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Abstract—HTTP Adaptive Streaming (HAS) is a widely used
video streaming technology that suffers from a degradation
of user’s Quality of Experience (QoE) and network’s Quality
of Service (QoS) when many HAS players are sharing the
same bottleneck link and competing for bandwidth. The two
major factors of this degradation are: the large OFF period of
HAS, which causes false bandwidth estimations, and the TCP
congestion control, which is not suitable for HAS given that it
does not consider the different video encoding bitrates of HAS.

This paper proposes a HAS-based TCP congestion control,
TcpHas, that minimizes the impact of the two aforementioned
issues. It does this by using traffic shaping on the server.
Simulations indicate that TcpHas improves both QoE, mainly
by reducing instability, and QoS, mainly by reducing queuing
delay and packet drop rate.

I. INTRODUCTION

Video streaming is a widely used service. According to
2016 Sandvine report [1], in North America, video and audio
streaming in fixed access networks accounts for over 70%
of the downstream bandwidth in evening hours. Given this
high usage, it is of extreme importance to optimize its use.
This is usually done by adapting the video to the available
bandwidth. Numerous adaptation methods have been proposed
in the literature and by major companies, and their differences
mainly rely on the entity that does the adaptation (client or
server), the parameter used for adaptation (the network or
sender or client buffers), and the protocols used; the major
companies having finally opted for HTTP [2].

HTTP Adaptive Streaming (HAS) is a streaming technology
where video contents are encoded and stored at different
qualities at the server and where players (clients) can choose
periodically the quality according to the available resources.
Popular implementations are Microsoft Smooth Streaming,
Apple HTTP Live Streaming, and MPEG DASH. Still, this
technology is not optimal for video streaming, mainly because
its HTTP data is transported using the TCP protocol. Indeed,
video data is encoded at distinct bitrates, and TCP does not
increase the throughput sufficiently quickly when the bitrate
changes. TCP variants (such as Cubic, Illinois, and West-
wood+) specific to high bandwidth-delay product networks
achieve high bandwidth more quickly and seem to give better
performance for HAS service than classical TCP variants such
as NewReno and Vegas [3], but the improvement is limited.

Another reason is the highly periodic ON–OFF activity
pattern specific to HAS. Server-based shaping methods at
application layer have been proposed to reduce its occurrence.

They are cross-layer because they interact with the TCP layer
and its parameters such as the congestion window, cwnd, and
the round-trip time, RTT. Hence, implementing HAS traffic
shaping at the TCP level is naturally more practical and easier
to manage; in addition, this should offer better bandwidth share
among HAS streams, reduce congestion events and improve
the Quality of Experience (QoE) of HAS users.

Despite the advantages of using the transport layer for
HAS, and in contrast with other types of streaming, where
methods at the transport layer have already been proposed
(RTP and TFRC [4]), to the best of our knowledge, there is
no proposition at the transport level specifically designed for
HAS. For commercial video providers YouTube, Dailymotion,
Vimeo and Netflix, according to [5], “The quality switching
algorithms are implemented in the client players. A player
estimates the bandwidth continuously and transitions to a
lower or to a higher quality stream if the bandwidth permits.”
The streaming depends on many parameters, such as player,
video quality, device and video service provider etc., and uses
various techniques such as several TCP connections, variable
chunk sizes, different processing for audio and video flows,
different throttling factors etc. To conclude, all these providers
use numerous techniques, all of them based on client.

Therefore, in this paper, we propose a HAS-based TCP
congestion control, TcpHas, that aims to minimize the afore-
mentioned issues and to unify all these techniques. It uses
four sub-modules: bandwidth estimator, optimal quality level
estimator, slow-start threshold ssthresh updating, and cwnd up-
dating to the shaping rate. Simulation results show that TcpHas
considerably improves both QoS (queuing delay, packet drop
rate) and QoE (stability) and performs well even with several
concurrent clients.

The remainder of this paper is organized as follows: Sec-
tion II presents server-based shaping methods and describes
possible optimizations at TCP level. Then, Section III de-
scribes TcpHas congestion control and Section IV evaluates
it. Section V concludes the article.

II. BACKGROUND AND RELATED WORKS

Many server-based shaping methods have been proposed
in the literature to improve QoE and QoS of HAS. Their
functioning is usually separated into two modules:

1) Estimation of the optimal quality level, based on network
conditions, such as bandwidth, delay, and/or history of
selected quality levels, and available encoding bitrates.



