are highlighted in Figure 2. The mathematical background
needed for each step of the flowchart is discussed in this section such that the manuscript is self-contained; references
are provided if the reader wants more in-depth explanations. The first step is to develop the numerical model. As
mentioned, the numerical model will utilize the mathematical formulation of SmEdA, which is introduced in Section
3.1. The next step of the analysis is to perform a mesh refinement study to ensure that the mesh discretization is
converged, as discussed further in Section 3.2. The resulting numerical model defined at the subsystem level of the
coupled model formulation is then sampled in order to provide the information necessary to pursue effect screening.
The mathematical formulation for three effect screening techniques pursued herein is provided in Section 3.3: (i)
finite differences, (ii) correlation coefficients, and (iii) Morris method. The sampling utilized for effect screening also
provides the information necessary to generate a covariance matrix to inform the sampling performed at the coupled
model level. The rationale for utilizing a covariance matrix to inform the uncertainty propagation at the coupled model
level is discussed further in Section 3.4.

| Develop numerical models. |

‘ Assess prediction variability
| Perform mesh refinement. | according to subsystem
parameters. Subsystem
‘ ‘ Assessment
| Sample FE model. | » Perform effect screening of
‘ subsystem parameters.

Generate covariance matrix. |

A 4

Sample at the coupled model level
using a multi-variate sampling
according to the covariance matrix.

according to coupled model
parameters. Coupled Model
Assessment

» Assess prediction variability

Perform effect screening of
coupled model parameters.

Figure 2: Proposed Flowchart to Assess Model Uncertainties.

3.1. SmEdA

The mathematical formulation of SmEdA is rooted in SEA, whereby it is assumed that the high-frequency response
of a set of N subsystems can be described using a linear set of equations:

{Iinjtvxt = (gt + (T} (D

where I1,,; represents the power injected into the system, II;; represents the power dissipated in subsystem i, and
IT;; represents the power transmitted from subsystem i to subsystem j. Approximating the energy balance of the

5



subsystems as represented in Equation (1) requires the use of internal loss factors to define the power dissipation, and
coupling loss factors to define the power transmission. Doing so results in the representation:

N
Hi:nj = weiE; + w, Z (i E; — niE)), 2

J=1j#i

where w, is a scalar value representing the center of the frequency band of interest, »; is the internal loss factor (ILF)
of subsystem i, 7;; is the coupling loss factor (CLF) between subsystems i and j, and E; and E; are the energies of
subsystem i and j, respectively.

Consider the case with two subsystems only within the frequency band centered around w,, where M, is the
number of modes in the first subsystem and M, is the number of modes in the second subsystem. SEA assumes that
each mode will contribute equally to the overall response of the structure, thus the contribution of the modal energy is
determined through the ratio of the number of modes, as shown in Equations (3) and (4):

M,
Hilnj = a)cmEl + WeNi2 (El - EEZ)’ (3)
M,
1T}, = wapEs + 0o (EEz - E1)~ 4)

In contrast, SmEdA removes the assumption of modal equipartition, such that the contribution of each mode to the
overall response is accounted for individually. SmEdA takes advantage of the dual modal formulation to consider
the physical local modes of the same subsystem. Thus, the formulation considers individual modal energies of each
subsystem, rather than overall subsystem energies. The resulting formulation is shown in Equations (5) and (6):

Mz MZ

I, = [w,,n,, > wcn,,q] Ep= ) wellpgEq, Vp € [1, ..., M), )
g=1 g=1
M1 M]

H;.’nj =— Z wellpgEp + (quq + Z wcnpq] E,, Vg ell,.., M. 6)
p=1 p=1

where p and ¢ are modes of subsystems 1 and 2, respectively, with corresponding natural frequencies, w, and w,.
Note that in the SmEdA formulation, the internal loss factors, 77, and 77,, and the coupling loss factors, 77,,,, are formed
for each modal pair rather than for each subsystem pair. In addition, the coupling is gyroscopic because there are no
mass and stiffness terms that store energy. As a result, the subsystem energies are determined as sums of the modal
energies, as shown in Equation (7):

M] M2
Ei=)E, E=)E, @)
p=1 g=1

The formulation presented in Equations (5-7) can be extended to the prediction of more than two subsystems. As
discussed further in References [7] and [8], satisfying the SmEdA formulation requires that there is a rupture of
impedance between subsequent subsystems models, where the simulation is obtained from the uncoupled simulation
of the subsystems using free or blocked boundary conditions.

