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1. Introduction

The mechanisms associated to the thermomechanical behavior of shape
memory polymers are very different of the martensitic phase transformation
exhibited by shape memory alloys (change of crystalline network between the
austenitic ”mother” phase and the martensitic ”produced” phase) [1].

The thermomechanical properties of shape memory polymers, namely
stiffness, Young’s modulus, Poisson ratio and thermal expansion coefficient
are extremely dependent of temperature since the polymer behavior drasti-
cally changes between under and above the glass transition temperature Tg.
This temperature is related to the so-called ”molecules’ mobility” which is
low under Tg and high above. Some authors may speak about ”hard do-
mains” and ”soft domains” respectively.

Hence, the shape memory polymers (SMP) can be considered as two-
phases materials with[2]:

• a rigid phase corresponding to the ”glassy state” when T < Tg, T being
the temperature and Tg the glass or vitrous transition temperature.The
cohesion between the molecular chains is assured by the Van Der Waals
forces;

• a soft phase corresponding to the ”rubbery state” when Tg < T < Tf ,
Tf being the fusion temperature. A part of the links provided by the
Van Der Waals forces is broken inducing higher molecules mobility.

The properties of SMP are most of the time frequency- or strain rate-
dependent. In permanent harmonic regime or in the Laplace space, the
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applied stress may be written as

σ(t) = σ0e
jωt, (1)

where σ0 is the magnitude of the stress, ω the frequency and j2 = −1. The
corresponding strain is

ε(t) = ε0e
j(ωt−δ), (2)

which provides the expression of the complex elasticity modulus E∗, namely

E∗ =
σ(t)

ε(t)
=
σ0
ε0
ejδ. (3)

This complex modulus can be decomposed in real part and imaginary
one:

E∗(ω, T ) = E
′
(ω, T ) + jE

′′
(ω, T ) , (4)

where E
′

is called the storage modulus and E
′′

the loss modulus. The loss
factor η is defined as

η = tan δ =
E ′′

E ′
. (5)

A tipycal evolution of these properties is given by Hayashi [3], which pro-
vides some results on a shape memory polyurethane (MM-4520) manufac-
tured by SMP Technologies, which is rigid at room temperature (Tg ' 45 ℃).
In this work, the dynamical mechanical analysis (DMA) was conducted on a
Perkin-Elmer DMA instrument, in bending mode, using the dual cantilever
attachment on bars with length 20 mm , width 12 mm and thickness 3.5 mm.
The single-frequency scanning temperature was run by increasing tempera-
ture by 2 ℃ /min, at 1 Hz (figure 1).

In time, the analysis is more complicated, since the transient movement
is not described by harmonic analysis, and the time history is required to
properly describe the behavior of interest. In the following, we review several
models of SMP that may be used in time and frequency analyses.

2. A first thermomechanical modeling

2.1. Description of the model

A unidimensional thermomechanical constitutive model is proposed by
Tobushi et al. [5], in which nonlinear stress terms are considered for both
elastic and viscous effects.
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Figure 1: DMA results at 1 Hz for a SMP (MM-4520): variation of the storage modulus
E′, the loss modulus E′′ and the loss factor tan δ [4].

In these conditions, the authors introduce a non-linear constitutive equa-
tion:

ε̇ =
σ̇

E
+m(

σ − σy
k

)m−1
σ̇

k
+
σ

µ
+

1

b
(
σ

σc
− 1)n − ε− εs

λ
+ αṪ , (6)

where σ, ε, T denote stress, strain and temperature respectively. The
dot denotes time derivative. E, µ, λ, and α are the Young’s modulus, the
viscosity, the retardation time and the coefficient of thermal expansion.

In order to express the non-linear time-independent strain, with respect

to linear elastic term
σ̇

E
in equation (6), a non linear term is used, described

by a power stress function. The irrecoverable εs is then considered as

εs = S(εc + εp). (7)

The dependence of coefficients E, k, σy, µ, σc, λ, and S are expressed by
an exponential function of temperature T . These parameters are denoted by
x and are written as

x(T ) = xg exp[a(
Tg
T
− 1)], (8)

where xg is the x value at T = Tg. The boundaries of the glass transition
region are Tg ± Tw. Each coefficient is constant above Tg + Tw and below
Tg − Tw.
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Figure 2: Three dimensional stress-strain-temperature diagram showing the loading path
in the thermomechanical test [5].