2) Shaping function of the sending rate, which should be
suitable to the encoding bitrate of the estimated optimal
quality level.

The next two subsections describe constraints and proposed
solutions for each module. The last subsection presents some
possible ways of optimization, which provides the basis for
the TcpHas design.

A. Optimal Quality Level Estimation

A major constraint of optimal quality level estimation is that
the server has no visibility on the flows that share the home
network.

Ramadan et al. [6] propose an algorithm to reduce the oscil-
lations of quality during video adaptation. During streaming, it
marks each quality as unsuccessful or successful, depending
on whether it has led to lost packets or not. We note that,
to discover the available bandwidth, this method increases
throughput and pushes to packet drop, which is different
from our proposed method, where the available bandwidth is
computed using an algorithm.

Akhshabi et al. [7] propose a server-based shaping method
that aims to stabilize the quality level sent by the server by
detecting oscillation events. The shaping function is activated
only when oscillations are detected. The optimal quality level
is based on the history of quality level oscillations. Then, the
server shapes its sending rate based on the encoding bitrate of
the estimated optimal quality level. However, when the end-
to-end available bandwidth increases, the HAS player cannot
increase its quality level when the shaper is activated. Also,
to verify whether the optimal quality level has been increased
or not, the server is obliged to deactivate the shaper to let
the TCP congestion control algorithm occupy the remaining
capacity available for the HAS stream. What is missing is a
good estimation of the available bandwidth for the HAS flow.

B. Traffic Shaping Methods

Ghobadi et al. propose a shaping method on the server side
called Trickle [8]. This method was proposed for YouTube in
2011, when it adopted progressive download technology. The
key idea of Trickle is to place a dynamic upper bound on
the congestion window (cwnd) such that TCP itself limits the
overall data rate. The server application periodically computes
the cwnd bound from the product between the round-trip time
(RTT) and the target streaming bitrate.

The selection of the shaping rate by a server-based shaping
method does not mean that the player will automatically start
requesting that next higher quality level [7]. Furthermore, it
was reported [3] that ssthresh has a predominant effect on
accelerating the selection of the desired optimal quality level
by the HAS client. Indeed, when ssthresh is set higher than
the product of shaping rate and round-trip time, the server
becomes aggressive and causes congestions and a reduction
of quality level selection on the player side. In contrast, when
ssthresh is set lower than this product, the congestion window
cwnd takes several round-trip times to reach the value of this

product. Hence, to improve the performance of the shaper,
ssthresh needs to be modified too.

C. Optimization of Current Solutions

What can be noted from the different proposed methods
for estimating the optimal quality level is that an efficient
end-to-end estimator of available bandwidth can improve their
performance, as shown in Subsection II-A. In addition, the
only parameter from the application layer needed for shaping
the HAS traffic is the encoding bitrate of each available
quality level of the corresponding HAS stream. As explained
in Subsection II-B, the remaining parameters are found in
the TCP layer: the congestion window cwnd, the slow-start
threshold ssthresh, and the round-trip time RTT. We are
particularly interested in adjusting ssthresh to accelerate the
reactivity of the HAS player. Naturally, what is missing here
is an efficient TCP-based method for end-to-end bandwidth
estimation. We also need a mechanism that adjusts ssthresh
based on the output of the bandwidth estimator scheme.

Both this mechanism and estimation schemes used by
various TCP variants are introduced in the following.

1) Adaptive Decrease Mechanism: In the literature, we
found a specific category of TCP variants that set ssthresh
using bandwidth estimation. Even if the estimation is up-
dated over time, TCP uses it only when a congestion event
is detected. The usefulness of this mechanism, known as
adaptive decrease mechanism, is described in [9] as follows:
“it provides a congestion window that is decreased more in
the presence of heavy congestion and less in the presence of
light congestion or losses that are not due to congestion”.
The adaptive decrease mechanism is described in Algorithm 1
[9] when detecting a congestion, i.e., when receiving three
duplicated ACKs or when the retransmission timeout expires.
The algorithm uses the estimated bandwidth, B̂we, multiplied
by RTTmin to update the ssthresh value.