The three levels of the SmEdA analysis are illustrated in Figure 3. The first level is the subsystem level defined
using finite element models where the material and geometric properties are defined. The next level is to consider
the natural frequencies, w, and mode shapes, ¢, as determined from the FE analysis at the subsystem level, and the
last level is defined using the CLF’s and ILF’s to obtain the subsystem energies. It should be emphasized that, in
this work, no uncertainty is introduced on damping as it is generally introduced in the same way at the subsystem
and at the coupled model levels so that uncertainties on this parameter does not lead to a difference between the two
levels considered. Moreover, a specific distribution law, such as a log-normal distribution, could be more relevant
for damping than a uniform distribution. Depending on the physics, in some cases uncertainties in the DLFs might
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Figure 3: Levels in the SmEdA Analysis at which Uncertainty Quantification can be Performed.

dominate the energy dispersion response. In this case, the influence of the other physical parameters would not be
visible at the coupled model levels, which is the main objective of the paper.

It is more desirable to perform UQ using the subsystem parameters because it is possible to physically interpret
the results. For example, if a parametric study of the thicknesses of the different subsystems is pursued, UQ tech-
niques would be able to determine which subsystem thickness has the greatest effect in either reducing or increasing
the produced vibratory energy. Knowing which subsystem is most influential to the produced energy would be poten-
tially useful information for the designer, however, parametric study at the subsystem level can be computationally
expensive because of the need to execute the FE model for every calculation.

In comparison, UQ at the coupled model levels is still able to provide meaningful information about more global
properties of a model. Analysis at the coupled level comes with the benefit of being computationally trivial to solve
in comparison to analysis at the subsystem level because it is no longer necessary to execute the FE model; rather,
only the SmEdA equations need to be solved. In the SmEdA framework there are two coupled model levels that
can be utilized: (i) the modal coupling loss factors (CLF) and internal loss factors (ILF), or (ii) the mode shapes
and frequencies used to calculate the CLFs and ILFs. Perturbing only the CLF or ILF would be straightforward and
computationally efficient to pursue, as demonstrated previously [26, 21] within the SEA framework. The question that
remains is how to physically interpret what it means to increase or decrease CLF and ILF values, and if the range of
variation assumed in a UQ study is representative of perturbation in the physical input parameters. The other option
is to perturb the mode shapes and frequencies. Doing so has the potential to provide a physical interpretation because
they can be related to the mass and stiffness of a structure. The same issue of whether the amount of variation assumed
in the coupled model parameters is representative of variation in the subsystem input parameters still arises. Herein,
a covariance matrix is implemented to help mitigate this difficulty due to the fact that it can help to inform sampling
performed at the coupled model level using the results of sampling performed at the subsystem level.

3.2. Mesh Refinement

Herein, finite element analysis is utilized to provide the natural frequencies and mode shapes to the SmEdA
analysis. Any time that a numerical method, such as the finite element method, is implemented it is important to
determine if an appropriate mesh discretization is being defined to represent the continuous differential equations.
The purpose of a mesh refinement study is to assess that the level of mesh discretization utilized is significantly
resolved such that the truncation error has an acceptably small effect on the solution. Criteria for adequate refinement
based notably on the wavelength exist when considering simple homogeneous geometries but these criteria are not
always relevant when considering complex geometries and do not exist at at all for coupled levels. In-depth derivation
and discussion of the steps needed for a mesh refinement study can be found in [29]. The truncation error of the
simulation is defined using the Ansatz error model :

(Ax) = Y = y| = BAXT + O(Ax") ®)

where g(Ax) denotes the user-defined error metric between the exact solution y**’ and the discrete solution y obtained

using a grid size Ax. The pre-factor g is a constant regression coefficient, the exponent p is the rate of convergence of
the truncation error as the mesh size is resolved, and O(Ax”*!) represents the higher order terms.

The exact solution of the code is often only available when performing simple calculations; for more complex
simulations it becomes necessary to approximate the exact solution of Equation (8) with a reference solution, denoted
herein as y"/. This approximation can be achieved utilizing the well-known Richardson extrapolation, which requires
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the simulation results of the code at three levels of mesh resolution: (Ax¢), used to denote the coarse-grid resolution;
(Axyp), used to denote the medium-grid resolution; and (Axr), used to denote the fine-grid resolution. For simplicity, it
is the most straightforward to perform mesh refinement when there is a constant refinement ratio between the coarse,
medium, and fine grid resolutions, as shown in Equation (9):

_ Axc AXM

(€))

h Ax M B Ax F ’
The ratio of solution differences, denoted herein as £ is also required, and can be used to define the rate of convergence
of the solution, denoted herein as p, as shown in Equation (10):

_ Y(Axm) = y(Axc) b= log(é)
Y(Axp) = y(Axy) log(R)’

Finally, the Richardson extrapolation can be approximated as shown in Equation (11), which can be used to calculate
the truncation error of Equation (8):

'3 (10)

Vel = y(Axp) + YAxF) = y(Axm) _ WAxy) + y(Axpy) _Y(AXC).

