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Abstract

In this paper the relaxed micromorphic continuum model with weighted free and gradient micro-
inertia is used to describe the dynamical behavior of a real two-dimensional phononic crystal for a wide
range of wavelengths arriving down to the size of the unit cell. In particular, a periodic structure with
specific micro-structural topology and mechanical properties, capable of opening a phononic band-gap,
is chosen with the criterion of showing a low degree of anisotropy (the band-gap is almost independent
of the direction of propagation of the traveling wave). A Bloch wave analysis is performed to obtain the
dispersion curves and the corresponding vibrational modes of the periodic structure. A linear-elastic,
isotropic, relaxed micromorphic model including both a free micro-inertia (related to free vibrations of
the microstructures) and a gradient micro-inertia (related to the motions of the microstructure which are
coupled to the macro-deformation of the unit cell) is introduced and particularized to the case of plane
wave propagation. The parameters of the relaxed model are then calibrated on the dispersion curves of
the phononic crystal showing an excellent agreement in terms of both dispersion curves and vibrational
modes. Almost all the homogenized elastic parameters of the relaxed micromorphic model result to be
determined. This opens the way to the design of morphologically complex meta-structures which make use
of the chosen phononic structure as the basic building block and which preserve its ability of “stopping”
elastic wave propagation at the scale of the structure.
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1 Introduction
A new class of innovative engineered materials, also known as phononic/photonic crystals or metamaterials,
showing exotic behaviours with respect to both mechanical and electromagnetic wave propagation are recently
attracting great interest for their unique unconventional properties, such as frequency band gaps [1, 27, 43],
negative refraction [31, 34], cloaking [7, 35], filtering/focusing capabilities [5], etc. Among these unorthodox
properties, the ability to “stop” or “bend” the propagation of waves of light or sound with no energetic inputs
is the main aspect disclosing rapid and previously unimaginable technological advancements.

Specifically, in the electromagnetic domain, these metamaterials might be used for rendering aircrafts or
other vehicles undetectable to radar, for making objects invisible to the human eye [35], or to realize the
so-called super-lenses that would allow the human eye to see single viruses or nano-organisms [8]. Other
important applications concern the revolution of the electronics in communication and information man-
agement systems, using light instead of electrons as the information carrier, through photonic band-gap
materials [4]. Finally, in order to obtain wider and frequency tunable band-gaps several approaches have
been proposed by varying the properties of the materials as well as their spatial ordered/disordered arrange-
ment [10,11,13,26,39,44].

Notwithstanding the interest raised by such “electromagnetic metamaterials”, they will not make the
object of the present paper which will be instead centered on the study of “mechanical metamaterials”.

As far as phononic crystals and mechanical metamaterials are concerned, regrettably, their introduc-
tion into the current technology appears less advanced, although many potential applications of practical
implementation have already been proposed: from seismic protection [6, 28] to environmental noise reduc-
tion [27,30], from sub-wavelength imaging to focusing [3], acoustic cloaking [29] and even thermal control [25].

Such materials also pushed innovative naval, automotive and aeronautical vehicles conception in view
of absorbing external solicitations and shocks, thereby drastically improving their internal comfort. What’s
more, civil engineering structures which are built in the vicinity of sources of vibrations such as metro lines,
tramways, train stations, and so forth would take advantage of the use of these metamaterials to ameliorate
the enjoyment of internal and external environments [14].

Based on the same principle, passive engineering devices perfectly able to insulate from noise [15] could
be easily conceived and produced at relatively low costs. The conception of waveguides used to optimize
energy transfers by collecting waves in slabs [40] or wires, as well as the design of wave screens employed to
protect from any sort of mechanical wave could also see a new technological revolution. And many other
unprecedented applications that, at this juncture, we cannot even envision could be abruptly disclosed once
such metamaterials would become easily accessible.
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In this paper, we focus our attention on those metamaterials which are able to “stop” wave propagation,
i.e. metamaterials in which waves within precise frequency ranges cannot propagate. Such frequency intervals
at which wave inhibition occurs are known as frequency band-gaps and their intrinsic characteristics (char-
acteristic values of the gap frequency, extension of the band-gap, etc.) strongly depend on the metamaterial
microstructure.

The approach that we use here to describe the mechanical behavior of band-gap metamaterials is in
complete rupture to the classical approaches that are nowadays used to study phononic crystals. Indeed,
the most spread approach to the modeling of band-gap metamaterials is that of starting from a precise
microstructure and to derive the dispersive properties of the equivalent medium using upscaling arguments
or numerical homogenization techniques (see e.g. [17, 36–38] BOUTIN). If such methods allow, on the one
hand, to make a direct comparison between the micro and the macro properties, on the other hand, they are
often strongly limited to large wavelengths.

From a different perspective, we start from a macroscopic (directly defined at the homogenized level)
linear-elastic relaxed micromorphic model (which is known to be able to describe band-gap behaviors [9,
19, 21–24]) and we determine the parameters of our model on real metamaterials by an inverse approach.
Similarly to classical isotropic linear-elasticity where two parameters (Young modulus and Poisson ratio)
are needed to describe the average behavior of a large class of engineering materials, in the same way in
isotropic, linear-elastic enriched elasticity few extra parameters will be needed to describe the averaged
behavior of a relatively huge class of metamaterials sharing the common characteristic property of stopping
wave propagation. The results that we present in this paper are not restricted to large wavelength as it is often
the case, but show an excellent agreement with the behavior of the band-gap structure up to wavelengths
which are comparable to the size of the unit cell.

The fact of determining the coefficients of an enriched continuum model on real band-gap metamaterials
with given microstructure is of paramount importance for the subsequent implementation of the model in
Finite Element codes and for an effective design of morphologically complex band-gap metastructures.

1.1 Notations
In this contribution, we denote by R3×3 the set of real 3×3 second order tensors, written with capital letters.
We denote respectively by · , : and 〈·, · 〉 a simple and double contraction and the scalar product between two
tensors of any suitable order6. Everywhere we adopt the Einstein convention of sum over repeated indices if
not differently specified. The standard Euclidean scalar product on R3×3 is given by 〈X,Y 〉R3×3 = tr(X · Y T ),
and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉R3×3 . In the following we omit the index R3,R3×3 if
no confusion can arise. The identity tensor on R3×3 will be denoted by 1, so that tr(X) = 〈X, 1〉.