2.2. Test description

In order to validate the model, a three-dimensional stress-strain-temperature
diagram in which the thermomechanical tests can be described is used, as
shown in figure 2. The successive steps are:

(1) isothermal loading at Th = Tg+Tw (Tw = 20 K) until ε = εm (rubbery
state),

(2) thermal stress associated to cooling until T1 = Tg − Tw with εm kept
constant,

(3) unloading at T1,
(4) heating until Th.
In the applications presented in the paper, the strain rate is 8.33 ×

10−3 s−1, the heating rate is 0.0667 K.s−1, the cooling rate is 0.133 K.s−1

while εm = 4 %, 10%, and 20%.

2.3. Stress-strain-temperature relationship

The values of the parameters (Eg, kg, σyg, µg , σcg, λg and Sg) are deter-
mined at Tg [5]. The coefficients above and below Tg are obtained by fitting
using equation (8).

As seen in figures 3 and 4, during the loading process (1) up to εm at
Th, the stress increases nonlinearly when the strain becomes large. In the
cooling process (2), the stress increases.
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Figure 3: Relationship between stress and strain in the thermomechanical test: (a) εm =
4%, (b) εm = 10%, (c) εm = 10% [5].

2.4. Remark concerning modeling

All the parameters of the model are obtained by curve fitting based on the
empirical equation (6). The parameters temperature dependency are given
by an exponential form (equation 8). For practical applications, this may be
useful but one should mention that this model is not a predictive model.

3. A second thermomechanical modeling [6]

The Helmholtz free energy Htotal of a representative volume of material is
obtained from the contribution of the Helmholtz free energy of the rubbery
phase Hr and the Helmholtz free energy of the glassy phase Hg:

Htotal = fr(T )Ht + fg(T )Hg, (9)

where the glassy rate fg(T ) = 1 − fr(T ), fr being the rubbery rate. The
authors proposed to introduce ”a third phase” called ”initial glassy phase”
fgo such that:

Htotal = fr(T )Ht + fg0(T )Hg0 + fg(T )Hg. (10)
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Figure 4: Relationship between stress and temperature in the thermomechanical test: (a)
εm = 4%, (b) εm = 10%, (c) εm = 10% [5].

The total stress is then written as:

σ =fr(T )σr + fg0σgo + ftσt. (11)

The model has been developed using the Voigt limit and presuming that
the volume fraction of each phase is expressed as

fr(T ) =
1

1 + exp(−(T − Tref )/A)
, fg(T ) = 1− fr(T ). (12)

One has to note that fr or fg expressions are chosen such that fr(T =

Tref ) = fg(T = Tref ) =
1

2
. Hence, Tref can be considered as the mean

temperature value.
The initial conditions in the model are given by fg0 = fg(t = 0) and

ft((t = 0)) = 0.0.
During cooling, one has fg0 = fg(t = 0) and ft((t = t2)) = ft((t =

t1)) + ∆fg where t2 > t1.
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Figure 5: Relationship between strain and temperature in the thermomechanical test: (a)
εm = 4%, (b) εm = 10%, (c) εm = 10% [5].

During reheating, ∆fg of glassy phase transforms into rubbery phase
(RP). Here both IGP and FGP transform in RP in a similar way. Therefore

∆fg0 =
fg0

fgo + ft
∆fg ∆ft =

ft
fgo + ft

∆fg, (13)

where ∆fg0 is the volume fraction from the IGP and ∆ft is the volume
fraction from the FGP. Finally one has:

fg0(t = t4) = fg0(t = t3)−∆fg0, ft(t = t4) = ft(t = t3)−∆ft, (14)

where t4 > t3.

3.1. Deformations and stresses

3.1.1. Rubbery phase

As indicated above, the material response at T ≥ Tg shows rubber like
hyperelastic behavior. For an isotropic homogeneous elastomer, the Langevin
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chain-based Arruda-Boyce eight-chain model [7] captures the hyperelastic
behavior of the material up to large stretches. Qi et al. [6] defined the
Cauchy stress tensor as:

σr =
µr

3Jr

√
Nr

λch
L−1[

λch√
Nr

]B
′

r + kr(Jr − 1− 3α1(T − T0))1. λch =
√
trBr/3,

(15)
where kr is the elastic bulk modulus, µr the initial bulk modulus, Nr

the number of ”rigid links” between the two crosslink sites,
√
Nr the limit

stretch, α1 the thermal expansion coefficient (at T ≥ Tg), L
−1(x) an inverse

Langevin function, 1 the second order identity tensor. The volumetric strain
is obtained from Fr = ( 1

J
1
3
r

)Fr where Fr is the overall strain gradient, Jr =

det[Fr] ; Br = Fr(Fr)
T and Br

′

= Br − 1
3
tr(Br)1 is the deviatoric part of

Br ; λch =

√
tr(Br)

3
.