Algorithm 1 TCP adaptive decrease mechanism.
1: if 3 duplicateACKsare received then
2: ssthresh = B̂we×RTTmin

3: if cwnd > ssthresh then
4: cwnd = ssthresh
5: end if
6: end if
7: if retransmission timeout expires then
8: ssthresh = B̂we×RTTmin

9: cwnd = initial cwnd . i.e. 2×MSS
10: end if

. where B̂we is the estimated bandwidth and RTTmin is the
lowest RTT measurement

2) Bandwidth Estimation Schemes: The most common TCP
variant that uses bandwidth estimation to set ssthresh is
Westwood. Other newer variants have been proposed, such
as Westwood+ and TIBET. The only difference between them
is the bandwidth estimation scheme used. Because of space
limitation, we describe only TIBET in the following.

The basic idea of TIBET [10] is to perform a run-time
sender-side estimate of the average packet length and the



average inter-arrival separately. The bandwidth estimation
scheme is applied to the stream of the received ACKs and
is described in Algorithm 2 [11], where acked is the number
of segments acknowledged by the last ACK, packet size is
the average segment size in bytes, now is the current time
and last ack time is the time of the previous ACK reception.
Average packet length and Average interval are the low-
pass filtered measures of the packet length and the interval
between sending times.

Algorithm 2 Bandwidth estimation scheme.
1: if ACK is received then
2: sample length = acked× packet size× 8
3: sample interval = now − last ack time
4: Average packet length = alpha ×

Average packet length+ (1− alpha)× sample length
5: Average interval = alpha × Average interval + (1 −

alpha)× sample interval
6: Bwe = Average packet length/Average interval

7: end if

Alpha (0 ≤ alpha ≤ 1) is the pole of the two low-pass
filters. The value of alpha is critical to TIBET performance:
If alpha is set to a low value, TIBET is highly responsive
to changes in the available bandwidth, but the oscillations
of Bwe are quite large. In contrast, if alpha approaches 1,
TIBET produces more stable estimates, but is less responsive
to network changes. If alpha is set to zero Algorithm 2 will
be equivalent to Westwood, where the sample Bwe varies
between 0 and the bottleneck bandwidth.

TIBET uses a second low-pass filtering, with parameter γ,
on the estimated available bandwidth Bwe to give a better
smoothed estimation B̂we. γ is a variable parameter, equal to
e−Tk , where Tk = tk − tk−1 is the time interval between the
two last received ACKs. This means that bandwidth estimation
samples Bwe with high Tk values are given more importance
than those with low Tk values.

Simulations [11] indicate that TIBET gives bandwidth esti-
mations very close to the correct values, even in the presence
of other UDP or TCP flows. It is also robust against packet
clustering and ACK compression in contrast to Westwood.
Moreover, TIBET is less dependent to cwnd than Westwood+.
Indeed, Westwood+ estimates bandwidth only once per RTT,
hence its estimation is always bounded by min(cwnd,rwnd)

RTT .

III. TCPHAS DESCRIPTION

As shown in the previous section, a protocol specific to
HAS needs to modify several TCP parameters and consists of
several algorithms. Our HAS-based TCP congestion control,
TcpHas, is based on the two modules of server-based shaping
solution: optimal quality level estimation and sending traffic
shaping itself, both with two submodules. The first module
uses a bandwidth estimator submodule inspired by the TIBET
scheme and adapted to HAS context, and an optimal quality
level estimator submodule to define the quality level, ̂QLevel,
based on the estimated bandwidth. The second module useŝQLevel in two submodules that update the values of ssthresh

and cwnd over time. This section progressively presents
TcpHas by describing these four submodules.

A. Bandwidth Estimator of TcpHas

As described in Section II, TIBET performs better than
other proposed schemes. It reduces the effect of ACK com-
pression and packet clustering and is less dependent on the
congestion window, cwnd, than Westwood+.

As explained in Section II-C2, the parameter γ used by
TIBET to smooth Bwe estimations is variable (γ = e−Tk ).
However, this variability is not suited to HAS. Indeed, when
the HAS stream has a large OFF period, the HTTP Get request
packet sent from client to server to ask for a new chunk is
considered by the server as a new ACK. As a consequence,
the new bandwidth estimation sample, Bwe, will have an
underestimated value and γ will be wrongly reduced. We
therefore make parameter γ constant.