We consider a body which occupies a bounded open set B of the three-dimensional Euclidian space R3

and assume that its boundary ∂B is a smooth surface of class C2. An elastic material fills the domain B ⊂ R3

and we refer the motion of the body to rectangular axes Oxi.
For vector fields v with components in H1(B), i.e. v = (v1, v2, v3)

T
, vi ∈ H1(B), we define

∇ v =
(
(∇ v1)T , (∇ v2)T , (∇ v3)T

)T , while for tensor fields P with rows in H(curl ;B), resp. H(div ;B), i.e.
P =

(
PT1 , P

T
2 , P

T
3

)
, Pi ∈ H(curl ;B) resp. Pi ∈ H(div ;B) we define CurlP =

(
(curlP1)T , (curlP2)T , (curlP3)T

)T
,

DivP = (divP1,divP2,divP3)
T
.

As for the kinematics of the considered micromorphic continua, we introduce the functions

χ(X, t) : B ⊂ R3 → R3, P (X, t) : B ⊂ R3 → R3×3,

which are known as placement vector field and micro-distortion tensor, respectively. The physical meaning
of the placement field is that of locating, at any instant t, the current position of the material particle X ∈ B,
while the micro-distortion field describes deformations of the microstructure embedded in the material particle
X. As it is usual in continuum mechanics, the displacement field can also be introduced as the function
u(X, t) : B ⊂ R3 → R3 defined as

u(X, t) = χ(X, t)−X.
6For example, (A · v)i = Aijvj , (A · B)ik = AijBjk, A : B = AijBji, (C · B)ijk = CijpBpk, (C : B)i = CijpBpj ,

〈v, w 〉 = v · w = viwi, 〈A,B 〉 = AijBij etc.
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2 The relaxed micromorphic model with weighted free and gradient
micro inertia

In recent previous contributions [9, 12, 21–23, 32, 33], the relaxed micromorphic model has been introduced
as that enriched model of the micromorphic type which, in the linear-elastic, isotropic case, features a strain
energy density of the form

W =µe ‖ sym (∇u − P )‖2 +
λe
2

(tr (∇u − P ))
2︸ ︷︷ ︸

isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(1)

+ µmicro ‖ symP‖2 +
λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µeL

2
c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

,

where all the introduced constitutive coefficients are positive constant (the Cosserat couple modulus µc can
also be vanishing in some special cases without affecting the well-posedness of the model SEE NEFF ZAMM
2004). This particular constitutive form of the strain energy density will be used in the present paper as
descriptive of a certain class of metamaterials with particular topologies that will be shown to exhibit band-
gap behaviors7. Such constitutive choice is dictated by the previous works on this subject [20–24] showing
that the relaxed micromorphic model is the most effective enriched continuum model that can be used for
the simultaneous description of band-gaps and non-localities in metamaterials. As we will show in the second
part of the paper, the fitting of the parameters on the basis of the dispersion curves, as presented in the
present work allows to have a first estimate of the elastic parameters of the relaxed micromorphic model.
On the other hand, a fitting procedure based on the dispersion curves alone is not precise enough to allow
an accurate estimation of the characteristic length of the considered metamaterial. In this paper, only the
main elastic parameters of the model will be then determined, while the effect and associated estimate of
the characteristic length will be analyzed in further works where the fitting will be based on the use of the
transmission coefficient as done already in [19].

As far as the adopted kinetic energy is concerned, we consider (as done in [9]) a Cartan-Lie decomposition
of the free micro-inertia ‖P,t‖2, as well as of the gradient micro-inertia ‖∇u ,t‖2 (as presented in [20]). The
kinetic energy density that we thus retain in this paper to model the mechanical behavior of the targeted
real phononic crystals takes the following form:

J =
1

2
ρ ‖u,t‖2︸ ︷︷ ︸

Cauchy inertia

+
1

2
η1 ‖ dev symP,t‖2 +

1

2
η2 ‖ skewP,t‖2 +

1

6
η3 tr (P,t)

2︸ ︷︷ ︸
weighted free micro-inertia

,

(2)

+
1

2
η1 ‖dev sym ∇u ,t‖2 +

1

2
η2 ‖ skew∇u ,t‖2 +

1

6
η3 tr (∇u ,t)2︸ ︷︷ ︸

weighted gradient micro-inertia

,

We discuss here briefly the inertia terms appearing in Eq. (2) in order to give an explanation of the adopted
nomenclature as well as a general interpretation of the respective physical meaning associated to each term:

• The Cauchy inertia term 1
2ρ ‖u,t‖

2 is the macroscopic inertia introduced in classical linear elasticity.
It allows to describe the vibrations associated to the macroscopic displacement field. In an enriched
continuum mechanical modeling framework, this means that such terms account for the inertia to
vibration of the unit cells considered as material points (or Representative Volume Elements) with
apparent mass density ρ.

7This same energy could be used to describe, from a macroscopic point of view, the behavior of band-gap metamaterials
obtained using piezoelectric patches, as those presented e.g. in [16].
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• The term 1
2η ‖P,t‖

2 accounts for the inertia of the microstructure alone: we called η free micro-inertia
[20] since it represents the inertia of the microstructure seen as a micro-system whose vibration can
be independent of the vibration of the unit cells. An inertia term of this type is mandatory whenever
one considers an enriched model of the micromorphic type, i.e. a model that features an enriched
kinematics (u, P ). Indeed, it would be senseless to introduce an enriched kinematics, an enriched
constitutive form for the strain energy density and then avoid to introduce this free micro-inertia in the
model. It would be like introducing a complex constitutive structure to describe in detail the mechanical
behavior of microstructured materials while not giving to the model the possibility of activating the
vibrations of such microstructures. The free micro-inertia allows us to account for the vibrations of
the microstructures that typically appear for high frequencies (i.e. small wavelengths comparable with
the characteristic size of the microstructure) in a huge variety of mechanical metamaterials. As we
will show in more detail in the remainder of this paper, the Cartan- Lie decomposition of the tensor
P,t in its dev sym (trace-free symmetric-), skew (skew-symmetric-) and tr (trace-) part allows for the
independent control of the cut-off frequencies of the optic branches. This feature will be crucial for the
fitting of the parameters of our model on the real metamaterials targeted in this paper.