The inverse Langevin function L−1(x) is an integral component for sta-
tistically based networks models which describe rubber-like materials. It is
defined by

L(x) = cothx− 1

x
. (16)

Among the various approximations of L−1(x), a popular approximation, valid
on the whole range x ∈ ]-1,1[ has been published by A. Cohen [8] as

L−1(x) ' x
3− x2

1− x2
. (17)

A more recent contribution from Jedynak [9], which is valid for x ≥ 0 x 6=1,
provides

L−1(x) ' x
3.0− 2.6x+ 0.7x2

(1− x)(1 + 0.1x)
. (18)

3.1.2. Initial glassy phase

The deformation of the IGP is represented by the total strain gradient
F. Among many models, Qi et al [6] described also the hyperelastic behavior
using the method proposed by Arruda-Boyce [7]. The viscoplastic behavior
of the polymer is modeled in decomposing the stress response into an equi-
librium time-independent behavior and a non-equilibrium time- dependent
behavior.
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Figure 6: One-dimensional rheologic representation of viscoplastic model of a glassy poly-
mer.

The figure 6 shows a 1D rheological representation of the model. The
total stress is:

σg0 = σr
g0 + σve

g0. (19)

The hyperelastic spring can be modeled using the Arruda-Boyce eight
chain model, but with different parameters i.e.:

σr
g0 =

µg
3JG

√
NG

λch
L−1[

λch√
NG

]B
′

g + kg(Jg − 1− 3α2(T − T0))1. (20)

For the viscoplastic deformation, one writes:

Fe = FFv−1

. (21)

The stress due to viscoplastic deformation can be calculated using Fe i.e.:

σve
go =

1

Je
[Le : Ee − α2(3λg + 2Gg)(T − T0)1], (22)

where Je = det(Fe), Ee = ln Ve, Ve = FeRe and Le is the fourth order
isotropic elasticity tensor

Le = 2Gg1 + λg1 � 1, (23)

Gg and λg being the Lam constants and 1 the fourth-order identity tensor.
The evolution of Fe is obtained through the decomposition of spatial

velocity gradient
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l = ḞF−1 = ḞeFe−1 + FelvFe−1, (24)

where Ḟ is the material velocity gradient , lv = ḞvFv−1is the spatial velocity
gradient with:

lv = ḞvFv−1 = Dv + Wv, (25)

where Dv and Wv are the stretching rate and the spin. For isotropic con-
figuration, the authors used Wv = 0 and choose for the viscoplastic stretch
rate

Dv =
γ̇v√
2τ

σ
′
g0, (26)

where σg0 = Reσg0R
e. Here the prime symbol denotes the deviator τ which

is the equivalent shear stress defined as :

τ = [
1

2
σ
′
g0 : σ

′
g0]

1
2 . (27)

γ̇v denotes the viscoplastic shear strain rate and is described by:

γ̇v = γ̇0exp[−
∆G

kT
{1− (

τ

s
)}]. (28)

To further consider the softening effects observed in the experiments, the
following evolution rule can be used:

ṡ = h0(1−
s

ss
)γ̇v with s = s0 when γv = 0, (29)

where s0 is the initial value of athermal shear stress and ss the saturation
value. When s0 > ss, equation (29) represents an evolution rule that char-
acterizes a softening of the material.

3.1.3. Frozen glassy phase FGP

During cooling, a new glassy phase will be formed (”frozen” from the
rubbery phase RP). The deformation in the RP is also frozen implying that
the ”newly formed glassy phase” does not inherit the deformation of the RP
phase and will behave as an undeformed material. But there is a new strain
due to the redistribution of overall strain, the incremental strain gradient for
the FGP ∆Fn+1

T is:

∆Fn+1
T = { Fn+1(Fn) if ∆T 6= 0

1 if ∆T = 0
}, (30)
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where Fn and Fn+1 are the overall strain gradients at the increment n
and n+ 1.