Rr—1 Rr—1
Lastly, it is noted that a mesh refinement study simply verifies the convergence of the system of partial differential
equations used to define a numerical model. There are two main caveats: (i) the study only assesses the ability to
self-converge, and there is no way to verify that the extrapolated solution, y"“’f is consistent with the exact solution,
yE¥aet and (ii) there is no guarantee that the equations will hold when applied to the simulation of coupled numerical

models.

)

3.3. Effect Screening Techniques

As mentioned, the SmEdA model is dependent on several variables, which each contribute to the output of interest.
Herein, the question is to determine which variables are most influential to the model output using three different
effect screening techniques: (i) finite differences approach, (ii) correlation coefficients, and (iii) the Morris method.
The mathematical formulation of the techniques pursued are presented in this section for completeness; more detailed
explanations and theoretical discussion can be found in [16].

3.3.1. Finite Differences Approach
The finite differences approach provides a local measure of sensitivity. As such, it is widely discouraged to pursue
when other, more accurate global effect screening techniques are computationally feasible [12]. Herein, a finite
differences approach is simply pursued as a comparison; the goal is to demonstrate whether a local sensitivity analysis
is capable of providing an accurate approximation of a global analysis.
The finite difference procedure ranks the influence of parameters 6 as each parameter, ;, is perturbed one at a time
by A8, as suggested in Equation (12):
Ay ¥ +A8)) —y(6))
80; AG; ‘
The basic idea is that the larger the change in output, y that is produced from the change in parameter 6;, the more
influential 6; is to the output. Parameter ranking using this methodology requires j + 1 simulations, where j is the
number of parameters used to define the simulation.

12)

3.3.2. Correlation Coefficients

Correlation coefficients provides a measure of sensitivity utilizing sampling obtained from a computational design
of experiments. Suppose that there are m simulation predictions that can be utilized. The correlation coefficient, rgy,
which is utilized to calculate the influence of parameter 6 on the output y, is calculated as shown in Equation (13):

2000 -5)
oy = T m 2 (3)
S@c-02| | Zou-57]
k=1 k=1

8




where
i

3

m 9 n
=32 and y=> 2 (14)
k=1 m k=1 m

When the correlation coefficient is positive, the input parameter is positively correlated with the output, and negative

suggests a negative correlation. Further, the larger the correlation coefficient, the more influential the parameter, 6 is
to the output, y.

3.3.3. Morris Method

The Morris method is a technique for effect screening that was first introduced by [30] and later improved by [31].
Although only providing a qualitative measure of sensitivity, it has been shown to work well with problems defined
in large-dimensional spaces due to its computational efficiency.

The Morris method relies on evaluating the elementary effects of “trajectories” constructed within the input space.
The elementary effect is defined as the influence of moving one parameter at a time within the parameter space used
to define the simulation, as shown in Equation (15):

YOV, 87 + 260, . 00 = (@, .60, ... 00

EE" =
k (r)
NG

, s)

where EE,(:) is the elementary effect of the k" parameter in the " trajectory, Af is the amount that the parameter 6 is
perturbed, and D is the number of parameters used to define the simulation.

The construction of trajectories within the parameter space is similar to other “one-at-a-time” methods, such as
the finite difference approach discussed previously with the exception that the amount each parameter is perturbed is
no longer infinitesimal. The Morris method provides a reliable approximation of the global statistics due to the fact
that multiple trajectories with random origins in the input space are constructed [20]. Each trajectory requires (D+1)
simulations, where D is the number of parameters used to define the simulation. Reference [31] suggests the use
of 10-50 trajectories in order to provide converged statistics for ranking the parameters. The number of simulations
required to construct a trajectory suggests that the number of necessary simulations will increase linearly as the
number of parameters increases. It is for this reason that the Morris method has the potential to significantly reduce
computational expense, because other global sensitivity analysis techniques such as an analysis of variance might
require the number of simulations increase exponentially as the number of parameters increases. The construction of
two trajectories defined in a two-dimensional parameter space is shown in Figure 4.