• The gradient micro-inertia term is of the type η̄ ‖∇u ,t‖2 and, when split using a Cartan-Lie decom-
position, it takes the form shown in Eq. (2) (see also [20]). Such term allows to account for some
specific vibrations of the microstructure which are directly coupled to the deformation of the unit cell
at the macro scale. In other words, this term allows to account for the inertia of the motions of the
microstructure which are generated as a consequence of the deformation of the unit cell as a whole.
This gradient micro-inertia term brings additional informations with respect to the free micro-inertia
term previously described and this fact is translated on the behavior of some dispersion curves that, as
we will see, can be flattened when increasing the value of η̄1, η̄2 or η̄3.

The action functional A of the considered model can be introduced as

A =

∫ T

0

∫
BL

(J −W ) dv dt, (3)

where [0, T ] is the interval of time during which the motion of the considered micromorphic system wants
to be observed. Following standard variational arguments, the equations of motion of the system can be
obtained by making the action functional (3) stationary and take the form (see also [12,22,23,32,33])

ρ u,tt −Div[ I ] = Div [ 2µe sym (∇u − P ) + λe tr (∇u − P ) 1+ 2µc skew (∇u − P ) ] ,

η1 dev sym P,tt = 2µe dev sym (∇u− P )− 2µmicro dev sym P − µeL2
c dev sym ( Curl CurlP ) ,

η2 skewP,tt = 2µc skew (∇u− P )− µeL2
c skew ( Curl CurlP )

1

3
η3 trP,tt =

(
2

3
µe + λe

)
tr (∇u− P )−

(
2

3
µmicro + λmicro

)
trP − 1

3
µeL

2
c tr ( Curl CurlP ) . (4)

where, for compactness, we set I = η1 dev sym ∇u ,tt + η2 skew∇u ,tt + 1
3η3 tr (∇u ,tt).

2.1 Plane wave ansatz
We rapidly recall in this subsection how, starting from the equations of motion in strong form for the
relaxed micromorphic medium, it is possible to obtain the associated dispersion curves by following standard
techniques. We start by making a plane-wave ansatz which means that we assume that all the 12 scalar
components of the unknown fields8 u(x, t) and P (x, t) only depend on the component x1 of the space variable
x which is also assumed to be the direction of the traveling wave. With this unique assumption, together

8In what follows, we will not differentiate anymore the Lagrangian space variable X and the Eulerian one x. In general, such
undifferentiated space variable will be denoted as x = (x1, x2, x3)T .
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with the introduction of the new variables

PS :=
1

3
tr (P ) , P[ij] := ( skewP )ij =

1

2
(Pij − Pji) , (5)

PD := P11 − PS , P(ij) := ( symP )ij =
1

2
(Pij + Pji) ,

PV := P22 − P33, i, j = {1, 2, 3},

the equations of motions (4) can be simplified and rewritten, after suitable manipulation, as (see [9, 21–23]
for additional details):

• a set of three equations only involving longitudinal quantities:

ρ ü1 −
2 η1 + η3

3
ü1,11 = (2µe + λe)u1,11 − 2µe P

D
,1 − (2µe + 3λe)P

S
,1 ,

η1 P̈
D =

4

3
µe u1,1 +

1

3
µeL

2
c P

D
,11 −

2

3
µeL

2
cP

S
,11 − 2 (µe + µmicro) PD , (6)

η3 P̈
S =

2µe + 3λe
3

u1,1 −
1

3
µeL

2
cP

D
,11 +

2

3
µeL

2
cP

S
,11

− (2µe + 3λe + 2µmicro + 3λmicro) PS ,

• two sets of three equations only involving transverse quantities in the ξ-th direction, with ξ = 2, 3:

ρ üξ −
η1 + η2

2
üξ,11 = (µe + µc)uξ,11 − 2µe P(1ξ),1 + 2µc P[1ξ],1,

η1 P̈(1ξ) = µe uξ,1 +
1

2
µeL

2
c P(1ξ),11 +

1

2
µeL

2
c P[1ξ],11 (7)

− 2 (µe + µmicro) P(1ξ),

η2 P̈[1ξ] = −µc uξ,1 +
1

2
µeL

2
c P(1ξ),11 +

1

2
µeL

2
cP[1ξ],11 − 2µc P[1ξ],

• one equation only involving the variable P(23):

η1 P̈(23) = −2 (µe + µmicro)P(23) + µeL
2
cP(23),11, (8)

• one equation only involving the variable P[23] :

η2 P̈[23] = −2µc P[23] + µeL
2
cP[23],11,

• one equation only involving the variable PV :

η1 P̈
V = −2 (µe + µmicro)PV + µeL

2
cP

V
,11. (9)

Once that this simplified form of the equations of motion is obtained, we look for a wave form solution of the
type

v1 = β1 e
i(kx1−ωt), v2 = β2 e

i(kx1−ωt), v3 = β3 e
i(kx1−ωt),

(10)

v4 = β4 e
i(kx1−ωt), v5 = β5 e

i(kx1−ωt), v6 = β6 e
i(kx1−ωt),

where β1, β2, β3 ∈ C3 and β4, β5, β6 ∈ C are the unknown amplitudes of the considered waves, ω is the
frequency, k the wavenumber and where, for compactness of notation, we set

v1 :=
(
u1, P

D
11, P

S
)
, v2 :=

(
u2, P(12), P[12]

)
, v3 :=

(
u3, P(13), P[13]

)
,

(11)

v4 := P(23), v5 := P[23], v6 := PV .
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Replacing the wave-form (10)-(11) in the equations of motion (6)-(9) and simplifying, we end up with the
following systems of algebraic equations