B. Optimal Quality Level Estimator of TcpHas

TcpHas’ optimal quality level estimator is based on the
estimated bandwidth, B̂we, as described in Subsection III-A.
This estimator is a function that adapts HAS features to TCP
congestion control and replaces B̂we value by the encoding
bitrate of the estimated optimal quality level ̂QLevel. One
piece of information from the application layer is needed: the
video encoding bitrates of the HAS stream that are available
in the server. These encoding bitrates are given in the index
file of the HAS stream. The EncodingRate vector of TcpHas
contains the available encoding bitrates in ascending order.
Our estimator is defined by the function QLevelEstimator,
described in Algorithm 3, which selects the highest quality
level whose encoding bitrate is equal to or lower than the
estimated bandwidth, B̂we.

Algorithm 3 QLevelEstimator function.
1: i = length(EncodingRate)− 1

2: while (EncodingRate[i] > B̂we AND i > 0) do
3: i−−
4: ̂QLevel = i

̂QLevel parameter is updated only by this function. How-
ever, the time and frequency of its updating is a delicate issue:

• We need to use the adaptive decrease mechanism because
when a congestion occurs, ̂QLevel needs to be updated
to the new network conditions. Hence, this function is
called after each congestion detection.

• Given that TcpHas performs a shaping rate that reduces
ÔFF occupancy, when TcpHas detects an ÔFF period,
it may mean that some network conditions have changed
(e.g. an incorrect increase of the shaping rate). Accord-
ingly, to better estimate the optimal quality level, this
function is called after each ÔFF period.

The EncodingRate vector is also used by TcpHas during
application initialization to differentiate between a HAS ap-
plication and a normal one: when the application returns an
empty vector, it is a normal application, and TcpHas just



makes this application be processed by classical TCP, without
being involved at all.

C. Ssthresh Modification of TcpHas

The TCP variants that use the TCP decrease mechanism
use RTTmin multiplied by the estimated bandwidth, B̂we,
to update ssthresh. However, given that the value of ssthresh
affects the reactivity of the player, it should correspond to the
desired shaping rate instead of B̂we. Also, the shaping rate
is defined in Trickle [8] to be 20% higher than the encoding
bitrate, which allows the server to deal better with transient
network congestion.

Hence, for TcpHas we decided to replace B̂we by Enco-
dingRate[ ̂QLevel]× 1.2, which represents its shaping rate:

ssthresh = EncodingRate[ ̂QLevel]×RTTmin × 1.2 (1)

The timing of ssthresh updating is the same as that of̂QLevel: when detecting a congestion event and just after
an idle ÔFF period. Moreover, the initial value of ssthresh
should be modified to correspond to the context of HAS. These
three points are presented in the following.

1) Congestion Events: Inspired by Algorithm 1, the TcpHas
algorithm when detecting a congestion event is described in
Algorithm 4. It includes the two cases of congestion events:
three duplicated ACKs, and retransmission timeout. In both
cases, ̂Qlevel is updated from B̂we using the QLevelEstimator
function. Then, ssthresh is updated according to (1). The
update of cwnd is as in Algorithm 1.

Algorithm 4 TcpHas algorithm when congestion occurs.
1: if 3 duplicateACKsare received then
2: ̂QLevel = QLevelEstimator(B̂we)

3: ssthresh = EncodingRate[ ̂QLevel]×RTTmin × 1.2
4: if cwnd > ssthresh then
5: cwnd = ssthresh
6: end if
7: end if
8: if retransmission timeout expires then
9: ̂QLevel = QLevelEstimator(B̂we)

10: ssthresh = EncodingRate[ ̂QLevel]×RTTmin × 1.2
11: cwnd = initial cwnd . i.e. 2×MSS
12: end if

2) Idle Periods: As explained in [12], [13], [3], the conges-
tion window, cwnd, is reduced when the idle period exceeds
the retransmission timeout RTO, and ssthresh is updated to
max(ssthresh, 3/4× cwnd). In HAS context, the idle period
coincides with the OFF period. In addition, we denote by
ÔFF the OFF period whose duration exceeds RTO. Accord-
ingly, reducing cwnd after an ÔFF period will force cwnd
to switch to slow-start phase although the server is asked to
deliver the video content with the optimal shaping rate.