The mean and standard deviation statistics of the elementary effects, provided in Equations (16) and (17), respec-
tively are used to rank the influence of the parameters. Large values of the mean suggest that the parameter is highly
influential to the model output, whereas large values of the standard deviation suggest that the parameter is non-linear
with interactions to other parameters:

1 ,
m(EE) = - Z EE" (16)
1<r<N
1 ,
oW(EE) = \/N_l X Z (EE\"” — i(EE)2. 17)
1<r<N

3.4. Propagation of Uncertainty

Sampling of the uncertain input parameters is pursued to assess the overall influence of the input parameters to the
quantities of interest. It is noted, that the sampling techniques pursued in the current study are limited to those that are
computationally feasible to implement. Herein, Monte Carlo (MC) sampling is utilized to sample the uncertain input
parameters used to define the SmEdA analysis. Note that the sampling can be performed directly to the parameters,
or to the hyper-parameters of a probability law used to describe a parameter. MC sampling is fairly straightforward
to implement: the domain of possible values for input parameter values are defined and values are randomly sampled
to characterize the output uncertainty. When sampling in a space defined by multiple calibration parameters, it may
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Figure 4: Construction of Morris Trajectories in Two-Dimensional Space.

be useful to assume a multi-variate normal distribution and sample according to the mean and covariance matrix used
to define the distribution. In this case, sampling the uncertain probability distribution would be done according to the
expression provided in Equation (18):

x=u+Azg (18)

where x is the random vector used to sample the model, u is the vector of mean values of the parameters, A is a real
matrix obtained from the covariance matrix, and z is a vector of standard normal variates obtained using a multi-
variate random number generator. The matrix, A, is obtained from the covariance matrix, X, in a way that satisfies the
relationship shown in Equation (19):

T = AAT. (19)

The matrix, A can typically be obtained using a Cholesky decomposition, or a spectral decomposition, depending on
if the covariance matrix is positive semi-definite. It is also noted that the sampling suggested in Equations (18-19)
will hold true to provide a uni-variate normal distribution, where ¢ would be a scalar value and A would be the scalar
standard deviation.

4. Case-study Application

Having provided the mathematical description for techniques utilized in this manuscript in Section 3, application
to a four-subsystem numerical model is now pursued. The goal is to draw comparison between the analysis performed
at the subsystem level and at the coupled model level. The four-subsystem model pursued herein is adapted from the
numerical model developed in [7] and is shown in Figure 5. The model consists of four subsystems: (i) a 1 m by 1.5
m by 3 mm plate, (ii) a 1 m by 0.7 m by 2 mm plate situated at a 90° angle from the first plate, (iii) a I m by 1.1 m
by 6 mm plate situated at a 90° angle from the second plate, and (iv) a 1 m by 2.3 m by 3 mm plate situated at a 90°
angle from the third plate. Herein, excitation is applied to subsystems #1 and #3 in the frequency band 1410-1780 Hz,
which is in the MF range for the structure of interest and which is the frequency band utilized for all results provided.

The model is developed in Patran 2012 FE preprocessing software using PSHELL elements and linear, isotropic
material properties, and FE analysis is performed using Nastran. The model parameters are listed in Table 1, where
each subsystem is defined by a Young’s modulus, density, Poisson’s ratio, and thickness. A constant damping ratio
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Figure 5: Four-subsystem model.

of 0.05 is assumed for all subsystems. The evolution of the plate modal overlap factors with frequency is presented
in figure 6. The study is carried out in the frequency band between 1410 and 1780 Hz where modal overlap factors
are around and more than 1 justifying a hybrid approach such as SmEdA. To solve for the vibratory energies in the
SmEdA framework from the subsystem level, the FE model of each subsystem model is executed, and the relevant
mode shapes and natural frequencies are extracted to provide the information necessary to calculate the modal CLF’s
and ILF’s. In turn, the CLF’s and ILF’s can be used to solve for the vibratory energies within the SmEdA framework
as defined in Equations (5 - 7). Evaluating the energy of each model from the subsystem level takes approximately
3 minutes utilizing parallel computing such that all four FE calculations are performed simultaneously on a cluster
computing network with 8 GB of RAM for each FE calculation.

Table 1: Physical Parameters Defined at the Subsystem Level.