The total strain gradient acting on the FGP is written as:

FT
n+1 = ∆Fn+1

T Fn
T. (31)

The stress in the FGP can be calculated using equations (20)-(31) with
FT instead of F in equations (20) and (23).

The definition of the FGP plays a key role in capturing the shape mem-
ory effect. The advantage of this definition is that it does not require the
introduction of a 3D finite deformation equivalent ”stored strain” which was
used in 1D small deformation constitutive model of Liu et al. [10].

3.2. Results

The material parameters of the model are identified and listed in table 1.

Table 1: Parameters used in the simulations [6].

3.2.1. Isothermal uniaxial compression simulation

Figure 7 shows the comparison between experiments and numerical sim-
ulations of isothermal uniaxial compressions at different temperatures and
strain rates. The effect of temperature and strain rate is shown.
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Figure 7: Compression tests [6]

3.2.2. DMA simulations to determine Tg
A cylindrical sample was subjected to an isothermal uni-axial cyclic load-

ing following a sinusoidal waveform at 1 Hz with a maximum strain of 4%.
Figure 8 shows tan δ versus temperature. It should be emphasized that the
maximum value of the loss factor has been normalized to the maximum value
for both numerical and experimental results: the maximum value is not pre-
dicted by the model, while the shape of the curve is almost captured.

3.2.3. Free recovery

The numerical simulation of the free recovery experiment was conducted
to demonstrate the shape memory effect of the model (figure 9).

3.2.4. Constrained recovery

In figure 10, the stress was normalized by the maximum compression
stress immediately after loading at high temperature. In addition, during
heating, a large overshoot in the stress was observed in the experiments but
not captured in the model. Heat transfer and stress relaxation which are not
included in the model, may explain this fact.

3.3. Remark concerning modeling

In the paper of Qi et al[6], the originality comes from that three phases
(one rubbery phase and two glassy phases) are considered i.e.: Rubbery
Phase (RP) with T ≥ Tg ; Frozen Glassy Phase (FGP) which refers to the
newly formed glassy phase caused by a decrease in the temperature from
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Figure 8: Tgdetermination by cyclic tests [6]

T ≤ Tg) ; Initial Glassy Phase (IGP) which refers to the glassy phase in the
initial configuration of the material.

For RP the Cauchy stress tensor is obtained using an hyperelastic model,
namely a Arruda-Boyce eight chain [7]. The IGP stress can be represented by
an hyperelastic spring with the same behavior as before combined with a com-
ponent associated to the viscoplastic deformation. As the initial deformation
of FGP is zero, the new strain is due to the redistribution of overall strain.
The incremental strain gradient for the FGP ∆FT

n+1 is defined. Moreover, a
guideline for material parameter identification is given. As the authors said,
heat transfer and stress relaxation are not included in the model.

4. A third thermomechanical modeling [11], [4]

Depending on the studied strain regime, the constitutive models are for-
mulated in large or small deformation frameworks. Pieczyska et al. choose
classically the mixture between two phases [11]. The model includes the
”hard” glassy phase called g and the ”soft” rubbery phase called r. There is
no more distinction between FGP and IGP but only a glassy phase g. The
constitutive equations are formulated separately for each phase. A rheologi-
cal scheme of the 1D model is shown in figure 6.
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Figure 9: Deformation recovered during reheating in the free recovery case [6].

4.1. Rubbery phase

The modeling of this phase is strictly the same as the one used by Qi et
al.[6], based on the eight chains model of Arruda-Boyce [7].

4.2. Glassy phase

The viscoplastic strain rate tensor Dν , is expressed as [11]:

Dν = γ̇νNν
g, Nν

g =
√

3
2
σ

′II
g /τgν

τgν =
√

3
2
σ

′II
g : σ

′II
g

, (32)

where σ
′II
g is the deviator of the Cauchy stress tensor σII

g and γ̇ν the equiv-
alent viscoplastic shear rate.

The evolution of the viscoplastic part of FII
g is calculated as:

Ḟν
g = γ̇ν(FethII

g )
−1

Nν
gF

II
g . (33)

In a classical way for the equivalent viscoplastic shear rate, a power law
is used:

γ̇ν = γ̇0(
τgν
τ cgν

)m+1, (34)
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Figure 10: Stress response in the constrained recovery case.[6]

with

τ cgν = τ0exp(−
h1
τ0
γν) + τsat(1− exp(−

h0
τsat

γν)). (35)

Moreover, some deformation and temperature change measurements with
infrared camera are performed during some tensile tests, as shown in figure
11.

