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Abstract
In this paper, we propose to jointly optimize the rolling stock assignment and the main-
tenance scheduling in a Prognostics and Health Management (PHM) context. The aim is
to determine an appropriate use of the rolling stock considering predefined train timetables
and prognostics information. The problem is to associate a rolling stock unit to each train
trip and to integrate the necessary maintenance operations in the schedule according to the
real state of health of trains. This problem, which falls within the decision part of PHM, is
proposed to be solved using an optimal approach based on Linear Programming. The use
of the proposed linear program is illustrated on a simple use case.

Keywords
Predictive maintenance, PHM, Rolling stock assignment, Train maintenance, Linear pro-
gramming

1 Introduction and related work

This paper considers the rolling stock assignment and maintenance scheduling problem.
Maintenance in the railway domain differs from the traditional maintenance in that vehicles
to be maintained are mobile. Their location over time depends directly on train routing.
Rail vehicles maintenance is then strongly linked to their routing. In the literature, the rout-
ing problem and the maintenance problem are however often treated separately or sequen-
tially. In some cases, the train routing is defined without any maintenance consideration
and adapted later to include necessary maintenance operations. Time slots for maintenance
tasks can also be included arbitrarily in the train routing, irrespective of which unit needs
to be maintained and when. A separate maintenance routing process is in this case carried
out very regularly to define which train units have to be maintained in the predefined re-
stricted time periods. Some studies aim finally to optimize the routing and the maintenance
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scheduling jointly. Our contribution falls within this case. Andrés et al. (2015) proposed
for instance a mixed integer linear programming model that determines an appropriate train
routing and schedules the necessary maintenance operations, with global cost minimization
as objective. Giacco et al. (2014) proposed also a mixed integer linear programming model
to deal with the interaction between the rolling stock routing and the maintenance planning.
The objective considered in this case is to minimize the total number of rolling stock units
that are used and the number of empty rides and to maximize the distance traveled by each
train between two maintenance operations of the same type.

Rolling stock maintenance is traditionally based on static strategies that schedule main-
tenance operations in advance according to time and distance criteria. This corresponds
to preventive maintenance, which often implies unnecessary maintenance activities and re-
duces the useful life of rolling stock components due to early replacement. Works cited
previously considered this type of maintenance. As stated by Umiliacchi et al. (2011), im-
provement can be achieved by estimating the time when a failure is likely to occur and by
adapting maintenance interventions accordingly. This is known as predictive maintenance,
which is a dynamic maintenance policy that makes use, in addition to current degradation
information, of predictive information in the form of remaining useful life to optimally
schedule maintenance actions (Horenbeek and Pintelon, 2013). Predictive maintenance is
based on the prognostics phase of Prognostics and Health Management (PHM) and allows
to do more than just react to threshold crossings and diagnostics alerts. PHM has been
shown to provide many benefits for the health management of systems, such as avoiding
failures, minimizing loss of remaining useful life, optimizing resource usage or increas-
ing availability. Studies proposed in the railway domain in a PHM context focused so far
for the vast majority on the prognostics phase. Some contributions tackled rolling stock
prognostics, with for instance the prediction of the remaining useful life of train axle bear-
ings (Fumeo et al., 2015) or rail wagon bearings. Prognostics has also been applied on
infrastructure elements, such as railway turnouts (Camci, 2014) or rail tracks (Letot et al.,
2016). Very few works addressed the decision part of PHM dealing with maintenance op-
timization. Letot et al. (2016) proposed an adaptive opportunistic predictive maintenance
model for railway tracks based on the track geometry observation. They search for the opti-
mum tamping time considering a set of rail tracks sections. Camci (2014, 2015) addressed
the problem of predictive maintenance for systems located in various places, which can be
applied for the maintenance of railway switches. The general problem has been introduced
in (Camci et al., 2012) and resolution methods based on a Genetic Algorithm formulation
have been proposed for many variants of the predictive maintenance optimization problem
in (Camci, 2014) and (Camci, 2015). These works relate to the maintenance of geographi-
cally distributed, but stationary systems, which are part of the railway infrastructure.

In this paper, we focus on the maintenance of trains, which are geographically moving
systems and whose maintenance is, as mentioned before, strongly linked to their routing.
Then, we propose to jointly optimize the rolling stock assignment and the maintenance
scheduling in a PHM context. The aim is to determine an appropriate use of trains consid-
ering predefined train timetables and prognostics information. The problem is to associate
a rolling stock unit to each train trip and to integrate the necessary maintenance operations
in the schedule according to the real state of health of trains.