Number Parameter Abbreviation Nominal Value
1 SS# 1: Young’s Modulus m T kg- s E, 2ell
2 SS# 1: Density [kg - m™ ] 01 7800
3 SS# 1: Poisson’s Ratio Vi 0.3
4 SS# 1: Thickness [m] H 0.003
5 SS# 2: Young’s Modulus [m™! - kg - s72] E, 2ell
6 SS# 2: Density [kg - m1] 02 7800
7 SS# 2: Poisson’s Ratio Vo 0.3
8 SS# 2: Thickness [m] t 0.002
9 SS# 3: Young’s Modulus [m™! - kg - s72] E; 2ell
10 SS# 3: Density [kg - m™!] 03 7800
11 SS# 3: Poisson’s Ratio V3 0.3
12 SS# 3: Thickness [m] 1 0.006
13 SS# 4: Young’s Modulus [m™! - kg - s72] E4 2ell
14 SS# 4: Density [kg - m™'] 04 7800
15 SS# 4: Poisson’s Ratio V4 0.3
16 SS# 4: Thickness [m] ty 0.003

In comparison, evaluation of the vibratory energies from the coupled model level foregoes use of the FE model
and requires only the natural frequencies and mode shapes of each subsystem to be defined. Recall, from Equation
(7), that the SmEdA energies are summed over the modal pairs of subsystems within the frequency band. It can be
expected that mode swapping can occur during the parametric study, however, the form of the spatial mode shapes
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Figure 6: Evolution of the modal overlap factor with frequency for each plate subsystem.

stays consistent such that the modes can be tracked. When the model parameters are allowed to vary, the mode shapes
appearing within the frequency band may drift out, and likewise, mode shapes originally outside of the frequency
band may drift in. To track these mode shapes, the frequency band is expanded to save the bases of modal frequencies
that drift in and out of the frequency band of interest, as discussed further in Section 4.3. Clearly, parametric study of
all the potential modal frequencies may easily outnumber the sixteen parameters that are identified at the subsystem
level. Further, randomly sampling the modal frequencies and associated spatial mode shapes would lose information
about the relative spacing between mode shapes. For these reasons, it is proposed to utilize a covariance matrix to
inform the multivariate sampling of the natural frequencies. The computational benefit of applying the parametric
study to the natural frequencies despite the increase in number of parameters must be emphasized: evaluation of the
vibratory energies from the coupled level takes approximately 0.04 seconds to perform in MATLAB on a standard
dual-core laptop with 8 GB of RAM, about 720 times speed-up from evaluation at the subsystem level.

4.1. Mesh Refinement Study

The first step of the analysis is to perform a mesh refinement study to ensure that the governing equations of
the mesh discretization are sufficiently converged. Mesh refinement is performed at both the subsystem level and
coupled system level to demonstrate that the natural frequencies and SmEdA energies are sufficiently converged. The
theoretical rate-of-convergence of a finite element mesh is observed when only one forward calculation is utilized;
there is no guarantee for the coupled model to observe the same theoretical rate-of-convergence.

Table 2: Mesh Refinement of Higher-Order Tracked Frequency of the Four Subsystems

SS Ax =2mm Ax =1mm Ax =0.5mm . Conversence
y(Ax) (Hz) % Error y(Ax) (Hz.) % Error y(Ax) (Hz.) % Error > X¢/ g
1 2195.2 1.95 22247 0.63 22342 020 22388 1.63
2 2178.2 1.51 2197.0 0.66 2205.2 029 22115 1.20
3 2152.3 0.79 2165.1 0.20 2168.4 0.05 21695 1.97
4 2159.3 1.44 2180.7 0.46 2187.6 0.15 21909 1.64

The mesh refinement study is presented here based on the criteria at the subsystem level that natural frequencies
of the subsystems around 2 kHz are estimated with less than 2% error, and at the coupled level that the number of
modes and SmEdA energies have converged. The mesh criteria obtained at the subsystem level can be compared to
classical approaches based on the wavelength but no similar method exists at the coupled level. The results of the mesh
convergence of higher-order frequencies of the four subsystems are plotted in Figure 7, with the values obtained for
the natural frequencies in Hz , the error in % shown in Table 2. The reference solution utilized in Table 2 is obtained
using the Richardson extrapolation of the frequencies obtained using the three different mesh sizes, according to which
the percent error is less than 2% for all mesh sizes investigated. Above the classical rule of thumb indicating that 6
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elements by wavelength should be used, the analysis indicates that the mesh is fine enough to reach the converged
zone. In this converged zone, a mesh size reduction is directly associated to a reduction of error in the quantity of
interest. It is thus noted that 2% error of natural frequencies with values around 2 kHz will still result in a 40 Hz error.
In comparison, the convergence of the SmEdA energies, and number of modes obtained in the frequency band 1410
- 1780 Hz is shown in Table 3 for all three mesh sizes investigated. For each mesh size, the obtained energy and the
number of modes in the frequency band of interest are reported. It is chosen to use mesh size of Ax = 1 mm because
the error in the natural frequencies is less than 1% and the number of modes in the frequency band appear to have
converged.