A1(ω, k) · β1 = 0, Aτ (ω, k) · βτ = 0, τ = 2, 3, A4(ω, k) · α = 0, (12)

where we set α = (β4, β5, β6) and

A1(ω, k) =


−ω2

(
1 + k2 2 η1+η3

3 ρ

)
+ c2p k

2 i k 2µe/ρ i k (2µe + 3λe) /ρ

−i k 4
3 µe/η1 −ω2 + 1

3k
2c2m1 + ω2

s − 2
3 k

2c2m1

− 1
3 i k (2µe + 3λe) /η3 − 1

3 k
2 c2m3 −ω2 + 2

3 k
2 c2m3 + ω2

p

 ,

A2(ω, k) = A3(ω, k) =


−ω2

(
1 + k2 η1+η22 ρ

)
+ k2c2s i k 2µe/ρ −i η2ρ ω

2
rk ,

− i k µe/η1, −ω2 + 1
2 c

2
m1 k

2 + ω2
s

1
2 c

2
m1 k

2

1
2 i ω

2
r k

1
2 c

2
m2 k

2 −ω2 + 1
2 c

2
m2 k

2 + ω2
r

 ,

(13)

A4(ω, k) =


−ω2 + c2m1 k

2 + ω2
s 0 0

0 −ω2 + c2m2 k
2 + ω2

r 0

0 0 −ω2 + c2m1 k
2 + ω2

s

 .

In the definition of the matrices Ai, i = {1, 2, 3, 4} the following characteristic quantities have also been
introduced:

ωs =

√
2 (µe + µmicro)

η1
, ωr =

√
2µc
η2

, ωp =

√
(3λe + 2µe) + (3λmicro + 2µmicro)

η3
,

(14)

cm1 =

√
µe L2

c

η1
, cm2 =

√
µe L2

c

η2
, cm3 =

√
µe L2

c

η3
cp =

√
λe + 2µe

ρ
, cs =

√
µe + µc

ρ
.

The dispersion curves for the weighted relaxed micromorphic model with free and gradient micro-inertia
can hence be obtained as the solutions ω = ω(k) of the algebraic equations

detA1(ω, k) = 0,︸ ︷︷ ︸
longitudinal

detA2(ω, k) = detA3(ω, k) = 0,︸ ︷︷ ︸
transverse

detA4(ω, k) = 0.︸ ︷︷ ︸
uncoupled

(15)
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Figure 1: Characteristic dispersion curves of the weighted relaxed micromorphic model obtained with the
tentative values of the parameters shown in Tab. 1.

We show in Fig. 1 the characteristic dispersion curves that can be obtained via the weighted relaxed
micromorphic model. In such figures the following acronymshave been used accordingly to the preceding
papers on this subject:

• TRO: transverse rotational optic,

• TSO: transverse shear optic,

• TCVO: transverse constant-volume optic,

• LA: longitudinal acoustic,

• LO1-LO2: 1st and 2nd longitudinal optic,

• TA: transverse acoustic,

• TO1-TO2: 1st and 2nd transverse optic.

To draw the curves in Fig. 1, we chose the tentative values of the characteristic parameters shown in table
1. From the observation of such curves many features which are important for the subsequent fitting of the
parameters can be identified:

• The first main characteristic of the relaxed micromorphic model is that the longitudinal and transverse
acoustic waves have an horizontal asymptote which has been seen to be essential for the description of
band-gaps in enriched continua [9,21–24]. Moreover, it has been shown in [9] that the slopes (close to the
origin) of the longitudinal and transverse acoustic curves can be expressed in terms of the parameters
of the relaxed model as√

3λe λmicro (µe + µmicro) + 2µe µmicro [3(λe + λmicro) + 2(µe + µmicro)] + 2λmicro µ2
e + 2λe µ2

micro

ρ (µe + µmicro) (3(λe + λmicro) + 2(µe + µmicro))
,

(16)√
µe µmicro

ρ (µe + µmicro)
.

The slope of the longitudinal and transverse acoustic curves will be seen to be a primordial feature for
the fitting of the relaxed micromorphic model on real metamaterials. Moreover, such slopes provide a
way to compare the relaxed micromorphic model to classical Cauchy elasticity for low frequencies (high
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wavelengths), since they are a measure of the apparent macroscopic stiffnesses of the considered meta-
material. As a matter of fact, it has been shown in [2] that, using simple homogenization arguments,
if one sets

µmacro =
µeµmicro

µe + µmicro
, λmacro =

1

3

(2µe + 3λe) (2µmicro + 3λmicro)

2 (µe + µmicro) + 3 (λe + λmicro)
− 2

3

µeµmicro

µe + µmicro
, (17)

then the slopes of the longitudinal and transverse acoustic curves can be rewritten as√
λmacro + 2µmacro

ρ
,

√
µmacro

ρ
.

Since λmacro and µmacro represent the apparent macroscopic parameters of the metamaterial that we
want to describe via our enriched model, such identification of the slopes of the acoustic curves in
terms of the macroscopic elastic parameters allows a direct comparison with classical elasticity when
considering small frequencies.

• The second main feature of the dispersion curves that we can point out is the presence of the cut-
off frequencies ωs, ωr and ωp that are defined in (14) as functions of the parameters of the weighted
relaxed micromorphic model. From their definition, we can immediately remark that each of these
cut-offs depends on a different free micro-inertia parameter, so that each cut-off, can be identified to
be related, at low wavenumbers, to a specific vibration mode. More precisely, ωs being related to η1,
which in turns can be seen to be the micro-inertia associated to the dev sym part of P,t, is the cut-
off of a vibration mode initially (for low wavenumbers) associated to micro-distorsions. Analogously,
ωr is related to η2, which is the micro-inertia associated to the skew part of P,t and can then be
interpreted to be the cut-off of a mode initially associated to micro-rotations. Finally ωp is related to
η3 which is the micro-inertia associated to the tr part of P,t so that it can be interpreted to be the
cut-off of a mode initially associated to volume variations. For higher wavenumbers the vibration modes
associated to each dispersion curve can vary and coupled micro-vibrational modes can be observed on
each branch. We can here underline the fact that the splitting of the tensor P,t by means of the use of
its Cartan-Lie decomposition, allowing the introduction of three independent micro-inertia parameters
η1, η2 and η3, is fundamental to have the possibility of a reasonable fitting of the dispersion curves on
real metamaterials. Indeed, the fact of having the freedom of moving independently the three cut-offs
by varying the value of the parameters η1, η2 and η3 will be seen to be a fundamental feature for the
fitting on real metamaterials that we propose afterwards.