4.3. Overall behavior

The effective behavior of the shape memory polyurethane is the resultant
response of individual phases. Pieczyska et al. [11], [4] choose the Voigt-type
averaging scheme, based on a uniform strain hypothesis. The total Cauchy
stress tensor σ is an average of stresses in the individual phases. Thus, one
has:

F = Fr = Fg σ = frσr + fgσg. (36)

Qi et al. [6] give the same mixing rule between the ”three phases”:

σ =fr(T )σr + fg0σgo + ftσt. (37)

This choice corroborates the concluding remarks of Gilormini and Diani
[12]. They show that uniform strain hypothesis leads to good predictions
whereas a consistent use of the uniform stress hypothesis in order to predict
the elastic properties and thermal expansions gives poor results.
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Figure 11: SMP (Tg = 45 ℃) tensile test at strain rate 1 sec−1 [4]

4.4. Analysis of the relaxation problem [13]

Subsequently, the same team tried to solve the problem of modeling the
stress response in the constrained recovery case shown in figure 10. They
introduced a multi-branch approach for non-equilibrium relaxation processes.
A rheological representation of the model is proposed in figure 12.

As usual, hyperelastic material models for rubbers are used for the equi-
librium behaviors. For nonequilibrium behaviors in the viscoelastic branches,
it is assumed that all branches follow the same viscous flow rules with dif-
ferent relaxation times. As the temperature is varied, the relaxation times
in individual branches also vary. The authors [13] assumed that the time-
temperature shift for each branch follows the same rule according to the
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Figure 12: Rheological representation of the proposed model [13].

”thermo-logical simplicity” [14] i.e.

τ iM(T ) = τ i0aT (T ) for i = 1, ...,m+ 1. (38)

At temperatures close to or above Tg The William-Landel-Ferry equation [15]
is used:

log aT =
C1(T − T0)
C2 + (T − T0)

. (39)

When temperatures are below Tg, an Arrhenius- type behavior developed by
Di Marzio and Yang [16] is used:

ln aT = −AFc
kB

(
1

T
− 1

Tg
). (40)

For nonequilibrium rubberry branches (i = 1, ...,m), each branch is taken to
represent a relaxation mode and the Rouse model is chosen.The relaxation
times are given by Rubinstein and Colby [14]:

τ i0 =
τR
i2

for i = 1, ...,m. (41)

Hence, the problem of modeling the constrained recovery cycle (see figure
12).
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Figure 13: Stress response in the constrained recovery case [13].

5. Modeling in the frequency domain

The increasing use of SMP for dynamic applications, under various tem-
perature ranges, has made necessary the characterization of these materials
over wide frequency bands [17]. A dynamic mechanical analysis (DMA) can
be used to determine the evolution of viscoelastic properties as a function of
the temperature and loading frequency. The main purpose of this section is
to check the validity of the time-temperature equivalence [18] obtained from
the DMA measurements, use this equivalence to find the master curves of the
material, and finally identify a suitable model for the viscoelastic behavior
of the SMP.

5.1. Material and mechanical tests

As a representative thermally-actuated shape-memory polymer, the tBA-
/PEGDMA is chosen, it is a chemically-crosslinked thermoset polymer stud-
ied recently by Yakacki et al. [19] and Srivastava et al. [20].
This SMP is tested by a dynamic mechanical analysis. Viscoelastic properties
(storage modulus E ′, loss modulus E ′′ and loss factor tan(δ)) are measured
using a METRAVIB DMA50 apparatus every 5 ℃ or 10 ℃ in isothermal
conditions. Temperature varies between 0 ℃ and 90 ℃ and the frequency of
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the excitation from 0.1 Hz to 180 Hz according to the temperature.
The results of the DMA tests are shown in figure 14. The storage modulus
E ′ decreases with the temperature and increases with the frequency. The
large gap between the glass state modulus and the rubbery modulus (the
ratio exceeds 3000), is a specificity of shape memory polymers. The glass
transition temperature Tg is located between 45 ℃ and 55 ℃. In this range
of temperature, the viscoelastic properties of the tBA/PEGDMA are really
interesting, indeed the value of the loss factor is higher than 1.5 in a wide
range of frequencies and can reach a maximal value of 2.5 [21], which is much
higher than classical materials used for vibration damping applications.