Convergence of Higher-Order Frequencies
4| —<— Subsystem 1 i
SubSystem 2
—— SubSystem 3

_8 r r
Ax =0.5mm

log(y”™**Ly(ax))

Ax=1mm
log(Ax)

Figure 7: Mesh Refinement of Higher-Order Frequencies of the Four Subsystems.

Table 3: Mesh Refinement of SmEdA Energies of the Four Subsystems.

Ax =2mm Ax = 1mm Ax =0.5mm
Energy (J) Modes (no unit) Energy (J) Modes (no unit) Energy (J) Modes (no unit)
1 1.71e-6 61 1.72e-6 61 1.74e-6 62
2 3.41e-7 46 3.25e-7 43 3.09e-7 41
3 1.89¢-6 24 1.89¢-6 23 1.88e-6 23
4 9.38e-8 97 1.03e-7 94 1.05e-7 94

4.2. Effect Screening and Uncertainty Propagation at the Sub-System Level

The next part of the analysis proceeds with effect screening using the physical parameters at the sub-system level.
The parameters pursued herein are listed previously in Table 1. For comparison, the three methods discussed in
Section 3 are considered: (i) the finite differences approach, which provides a local measure of sensitivity, (ii) the
correlation coefficients obtained from Monte Carlo sampling, and (iii) the Morris method. A visual comparison of the
three approaches is provided in Figures 8 and 9.

The finite differences approach is pursued by perturbing each one of the sixteen parameters one at a time, by 1% of
its relative value, requiring a total of 17 model simulations. In contrast, the correlation coefficients are obtained using
100 Monte Carlo simulations of the numerical model, whereby the sampling is defined using a latin-hypercube design
of experiments, and each parameter is allowed to vary uniformly by +15% from its nominal setting. A comparison of
the parameter rankings in the frequency band of interest obtained using the finite differences approach and correlation
coefficients is provided in Figure 8. Note that the color scale used in the two figures provides the relative influence
of the parameter to the calculated SmEdA energies. The rankings obtained using the two approaches are clearly
different. For the SmEdA energy of the first and second subsystems, the two approaches identify the thickness of
the first and second plates, #; and #, to be most influential, and then the parameter ranking starts to deviate. For the
SmEdA energy of the third subsystem, the finite difference approach identifies the Young’s modulus and density of the
third plate, E3 and p3 to be most influential whereas the thickness of the third and fourth plates, #3 and #4 are identified
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by the correlation coefficients. For the fourth subsystem, the finite differences and correlation coefficients consistently

identify the thickness of the third and fourth subsystems, #3 and #4, to be most influential.
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The results obtained using thirty trajectories with the Morris method are provided in Figure 9. The simulation
with thirty trajectories requires 30 x (16 + 1) = 510 simulations, in comparison with the 100 simulations utilized to
determine the correlation coeflicients. The graphics for conveying the results of the Morris method are considerably
different than the results provided previously in Figure 8. This is due to the fact that the influence of each parameter is
determined using the mean and standard deviation statistics of the elementary effects, thus requiring two axes to plot
the results. It is noted that the most influential parameters obtained by the Morris method are consistent with those
identified by the correlation coefficients.

A quantitative comparison of the parameters most influential to the SmEdA energy calculated for the third sub-
system only is provided in Table 4. The mean and standard deviation statistics of the elementary effects obtained with
the Morris method are both provided, however, the ranking obtained using the Morris method is ordered according
the mean. Note that the ranking provided by each method is only qualitative. The two parameters identified as being
most influential, 73 and #; are consistent between the ranking provided by the correlation coefficients and the Morris
method, however, the local measure of sensitivity utilized by the finite differences approach identifies p3 and E3 as
being most influential instead. After the first two parameters, the ranking obtained for the correlation coefficients and
Morris method becomes inconsistent. This can be explained by the fact that the standard deviation term, o(EE) is
significant for the 3" to 5 parameters identified as influential by the Morris method, suggesting that these param-
eters, p3, E3, and v, are non-linear or that they are coupled to other influential effects. In contrast, the correlation
coeflicients are unable to account for higher-order interactions.