• The third characteristic of the weighted relaxed micromorphic model is that related to the presence of
a gradient micro-inertia. The effect of the parameters η̄1, η̄2 and η̄3 on the dispersion curves is that
of flattening some of the longitudinal and transverse optic curves which can eventually take horizontal
asymptotes. As it has been shown in [20], the gradient micro-inertia parameters have no role on
the uncoupled curves, while they provide the aforementioned flattening effect for the longitudinal and
transverse waves. In particular, the parameter η̄1 has been seen to have no specific effect on the
dispersion curves, while the parameters η̄3 and η̄2 have been seen to be separately responsible for the
flattening of the longitudinal and transverse waves, respectively.

• We finally point out that if considering a 2D problem, the uncoupled waves have not to be taken
into account. Indeed, with reference to Eqs. (8-9), the uncoupled equations govern the evolution of
the quantities of the quantities P(23), P[23] and PV . Under the hypothesis of plane micro-strain, the
variables P(23) and P[23] are automatically vanishing, while the variable PV reduces, according to its
definition, to the variable P22 which results to be known when the longitudinal quantities PD and PS
are determined. For these reasons, the uncoupled waves will not appear in the fitting procedure on the
2D metamaterials considered in the following sections.
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Parameter Value Unit
µe 200 MPa

λe = 2µe 400 MPa
µc = 5µe 1000 MPa
µmicro 100 MPa
λmicro 100 MPa
Lc 1 mm
ρ 2000 kg/m3

η 10−2 kg/m3

η 10−1 kg/m3

Parameter Value Unit
λmacro 82.5 MPa
µmacro 66.7 MPa
Emacro 170 MPa
νmacro 0.28 −

Table 1: Tentative values of the parameters used in the numerical simulations (left) and corresponding values
of the Lamé parameters and of the Young modulus and Poisson ratio (right), for the formulas needed to
calculate the homogenized macroscopic parameters starting from the microscopic ones, see [2].

In the following section, we will target a precise microstructure which is known to show band-gaps and
we will use the weighted relaxed micromorphic model presented before to obtain, by inverse approach, the
values of the elastic parameters of the model for this particular microstructure.

3 Fitting the parameters of the weighted relaxed micromorphic
model on real band-gap metamaterials

The object of this section is that of starting to fit some of the parameters of the relaxed micromorphic model
on real band-gap metamaterials. For this reason, we start considering the two-dimensional metamaterial
shown in Fig. 2 which is known to exhibit band-gap behaviors with respect to elastic wave propagation.

(a) (b)

Figure 2: (a): Topology and elastic properties of a specific metamaterial exhibiting band-gaps. The grey
region is filled by aluminum, the white region is empty. (b): Equivalent periodic building block of the
considered phononic structure allowing a more direct identification of the mass-spring mechanism at the
microstructural level.
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Figure 3: Possible wave paths spanning in the Brillouin zone. We indicate by θi the angle that the direction
of propagation of the wave i forms with the x direction.

a b c ρ E ν
[mm] [mm] [mm] [Kg/m3] [GPa] [−]

1 0.9 0.3 2700 70 0.33

Table 2: Values of the elastic parameters of the base material (aluminum) and geometric parameters relative
to the unit cell shown in Fig. 2.

The unit cell shown in Fig. 2 (a) is clearly equivalent to the one presented in Fig. 2 (b) which can
be more directly interpreted as a mass-spring system. This mass-spring representation can be useful when
one wants to apply classical homogenization methods to the considered periodic structure. Indeed, following
upscaling methods like the ones presented in BOUTIN, some informations relative to the micro-mechanisms
activated at low frequency (large wavelengths allowing the so-called separation of scale hypothesis) could be
disclosed and this would permit a clearer interpretation of some of the parameters of the homogenized relaxed
micromorphic model. The problem of establishing such first micro-macro relationships will be the aim of
a subsequent work, since we are interested here in the description of the metamaterial at the macroscopic
level without restrictions on the frequency (or, equivalently on the wavelength). Indeed, with the methods
presented here, we are able to recover the behavior of the metamaterial when excited at wavelengths which
go down to the size of the periodic unit cell.
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Figure 4: Dispersion surfaces as obtained by the application of Bloch boundary conditions to the unit cell
shown in Fig. 2.

A Bloch analysis has been performed (see e.g. [18, 41, 42]) on such metamaterial for waves traveling in
the ΓX, ΓM and XM of the usual Brillouin zone, as well as for waves traveling in arbitrary directions
within the Brillouin zone (see Fig. 3). As a result of such analysis, the dispersion surfaces for the considered
metamaterial have been obtained and are shown in Fig. 4. It can be noticed from Fig. 4 that considering an
arbitrary wave-vector of components (kx, ky) (which means a wave traveling in an arbitrary direction with
associated angle θi), very few changes can be observed on the dispersion curves, especially for those which
are bounding the band-gap region. This means that the behavior of the material can be considered not far
to be isotropic, even if some low degree of anisotropy of course exists. In this paper, we hence suppose that
the considered metamaterial has an isotropic behavior, so that it is reasonable to use the constitutive form
(1) of the energy to model it through our enriched continuum model.

To better illustrate our choice of using an isotropic model for the considered metamaterial, we present in
Fig. 5 the dispersion curves for wave vectors spanning within the Brillouin zone and having different traveling
directions.
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Figure 5: Dispersion curves relative to waves propagating in different directions θi within the considered
metamaterial. An almost isotropic behavior can be detected, especially concerning the band-gap region.

It can be indeed inferred from Fig. 5 that if some small changes can be observed in the acoustic waves when
changing the direction of propagation, almost no change intervenes for the optic curves, in particular for those
which bound the band-gap (red and light blue). This observation strengthen our choice of using an isotropic
relaxed micromorphic model to characterize the mechanical behavior of the considered metamaterial. Even
if the error introduced here using an isotropic model for the considered metamaterial is reasonably small,
the problem of studying wave propagation in the anisotropic framework is worth for increasing the number
of metamaterials that can be effectively modeled via the relaxed micromorphic model. The case of wave
propagation in relaxed micromorphic continua in the anisotropic setting will be treated in further works.
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Figure 6: Dispersion curves for the path ΓX (θ = 0) obtained by means of the code COMSOLr applying
Bloch boundary conditions. Three cut-off frequencies ω̄s, ω̄p and ω̄r can be identified.