5.2. Master curve

According to the time-temperature superposition principle, curves of E ′

and tan(δ) vs. frequency (figure 14) at one temperature can be shifted hor-
izontally to overlap with adjacent curves. The shift factors aT are obtained
through an optimization procedure (classical least square method) for a ref-
erence temperature T0 selected arbitrarily and are equivalent for both E ′ and
tan(δ), therefore the time-temperature equivalence is validated in the consid-
ered temperature and frequency ranges for the tBA/PEGDMA. The master
curves of the storage modulus and loss factor are given in figure 15.

In this work,the temperature evolution of the shift factor aT is expressed
according to WLF equation (39) which can also be written as

T − T0
log aT

= − 1

C0
1

(T − T0)−
C0

2

C0
1

, (42)

with C0
1 = 10.87 and C0

2 = 32.57 K for a reference temperature T0 of 40 ℃
(figure 16).

5.3. Modeling of viscoelastic behavior

Two models are proposed here: the fractional derivative Zener model
and the 2S2P1D. The Zener model [22] provides the expression of the elastic
complex modulus as

E∗(ω) =
E0 + E∞(iωτ)α

1 + (iωτ)α
. (43)

Its behavior in the frequency domain is described between two asymptotic
values, namely the static elastic modulus E0 and the high-frequency limit
value of the dynamic modulus E∞ ; τ is the relaxation time and α is the order
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of the fractional derivative. The statements 0 < α < 1, τ > 0 and E∞ > E0

must hold to fulfill the second law of thermodynamics. An estimation of the
four parameters E0, E∞, α and τ from experimental measurements is given
in [23]. The parameters of the fractional derivative Zener model obtained for
the tBA/PEGDMA are given in Tab. 2, with τ(T ) = aT (T ).τ0.

The figure 17 compares the master curves of the dynamical properties
(storage modulus, loss modulus and loss factor) obtained from experimental
measurements with the ones coming from the Zener model, given by Equation
43). The viscoelastic behavior of the tBA/PEGDMA, predicted by the Zener
model with only four parameters, seems reliable for the storage modulus and
the loss factor. Moreover, the identification of the 4 parameters is obvious.
However, the loss modulus and a close look at the transition region indicates
that the Zener model is not able to represent the asymmetry of the tan(δ)
peak. This is the reason why a more general model, the 2S2P1D, is proposed.
The 2S2P1D model, whose name comes the abbreviation of the combination
of two springs, two parabolic creep element and one dashpot [24], is a model
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Table 2: Zener model parameters for the SMP tBA/PEGDMA.

E0 (MPa) E∞ (MPa) α τ0 (s)
1 2200 0.78 1.22

allowing description of the rheological properties of a viscoelastic material
with an asymmetric loss factor. For a given temperature, the 2S2P1D model
is based on seven parameters, all with a physical meanings, to estimate the
value of the complex modulus as

E∗(iωτ) = E0 +
E∞ − E0

1 + γ(iωτ)−k + (iωτ)−h + (iωβτ)−1
, (44)

where k and h are exponents with 0 < k < h < 1, γ and β are constants, E0

is the rubber modulus when ω → 0, E∞ is the glassy modulus when ω →∞
and τ is the characteristic time. The parameters are estimated using an
optimization procedure based on least squares, directly from experimental
data. For the tBA/PEGDMA the parameters are given in Table 3.

As can be seen from figure 17, a good fit is obtained between the 2S2P1D
and the experimental measurements, on a wide frequency band. Compared
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Table 3: 2S2P1D model parameters for the SMP tBA/PEGDMA

E0 (MPa) E∞ (MPa) k h γ β τ0 (s)
1.01 2190 0.17 0.79 1.43 3.1e+4 0.83

to the Zener model, this model requires more efforts for parameters identifi-
cation, but the result is really consistent with the experimental tests.

Among the various possible applications of using SMP for damping ap-
plications, a composite structure with tunable damping has been proposed
in [21].

6. Conclusion

In this paper, several thermodynamical models have been reviewed from
the literature, allowing description of time behavior of shape memory poly-
mers in the time domain. A model suitable for frequency domain analyses
has also been described, after some investigation that could show that time-
temperature superposition principle was valid for the shape memory polymer
of interest.
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