To avoid this, we propose to remove the cwnd reduction
after the ÔFF period. Instead, as presented in Algorithm 5,
TcpHas updates ̂Qlevel and ssthresh, then sets cwnd to
ssthresh. This modification is very useful in the context of
HAS. On the one hand, it eliminates the sending rate reduction

after each ÔFF period, which adds additional delay to deliver
the next chunk and may cause a reduction of quality level
selection on the player side. On the other hand, the update of
ssthresh each ÔFF period allows the server to adjust its send-
ing rate more correctly, especially when the client generates a
high ÔFF period between two consecutive chunks.

Algorithm 5 TcpHas algorithm after an ÔFF period.

1: if idle > RTO then . ÔFF period detected
2: ̂QLevel = QLevelEstimator(B̂we)

3: ssthresh = EncodingRate[ ̂QLevel]×RTTmin × 1.2
4: cwnd = ssthresh
5: end if

3) Initialization: By default, TCP congestion control uses
an initial value of ssthresh, initial ssthresh, of 65535 bytes.
However, in HAS context, initial ssthresh is better to match
an encoding bitrate. We decided to set it to the highest quality
level at the beginning of streaming for two reasons: 1) give
a similar initial aggressiveness as classical TCP and 2) avoid
to be too higher than highest encoding bitrate to maintain the
HAS traffic shaping concept.

This initialization should be done in conformity with (1),
hence the computation of RTT is needed. Consequently,
TcpHas just updates the ssthresh when the first RTT is
computed. In this case, our updated ssthresh serves the same
purpose as initial ssthresh. TcpHas initialization is pre-
sented in Algorithm 6.

Algorithm 6 TcpHas initialization.

1: ̂QLevel = length(EncodingRate)− 1 . highest quality level
2: cwnd = initial cwnd . i.e. 2×MSS
3: ssthresh = initial ssthresh . i.e. 65535 bytes
4: RTT = 0
5: if newACK is received then
6: if RTT 6= 0 then . i.e. when the first RTT is computed
7: ssthresh = EncodingRate[ ̂QLevel]×RTT × 1.2

8: end if
9: end if

D. Cwnd Modification of TcpHas for Traffic Shaping

As shown in Section II-B, Trickle does traffic shaping on
the server-side by setting a maximum threshold for cwnd,
equal to the shaping rate multiplied by the current RTT. How-
ever, during congestion avoidance phase (i.e., when cwnd >
ssthresh), cwnd is increased very slowly by one MSS each
RTT. Consequently, when cwnd is lower than this threshold,
it takes several RTTs to reach it, i.e. a slow reactivity.

To increase its reactivity, we modify TCP congestion avoid-
ance algorithm by directly tuning cwnd to match the shaping
rate. For this, we use smoothed RTT computations through
a low-pass filter. The smoothed RTT that is updated at each
ACK reception is:

R̂TT k = ψ × R̂TT k−1 + (1− ψ)×RTTk (2)



where 0 ≤ ψ ≤ 1. TcpHas algorithm during the conges-
tion avoidance phase is described in Algorithm 7, where
EncodingRate[ ̂QLevel]× 1.2 is the shaping rate.

Algorithm 7 TcpHas algorithm in congestion avoidance.
1: if newACK is received and cwnd ≥ ssthresh then
2: cwnd = EncodingRate[ ̂QLevel]× R̂TT × 1.2

3: end if

Finally, TcpHas coexists gracefully with TCP on server,
the transport layer checking whether the EncodingRate vector
returned by application is empty or not, as explained before.

IV. TCPHAS EVALUATION

The final goal of our work is to implement our idea
in real software. However, at this stage of the work, we
preferred instead to use a simulated player because of the
classical advantages of simulation over experimentation, such
as reproducibility of results, and measurement of individual
parameters for better tuning of the parameters of our idea.

In this section, we evaluate TcpHas using ns-3 simulator,
version 3.17. In our scenario, HAS players share the same
bottleneck link and compete for bandwidth in a home network.
We first describe the network setup used in the simulations.
Then, we describe the parameter settings used during the
simulations for both evaluation and configuration of TcpHas.
Then, we show the behavior of TcpHas. Finally, we analyse
results for 1 to 9 competing HAS flows in the home network.