Table 4: Comparison of Ranking Results for the Third Subsystem

Ranking Finite Differences Correlation Coefficients Morris Method

Parameter % Parameter Txy Parameter w(EE) o(EE)
1 03 0.7111 3 0.5784 t3 2.14e-7 1.22e-7
2 E; -0.6439 ty -0.4967 1y 2.0le-7 2.96e-8
3 I -0.3375 E, -0.2379 03 1.11e-7  9.90e-8
4 V3 -0.2139 03 0.1746 E; 9.96e-8 9.55e-8
5 ty -0.1642 1) -0.1524 V3 7.96e-8 9.76e-8
6 t 0.1036 fon -0.1415 t 6.76e-8 3.0le-7
7 V4 -0.0707 V4 -0.1341 E, 5.83e-8 2.77e-8
8 E, 0.0658 E, 0.0555 04 3.38e-8  2.96e-8
9 P4 0.0656 Vi 0.0318 02 2.83e-8 3.28e-8
10 E, -0.0442 h -0.0294 E, 2.74e-8  2.80e-8
11 02 -0.0421 V3 0.0278 V4 1.75¢-8 1.68e-8
12 P1 0.0118 E, 0.0173 v 1.19¢-8 1.55e-8
13 4 0.0056 E; 0.0126 t 9.91e-9 4.04e-9
14 E, 0.0054 12 -0.0089 E, 3.82e-9 2.38e-9
15 Vi -0.0029 o1 -0.0051 01 2.17e-9  1.24e-9
16 Vo 0.0023 02 0.0015 Vi 1.15¢-9  1.30e-9

4.3. Comparison of Uncertainty Propagation at the Subsystem and Coupled Model Levels

Uncertainty propagation at the coupled model level is pursued through application to the modal frequencies of
the subsystem models. Doing so requires that the spatial bases of the modal frequencies are tracked to ensure that
a parametric study at the coupled level will replicate the effect of modifying parameters at the subsystem level. For
this reason, the frequency band is increased to 1100 - 2200 Hz to ensure that modal bases that might drift in or out
of the frequency band of interest are tracked. The 100 Monte Carlo simulations used to approximate the correlation
coefficients in Section 4.3 are used for generating the spatial modal bases of the expanded frequency band. Because
the Monte Carlo simulations are re-used in this section, all of the parameters used to define the subsystems are varied
to investigate the spatial modal bases for simulation at the coupled model level. A comparison of the number of mode
shapes obtained for the original frequency band of the nominal model, and when the frequency band is expanded to
track the modal bases are provided in Table 5. As shown in the table, the number of mode shapes increases from
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221 for the original frequency band of the nominal model to 562 for the expanded frequency band used to track all
potential modal bases.

Table 5: Number of Modal Bases for each Subsystem.

Sub-System  Nominal Frequency Band (1410 - 1780 Hz) Monte Carlo Evaluations (1100 - 2200 Hz)

1 61 168
2 43 108
3 23 58
4 94 228
Total 221 562

According to the methodology for multi-variate sampling discussed previously in Section 3.4, a covariance ma-
trix is used to inform the multivariate sampling of the natural frequencies. In this application, the covariance matrix
has been obtained from the 100 Monte Carlo samples performed at the subsystem level and is mostly uniform. A
preliminary investigation has been performed to check the convergence of the statistics of interest with 100 samples.
The uniformity of the covariance matrix is likely due to the fact that the plates are assumed to be composed of linear,
homogenous materials, and thus, variations of the physical parameters induce roughly similar variation in the natural
frequencies. It is clearly appealing to utilize computation at the coupled model level due to the computational effi-
ciency of bypassing the FE model evaluation; however, it is necessary first to verify whether evaluation at the coupled
model level is capable of replicating results at the subsystem level. To exploit this computational efficiency, 5000
Monte Carlo samples at the coupled model level are performed and the calculated vibratory energies are compared to
those obtained with the 100 Monte Carlo samples performed at the subsystem level.