In Figure 6, we show the dispersion curves for the considered metamaterial relative to a wave traveling in
the ΓX direction. Such dispersion curves will be those used for the fitting of the parameters of the weighted
relaxed micromorphic model. In virtue of the remarks concerning the low anisotropy of the considered meta-
material, the estimate of the parameters on the basis of such curves will be sufficient to start characterizing
the metamaterial itself with a reasonable precision. As it was previously said, nevertheless, the fitting on the
basis of the dispersion curves alone is not sufficient for a definitive identification of all the elastic coefficients
of the considered metamaterial and more accurate fitting procedures based on the transmission coefficient
have to be introduced.

3.1 Fitting procedure
The goal that we want to reach finally is that of characterizing the material behavior of the metamaterial
shown in Fig.2 by estimating the value of the elastic parameters appearing in the constitutive expression
(1) of the strain energy density. To this aim, we present here the fitting procedure that has been used to
superimpose the dispersion curves obtained via the relaxed micromorphic model as solutions of equations
(15) to the dispersion curves obtained via the Bloch analysis performed by means of the software COMSOLr.

• The first step has been that of fixing the value of the apparent density ρ of the unit cell. To this purpose,
we started calculating the mass Mal of aluminum which is present in each unit cell. With reference to
Fig. 2, it is easy to notice that the volume Val of aluminum present in the unit cell is estimated to be
Val = 4.9× 10−7 m3. Since the density ρmicro of the aluminum is known, the mass of aluminum inside
the unit cell is easily calculated as Mal = ρmicro Val = 0.001323Kg. Being the volume Vmacro of the unit
cell known, the apparent density of the unit cell is estimated to be ρ = Mal/Vmacro = 1323Kg/m3.

Once the apparent density of the metamaterial has been fixed, the 5 elastic coefficients λe, µe, λmicro, µmicro,
µc plus the 6 micro-inertia parameters ηi, η̄i, i = {1, 2, 3} and characteristic length Lc still need to be
determined.

• We started setting the characteristic length Lc to be vanishing in order to fit the remaining elastic
coefficients. Indeed, it was already shown in [19] that Lc is related to the non-locality of the metama-
terials and its determination is very delicate since, energetically, a non-vanishing Lc brings only small
corrections to the case with Lc = 0. The value of the other parameters is thus not affected if they
are fitted by setting, in a first approximation, Lc = 0. We anticipate the fact that, in the present
paper, a reliable value of the non-locality cannot be determined, since the fitting of the parameters on
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the dispersion curves alone is a tool which is not accurate enough to accomplish this task. In other
words, a fitting based on the dispersion curves, if valuable to estimate the elastic parameters, is not
sufficient to calibrate the characteristic length which measures non-localities. To this aim, more precise
fitting procedures have to be used, such as that of fitting the transmission coefficient obtained via the
relaxed micromorphic model to that which is observed experimentally or which is issued by a numerical
simulation which accounts for all the elements of the microstructure. In all the remainder of this paper
we thus retain the value Lc = 0, simultaneously pointing out that extra investigations of the type
presented in [19] are needed to determine the precise value of such parameter.

In order to fit the remaining parameters, we started imposing some conditions that such parameters must
necessarily satisfy with the aim of reducing the number of free parameters of the model. In order to obtain
such conditions, we remark that:

• With reference to the dispersion curves of the relaxed micromorphic model shown in Fig. 1, the three
cut-off frequencies ωs, ωr and ωp can be calibrated to coincide with those issued by means of the Bloch
analysis shown in Fig. 6. In this latter, we can notice that the lower cut-off frequency ω̄r is associated
to rotational modes and is thus identified with ωr, while the higher cut-off ω̄p is identified with ωp. Two
waves (one longitudinal and one transverse) are seen to have approximately the same cut-off ω̄s which
is thus identified with the characteristic frequency ωs of the relaxed micromorphic model. Using the
definitions (14) we can hence introduce the following equalities that must be satisfied by the parameters
of the relaxed micromorphic model (we recall that ω̄r, ω̄s and ω̄p are known)√

(3λe + 2µe) + (3λmicro + 2µmicro)

η3
= ω̄p,

√
2 (µe + µmicro)

η1
= ω̄s,

√
2µc
η2

= ω̄r. (18)

• We want also to impose that the slope of the acoustic curves of the micromorphic model is the same
as that obtained via the Bloch analysis. To do so, with reference to Eqs. (16) we impose that√

3λe λmicro (µe + µmicro) + 2µe µmicro [3(λe + λmicro) + 2(µe + µmicro)] + 2λmicro µ2
e + 2λe µ2

micro

ρ (µe + µmicro) (3(λe + λmicro) + 2(µe + µmicro))
= aL,

(19)√
µe µmicro

ρ (µe + µmicro)
= aT ,

where aL and aT are the numerical values of the slopes of the acoustic longitudinal and transverse
branches, respectively, as obtained via the Bloch analysis.

By solving equations (18), (19) with respect to a suitable subset of the unknown parameters, we find the
following solution

µc =
ω̄2
r

2
η2, µe =

ρ a2T µmicro

µmicro − ρa2T
, λe = −λmicro +

2

3

µ2
micro

−µmicro + ρ a2T
+

(3λmicro + 2µmicro)
2

3 (3λmicro + 2µmicro − 3ρ a2L + 4ρa2T )
,

(20)

η1 =
2µ2

micro

(µmicro − ρa2T ) ω̄2
s

, η3 =
(3λmicro + 2µmicro)

2

(3λmicro + 2µmicro − 3ρ a2L + 4ρ a2T ) ω̄2
p

.