A. Network Architecture in ns-3

Fig. 1 presents the architecture we used, which is compliant
with the fixed broadband access network architecture used
by Cisco to present its products [14]. The HAS clients are
located inside the home network, a local network with 100
Mbps bandwidth. The Home Network (HG) is connected to
the DSLAM. The bottleneck link is located between HG and
DSLAM and has 8 Mbps. The queue of the DSLAM uses Drop
Tail discipline with a length that corresponds to the bandwidth-
delay product. Nodes BNG (Broadband Network Gateway)
and IR (Internet Router), and links AggLine (that simulates the
aggregate line), ISPLink (that simulates the Internet Service
Provider core network) and NetLink (that simulates the route
between the IR and the HAS server) are configured so that
their queues are large enough (1000 packets) to support a large
bandwidth of 100 Mbps and high delay of 100 ms without
causing significant packet losses.

We generate Internet traffic that crosses ISPLink and Ag-
gLine, because the two simulated links are supposed to support
a heavy traffic from ISP networks. For Internet traffic, we
use the Poisson Pareto Burst Process (PPBP) model [15],
considered as a simple and accurate traffic model that matches
statistical properties of real-life IP networks (such as their
bursty behavior). PPBP is a process based on the overlapping
of multiple bursts with heavy-tailed distributed lengths. Events
in this process represent points of time at which one of an
infinite population of users begins or stops transmitting a
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Fig. 1: Network architecture used in ns-3.

Video quality level LC−S 0 1 2 3 4
Encoding bitrate (kbps) 248 456 928 1632 4256

TABLE I: Video encoding bitrates.

traffic burst. PPBP is closely related to the M/G/∞ queue
model [15]. We use the PPBP implementation in ns-3 [16],
[17]. In our configuration, the overall rate of PPBP traffic is
40 Mbps, which corresponds to 40% of ISPLink capacity.

We use an ns-3 simulated HAS player similar to the
emulated player described in [3], with a chunk duration of 2
seconds and a playback buffer of 30 seconds (maximum video
size the buffer can hold). Note that [3] compares four TCP
variants and two router-based traffic shaping methods, whereas
the current article proposes a new congestion control executed
on server. The player is classified as Rate and Buffer based
(RBB) player, following classification proposed in [18], [19].
Using buffer occupancy information is increasingly proposed
and used due to its advantages for reducing stalling events. In
addition, the bandwidth estimator we use consists in dividing
the size of received chunk by its download duration. The buffer
occupancy information is used only to define an aggressiveness
level of the player, which allows the player to ask a quality
level higher than the estimated bandwidth.

All tests use five video quality levels with constant encoding
rates presented in Table I, and correspond to the quality levels
usually used by many video service providers.

We also use the HTTP traffic generator module given in
[20], [21]. This module allows communication between two
nodes using HTTP protocol, and includes all features that
generate and control HTTP Get Request and HTTP response
messages. We wrote additional code into this HTTP module
by integrating the simulated HAS player. We call this imple-
mentation the HAS module, as presented in Fig. 1. Streaming
is done from Sf to Cf , where 0 ≤ f < N . The round-trip
propagation delay between Sf and Cf is 100 ms.

For all evaluations, we use competing players that are
playing simultaneously during K seconds. We set K = 180
seconds, which allows the HAS players to reach stationary
behavior when they are competing for bandwidth [22].



B. TcpHas Parameter Settings

We set γ = 0.99 (see Subsection III-A) to reduce the
oscillation of bandwidth estimations, B̂we, over time. We set
the initial bandwidth estimation value of B̂we to the highest
encoding bitrate, as explained in Subsection III-C.

The parameter alpha of the TIBET estimation scheme (see
Algorithm 2) is set to 0.8. A higher value produces more stable
estimations but is less responsive to network changes, and a
lower value makes TcpHas too aggressive.

The parameter ψ used for low-pass filtering the RTT mea-
surements in Subsection III-D is set to 0.99, which leads
to better performance in our tests, especially when network
conditions degrade.

C. TcpHas Behavior

We present results for a scenario with 8 competing clients.
The optimal quality level that should be selected by the
competing players is n◦ 2.

We also show the behavior of Westwood+, TIBET and
Trickle for the same scenario. We do not show the behavior of
Westwood because Westwood+ is supposed to replace West-
wood since it performs better in case of ACK compression and
clustering. Concerning Trickle, it is a traffic shaping method
that was proposed in the context of progressive download, as
described in II-B. In order to adapt it to HAS, we added to it
the estimator of optimal quality level of TcpHas, the adaptive
decrease mechanism of Westwood+ (the same as TIBET),
and applied the Trickle traffic shaping based on the estimated
optimal quality level. This HAS adaptation of Trickle is simply
denoted by “Trickle” in the reminder of this paper.