Figure 10 provides a visual comparison of the vibratory energies obtained at the coupled model and subystem
levels. The left image of Figure 10 shows the output-output plot of the energy obtained for the second and third
subsystems, and the right image shows a comparison of histograms of energy calculated for the third subsystem. In
the output-output scatter plot, the blue circles indicate samples obtained at the coupled model level, and the red circles
indicate samples obtained at the subsystem model level. In the histogram, the red bars indicate sampling performed
at the subsystem level, and the blue bars indicate sampling performed at the coupled model level. These plots clearly
show that the Monte Carlo sampling at the coupled model level has a tendency to produce SmEdA energies that are
outside of the distribution obtained at the subsystem level.
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Figure 10: Output-Output Plot of Energy for the Second and Third Subsystems (left) and Third Subsystem Energy Histogram (right).
A figure showing the comparison of the energies obtained for all four subsystems is provided in Figure 11. The
diagonal plots show the comparison of the histograms of SmEdA predictions for each subsystem,. The off-diagonal

plots show the comparison of the output-output scatter plots obtained, where the row number defines which subsystem
is plotted on the y-axis, and the column number defines which subsystem is plotted on the x-axis. The main conclusion

16



of Figure 11 is that the sampling provided at the coupled model level is able to capture the tendency of the predictions
at the subsystem level, but with a larger overall spread of predictions.
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Figure 11: Comparison of Results Obtained from Monte Carlo Sampling at the Subsystem and Coupled Model Levels.

A quantitative comparison of the statistics obtained for the Monte Carlo sampling performed at the subsystem
and coupled model levels are provided in Table 6. The consistency of the statistics demonstrate that the use of
natural frequencies offers the potential to provide an adequate substitute to use of the input parameters for uncertainty
propagation.

Table 6: Statistics of Monte Carlo Sampling.

Subsystem Model Calculated Energy (J) Coupled Model Calculated Energy (J)

Subsystem

Mean Standard Deviation Mean Standard Deviation
1 1.71e-6 5.66¢-8 1.71e-6 4.21e-8
2 3.25e-7 5.24e-8 3.22e-7 5.03e-8
3 1.87e-6 3.08e-8 1.87e-6 3.11e-8
4 1.03e-7 2.45e-8 1.02e-7 2.57e-8

5. Conclusions of the proposed approach

The question at stake in this work is the level at which parametric studies can be applied when considering coupled
problems involving two levels, the subsystem and the coupled model level. Choosing to pursue UQ at the subsystem
level can be computationally expensive but the results are physically meaningful, whereas analysis performed at the
coupled model level can be computationally trivial but with a less intuitive physical interpretation of the results.
Furthermore, there is no guarantee that propagation of uncertainty at the coupled model level will be representative
of the variability that would be obtained at the subsystem level. The proposed approach incorporates the use of a
covariance matrix, informed by minimal sampling at the subsystem level, to propagate uncertainty at the coupled
model level. Doing so makes it possible to maintain computational efficiency while simultaneously providing results
that are physically meaningful to the analyst. The approach is applied on a four-subsystem model simulated in the
Statistical Modal Energy Distribution Analysis (SmEdA) framework, an extension of the Statistical Energy Analysis
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(SEA). The subsystem level inputs in this case are the material properties and geometry used to define the finite
element models of the physical structure. There are two coupled model levels, the first being the natural frequencies
and mode shapes obtained from the finite element model and the second being the coupling loss factors and internal
loss factors calculated from the FE model results. A comparison of uncertainty propagation applied to the input
parameters at the subsystem level and the natural frequencies at the coupled model demonstrates that the overall
statistics of uncertainty propagation can be replicated using the coupled model level. However, due to the fact that
the coupled model level can be sampled significantly times more than the subsystem level, the range of predictions
is much larger. In the proposed work uncertainty has only been introduced in the natural frequencies. This is a
reasonable assumption for the case-study application utilized herein, whereby the identity of the mode shapes likely
stays consistent. Uncertainty of a mode shape for more complicated structures requires significantly more care than
considering uncertainty of the scalar-valued natural frequencies. In addition, alternatives to the use of the covariance
matrix to relate the output at the subsystem level to the inputs at the coupled model level can also be further explored.
The fundamental assumption behind the covariance matrix is that the parameter space can be described using a multi-
variate random normal distribution. There is still an open-ended question as to whether this is the most appropriate
formulation, and an area of future work would be to explore the effect of this assumption on the analysis result.

6. Concluding remarks

In this manuscript, uncertainty quantification (UQ) has been performed utilizing two different model form def-
initions that can be defined within a coupled model framework: (1) at the subsystem level whereby the model is
parameterized using physical input parameters or (2) at the coupled model level using intermediate quantities of the
analysis. To focus on the variability of model parameters and reduce the numerical uncertainty caused by trunca-
tion effects and mesh discretization in particular, preliminars studies on mesh refinement and effect screening are
performed: covariance matrix-based uncertainty propagation at the subsystem level has proven to be time-efficient.
The results of the UQ then show that quite similar results are obtained working at both the subsystem and the model
coupled level, with a higher range of predictions at the coupled model level.
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