The parameters of the model which remain still free are thus λmicro, µmicro, η2, η̄1, η̄2 and η̄3. The last
two equations can also be inverted in order to find λmicro and µmicro as functions of η1 and η3, which is a
more desirable situation to perform the fitting procedure. In this way, the free parameters to be varied for
the fitting procedures would be only the free and gradient micro inertias η1, η2, η3, η̄1, η̄2 and η̄3. Indeed,
regarding the last two equations (20) in such a way to solve them in terms of µmicro and λmicro , we get the
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following solutions

µmicro =
1

4

(
η1ω̄

2
s ±

√
η1ω̄2

s (−8 ρ a2T + η1ω̄2
s)

)
,

(21)

λmicro =
1

6

(
−4µmicro + η3ω̄

2
p ±

√
η3ω̄2

p (−12 ρ a2L + 16 ρ a2T + η3ω̄2
p)
)
.

This means that, for any arbitrary value of η1 and η3, there are two possible values of µmicro and hence four
possible values of λmicro . In other words, If we think to vary the values of η1 and η3, four different possible
solutions arise and one among them must be chosen on the basis of experimental observations. Since, as a
physical requirement, µmicro and λmicro must be real, then some restrictions on η1 and η3 have to be imposed
in order to avoid complex solutions for such elastic coefficients. It can be remarked that, on the basis of Eqs.
(21), the following conditions must be imposed on the micro-inertias η1 and η3 in order to guarantee that
µmicro and λmicro take only real values

η1 >
8 ρ a2T
ω̄2
s

, η3 >
4 ρ
(
3 a2L − 4 a2T

)
ω̄2
p

. (22)

Such conditions suggest the minimal numerical values for η1 and η2 which must be used to start the fitting
procedure. The value of the two micro-inertias η1 and η2 will be in fact slowly increased starting from their
minimal value in order to fit the dispersion curves of the relaxed micromorphic model on those obtained via
the Bloch analysis9.

In order to fit at best the remaining free parameters η1, η2, η3, η̄1, η̄2, η̄3, we have performed a systematic
numerical check to unveil eventual peculiar effects of each parameter on the dispersion curves. The fitting
procedure has been performed as follows

• The characteristic effect of each parameter on the dispersion curves is searched by slightly increasing
each of them starting from the initial values

η1 =
8 ρ , a2T
ω̄2
s

, η2 = 0, η3 =
4 ρ
(
3 a2L − 4 a2T

)
ω̄2
p

, η̄1 = 0, η̄2 = 0, η̄3 = 0.

• It is found that η1 has a visible effect on the optic curves LO1 and TO1 as well as a smaller effect on
the acoustic curves LA and TA. The parameter η1 is then carefully increased in order to reach the best
possible agreement with the acoustic curves as well as with the curves LO1 and TO1. A rather good
agreement is found (for one of the four possible solutions) for all the aforementioned curves for a first
tentative value of η1, except for the curve LO1 that drastically diverge from that issued by the discrete
simulation, above all for high wavenumbers.

• The parameter η̄3 is seen to have a flattening effect on the longitudinal curves. Increasing this parameter
allows a better fitting of the curve LO1 which was still remaining to be better adjusted from the previous
step.

• The gradient micro-inertia parameter η̄1 has the effect of flattening simultaneously the longitudinal and
transverse waves. This effect is not desirable since the transverse curves are already well-fitted at this
stage. We then set η̄1 to be identically vanishing.

• The parameter η2 is seen to have an effect on the curves TO2 and TA. In particular, for some values of
η2, the curve TO2 is seen to be almost flat. This is the best agreement that we can find with the curve
issued via the Bloch wave analysis, which is instead slightly decreasing. Up to now, the introduced
formulation of the relaxed micromorphic model does not allow to obtain dispersion branches which

9It can be checked that the expressions (21) for µmicro and λmicro together with a choice of η1 and η3 complying with the
conditions (22) imply that µmicro > 0 and 3λmicro + 2µmicro > 0. Moreover, such conditions on µmicro and λmicro also imply
that, given equations (20), µe > 0 and 3λe + 2µe > 0. This means that, in the end, the only fact of using the restrictions (22)
and of additionally imposing η2 ≥ 0, imply positive definiteness of the strain energy density.
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ρ µc λmicro µmicro λe µe Lc[
Kg/m3

]
[GPa] [GPa] [GPa] [GPa] [GPa] [m]

1323 0.272 19.8 0.737 17.7 3.857 0

Table 4: Values of the parameters of the weighted relaxed micromorphic model for the metamaterial shown
in Figure 2.

decrease when increasing the wavenumber, thus the best approximation is obtained with an almost
horizontal line. We will discuss the possibility of obtaining such decreasing curves in the framework of
the relaxed micromorphic model in subsequent works. In order to get the best average fitting of the
curve TO2, we slightly relax the third of conditions (18) in order to impose a cut-off which takes a lower
value than the exact value ω̄r. We also remark that, indeed, the desired horizontal curve TO2 can be
obtained for an infinite set of values of η2. As a consequence, there exist an infinity of calculated values
of the Cosserat couple modulus µc (via the third of conditions (18)) which correspond to such set of
values of η2. This indeterminacy on the value of η2 (and thus of µc) is strongly related to the fact that
we cannot generate decreasing curves within the relaxed micromorphic model. This issue will be solved
in a subsequent work. At the present stage, we chose to fix the value of the micro-rotation inertia
η2 to be the same of the micro-distortion inertia η1 (which actually produces the desired horizontal
TO2 curve) and we thus compute the corresponding value of µc. Except for this indeterminacy on the
parameters η2 and µc, all the remaining parameters of the model are uniquely calibrated.

• The parameter η3 is seen to have a non-negligible effect on the optic curve LO2 and on the longitudinal
acoustic curve LA and is hence adjusted in order to obtain the best possible fitting. On the other
hand, the parameter η̄2 is seen to have the opposite effect on the curve LO2 as well as a slight effect
on the curve TA. The parameters η3 and η̄2 are then carefully calibrated in order to get the best
possible agreement of the curve LO2 without macroscopically perturbing the other curves affected by
such parameters.

• The found set of values for η1, η2, η3, η̄1, η̄2, η̄3, is then slightly arranged for a last refined fitting. The
obtained numerical values are shown in Table (3). The remaining parameters of the model can also be
determined by means of the relations (20) and are shown in Table (4).