Fig. 2 shows the quality level selection over time of one
of the competing players for the above methods. During the
buffering phase, all players select the lowest quality level, as
allowed by slow start phase. However, during the steady-phase
the results diverge: Westwood+ player frequently changes
the quality level between n◦ 0 and n◦ 3, which means
that the player yields an unstable HAS stream and risks to
generate stalling events. TIBET and Trickle players have an
improved performance but still with frequent quality changes.
In contrast, TcpHas player is stable at the optimal quality level,
hence it performs the best among all the methods.

D. Performance Evaluation

Here, we vary the number of competing players from 1 to 9.
We select a maximum of 9 competing HAS clients because in
practice the number of users inside a home network does not
exceed 9. We use one objective QoE metric: the instability of
video quality level as defined in [23], [13], [3] (0% means the
same quality, 100% means the quality changes each second).
We also use two QoS metrics: the average queuing delay and
the average packet drop rate at the bottleneck. This packet
drop rate gives an idea of the congestion severity of the
bottleneck link and is defined during a K-second test duration
as follows:

DropPkt(K) =
number of dropped packets during K seconds

K × 100
(3)
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Fig. 2: Quality level selection over time.

The mean performance measurements of the QoE and QoS
metrics among competing players and for 16 runs are shown
in Fig. 3. We chose 16 runs because the relative difference
between mean measurements of instability of 16 and 64
runs is less than 4%. We present the performance unfairness
measurements among HAS clients with vertical error bars.

Fig. 3a shows that TcpHas yields the lowest instability rate
(less than 4%), with a negligible instability unfairness between
players. Trickle shows similar instability for 4 and 7 players,
but for the other cases it has a high instability rate, the reason
being that Trickle still initializes cwnd after each ÔFF period
which causes a low sending rate. In contrast, the instability of
Westwood+ and TIBET is much greater and increases with
the number of competing players.

As presented in Fig. 3b, although the queuing delay of the
four methods increases with the number of competing clients,
TcpHas and Trickle show a lower queuing delay than West-
wood+ and TIBET. The reason is that both TcpHas and Trickle
shape the HAS flows by reducing the sending rate of the server
which reduces queue overflow in the bottleneck. Additionally,
we notice that TcpHas reduces more the queuing delay than
Trickle; TcpHas has roughly half of the queuing delay of
Westwood+ and TIBET. Besides, TcpHas does not increase its
queuing delay more than 25 ms even for 9 competing players,
while Trickle increases it to about 50 ms. This result is mainly
due to the high stability of the HAS quality level generated by
TcpHas which offers better fluidity of HAS flows inside the
bottleneck. The same reason applies for the very low packet
drop rate at the bottleneck of TcpHas, given in Fig. 3c. In
addition, due to its corresponding traffic shaping method that
reduces the sending rate of HAS server, the packet drop rate of
Trickle is quite similar to that of TcpHas, as shown in Fig. 3c.

V. CONCLUSION

This paper first presents and analyses server-based shaping
methods that aim to stabilize the video quality level and
improve the QoE of HAS users.

Based on this analysis, we propose and describe TcpHas, a
HAS-based TCP congestion control that acts like a server-
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Fig. 3: QoE and QoS measurements when increasing the
number of HAS competing clients.

based HAS traffic shaping method. It is inspired by the
TCP adaptive decrease mechanism and uses the end-to-end
bandwidth estimation of TIBET to estimate the optimal quality
level. Then, it shapes the sending rate to match the encoding
bitrate of the estimated optimal quality level. The traffic
shaping process is based on updating ssthresh when detecting
a congestion event or after an idle period, and on modifying
cwnd during congestion avoidance phase.

We evaluate TcpHas when several HAS clients share the
bottleneck link and compete for the same home network.
Simulation results indicate that TcpHas considerably improves
both HAS QoE and network QoS. Concerning QoE, it offers
a high stability of quality level and has tendency to select
the optimal quality level. Concerning QoS, it reduces queuing
delay, and reduces considerably the packet drop rate in the
shared bottleneck queue. Moreover, TcpHas performs well
when increasing the number of competing HAS clients.

As future work, we intend to optimize TcpHas so that it
adapt its performance to Live streaming service and unsta-
ble network conditions, and also to implement and evaluate
TcpHas in real software and networks.
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