η1 η2 η3 η̄1 η̄2 η̄3
[Kg/m] [Kg/m] [Kg/m] [Kg/m] [Kg/m] [Kg/m]

3.25× 10−5 3.25× 10−5 4× 10−4 0 0.3× 10−4 1.8× 10−4

Table 3: Values of the micro-inertia parameters of the weighted relaxed micromorphic model as fitted on the
metamaterial shown in Figure 2.

The final fitting of the parameters of the relaxed micromorphic model on the curves issued by the Bloch
wave analysis is shown in Figure (7). An almost perfect fitting is obtained for all the curves, with the
exception of some small deviations of the TO2 curve which cannot at the present stage be arranged to be a
decreasing curve. This last detail will be fixed in subsequent works.
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Figure 7: Fitting of the curves obtained via the weighted relaxed micromorphic model (continuous lines) on
the dispersion curves issued via the Bloch wave analysis (dotted curves), for wavenumbers up to the size of
the unitary cell. Left: longitudinal waves; Right: transverse waves.

According to the fitted values of the parameters and considering formulas (17), it is also possible to derive,
a posteriori, the value of the averaged macroscopic parameters of the considered metamaterial, which are
shown in Table 5.

λmacro µmacro

[GPa] [GPa]

0.62 4.66

Emacro νmacro

[GPa] [−]

1.78 0.44

Table 5: Values of the macroscopic parameters of the considered metamaterial computed starting from the
values shown in Tables 3 and 4 and using the homogenization formulas (17) (left) and corresponding values
of the Young modulus and Poisson ratio (right).

It is possible to notice, comparing the values of the parameters of the metamaterial given in Table 5 with
those of the original material (aluminum) shown in Table 2, that the presence of the cross cavity renders the
resulting metamaterial softer than the original one. Also the Poisson’s effect results to be enhanced in the
metamaterial compared to the original material.
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3.2 Analysis of the vibrational modes
In this subsection we analyze the vibrational modes of the considered metamaterial as function of the fre-
quency and of the wavelength, both theoretically via the relaxed micromorphic model and by using the Bloch
wave analysis.
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Figure 8: Vibrational modes for longitudinal waves as function of the wavenumber obtained via Bloch wave
analysis.
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Figure 9: Qualitative distribution of the theoretical vibration modes for longitudinal waves obtained via the
relaxed micromorphic model as function of the wavenumber.
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Figure 10: Vibrational modes for longitudinal waves as function of the wavenumber obtained via Bloch wave
analysis.
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Figure 11: Qualitative distribution of the theoretical vibration modes for longitudinal waves obtained via the
relaxed micromorphic model as function of the wavenumber.

Indeed, it is well known that the vibrational modes of the unit cell of periodic metamaterials vary when
varying the wavelength of the traveling wave. This can be recognized in Figure 8 where the main vibrational
modes of the unit cell are depicted as function of the wavenumber up to the size of the unit cell. It can be
recognized that for the longitudinal and transverse acoustic waves, the main vibrational modes are given by
horizontal and transverse macroscopic displacements of the unit cell when considering very large wavelength
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(small k). When increasing the wavenumber (reducing the wavelength) we can observe from Figures 8
and 10 that for k ∼ 1500m−1 (corresponding to wavelengths of almost twice the size of the unit cell) the
microstructure-related acoustic vibrational modes start to take a predominant role. This means that the
unit cell is not only displaced of a given amount, but also starts deforming. Volume variations coupled to
micro-distortion of the unit cell can be observed for the longitudinal modes, while micro-rotations coupled
to in-plane shear are found for the transverse modes. Analogous patterns can be obtained via the relaxed
micromorphic model when normalizing the eigenvectors corresponding to the eigenvalues shown in Figure 7.
In particular, the agreement of the vibrational modes found via the relaxed micromorphic model with those
issued via the Bloch analysis can be deciphered when recalling that

• PS is the spherical part of the micro-distortion tensor related to volume variations,

• PD is related to the deviatoric part of the micro-distortion tensor which is known to be associated to
the actual distortion of the unit cell

• P(12) is the (1, 2) component of the symmetric part of the micro-distortion tensor which can be directly
related to in-plane shear of the unit cell,

• P[12] is the (1, 2) component of the skew-symmetric part of the micro-distortion tensor which is known
to be related to in-plane rotations of the microstruture embedded in the unit cell.

4 Conclusions
In this paper we study the macroscopic behavior of real band-gap metamaterials by using the linearized,
isotropic relaxed micromorphic model with weighted free and gradient micro-inertia. For a specific mi-
crostructure, we make a direct comparison between the dispersion curves issued via the classical Bloch wave
analysis and those obtained by means of our weighted relaxed micromorphic model. Such comparison allows
us to uniquely identify almost all the parameters of the model with the exception of the characteristic length
Lc and of the Cosserat couple modulus µc. In particular, the characteristic length Lc is a very sensitive
parameter measuring the non-locality of the considered metamaterial, the determination of which requires a
much more refined fitting procedure than that which is possible on the basis of the dispersion curves alone.
A more refined fitting based e.g. on the energy which is transmitted through the considered metamaterial
for different frequencies is needed, as done e.g. in [19]. The determination of the characteristic length of the
metamaterial targeted in this paper will be then analyzed in subsequent works, given that the measure of all
the remaining parameters is not affected by the determination of Lc.

On the other hand, the Cosserat couple modulus µc is found to be directly proportional to the micro-
inertia parameter η2 (related to the skew-symmetric part of the tensor P,t). Nevertheless, the performed
fitting does not allow to uniquely conclude about the value of µc. Choosing the rotational micro-inertia η2 to
be equal to the distortion micro-inertia η1, we are able to deduce the corresponding value of µc. To allow a
more precise fitting of µc, the relaxed micromorphic model needs to be further generalized in order to grant
the possibility of dispersion curves which are decreasing for increasing wavenumber k. Such a generalization
of the relaxed micromorphic model will be the focus of subsequent works.

The results presented in this paper represent a topical breakthrough allowing a simple implementation of
the relaxed micromorphic model in finite element codes in view of meta-structural design.
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