For each train, prognostics information is considered in the form of a degradation level
which evolves over time with the use of trains. Compared to traditional preventive ap-
proaches, consideration of prognostics results allows to match each degradation level evo-



lution to the real use of trains. It is thus possible to take into account the impact of trips on
trains state of health. Each trip can indeed impact the trains wear and tear in various ways,
as a function of different criteria such as the difference in height, the rails state of health or
the train speed that is authorized. This allows to enhance the decisions made in the mainte-
nance scheduling, as well as in the assignment process, which defines which train unit has
to be used for each trip. The knowledge of trains state of health and the prediction of their
evolution allows indeed to choose the best train for each trip in the timetable. These deci-
sions, which fall within the decision part of the PHM process, are proposed to be optimized
using linear programming.

The organization of the paper is as follows: the problem statement is first detailed in
Section 2, with the description of the application framework and the optimization problem
and with a mathematical formulation of the problem. The proposed resolution method based
on linear programming is developed in Section 3. The use of this resolution method is then
illustrated on a simple use case in Section 4. This work is finally concluded and some future
works are given in Section 5.

2 Problem statement

2.1 Application framework

The application addressed in this paper is based on a set of m trains Mj (1 6 j 6 m).
All the trains are supposed to be of the same type. They are however differentiated by their
degradation level provided by the prognostics. Each level, denoted Hj ∈ [0, 1] (H0

j at the
beginning of the scheduling process), stands for the state of health of the train Mj . Hj = 0
means that the trainMj is as good as new andHj = 1 indicates that the train has reached its
end of life and that a maintenance is required. Each degradation level is supposed to remain
constant when the corresponding train is not used. In order to avoid failures, corrective
maintenance and associated additional costs, the maintenance of a train is triggered when
its degradation reaches a certain threshold denoted ∆j ∈ [0, 1[. The relation between the
two latter variables and the launch of maintenance is illustrated in Figure 1.

(As good as new) 0 time

degradation level Hj

(End Of Life) 1
∆j

Maintenance

Figure 1: Evolution of a train state of health with maintenance

Each maintenance is supposed to be perfect. Then, once a maintenance operation is
performed, the degradation level of the maintained train falls to 0, which means that the
train is as good as new (see Figure 1). The number of maintenance operations allowed
during the scheduling horizon for each train unit is fixed for each optimization problem



instance and denoted K. The duration of each maintenance is supposed to be the same
for each train: pmj,k = pm ∀ 1 6 j 6 m, ∀ 1 6 k 6 K. Maintenance can furthermore
be made at each train station. Then, no additional ride is required before the launch of a
maintenance operation. The starting date of the kth maintenance performed on the train Mj

is denoted τj,k (∀ 1 6 j 6 m, ∀ 1 6 k 6 K).
Trains have to be used to perform n trips Ji (1 6 i 6 n), following a predefined

timetable. Each trip is associated to a starting date ti and to a certain duration pi. As the
trains are supposed to be of the same type, the time needed to perform each trip is the
same whatever the train that is used. If its state of health Hj is sufficient, any train can be
assigned to any trip. Each trip is supposed to impact each train state of health in the same
way. All the trips are however not associated to the same degradation. This degradation,
denoted δi ∈ [0, 1], corresponds to a wear rate and is defined for each trip Ji as its duration
pi divided by the maximal time during which each train could be used to travel on the trip if
it was associated to an infinite duration (see Equation (1) and Figure 2). This maximal time
pmaxi can be seen as the remaining useful life of each train for the trip Ji.

δi =
pi

pmaxi
(1)

0 time

degradation

1

Ji

pmaxipi

δi

Figure 2: Definition of the degradation level associated to each train trip Ji

2.2 Optimization problem

The problem consists in assigning the appropriate train unit to each train trip, considering
the prognostics information, the impact of the trip on the train state of health and the main-
tenance opportunities. As the assignment of trains to trips impacts directly the trains state
of health, the routing problem and the maintenance one are closely related. One important
part of the problem is then to maintain the trains when needed in order to avoid failures,
while guarantying that as much trains as needed are available at each time to carry out all
the trips defined in the considered timetable.

In order to optimize the maintenance, the objective taken into account is the maximiza-
tion of the use of each train potential in terms of useful life. In other words, the aim is to
schedule each maintenance task as closely as possible to the failure while avoiding it. For
the considered fleet of trains, the considered objective is to maximize the minimal degrada-
tion level among those reached by all the trains before each maintenance. A mathematical
expression of this objective function and the constraints associated to the considered opti-
mization problem are detailed in next section.



2.3 Mathematical model

In order to express the objective function and the constraints associated to the optimization
problem, some variables need first to be introduced. Let xi,j ∈ {0, 1} (1 6 i 6 n, 1 6
j 6 m) be the binary decision variables used to define the resource assignment such that
xi,j = 1 if the train Mj is used to process the trip Ji ; xi,j = 0 otherwise. Let zi,k ∈ {0, 1}
(1 6 i 6 n, 0 6 k 6 K) be the binary decision variables used to schedule the maintenance
operations such that zi,k = 1 if the trip Ji is performed before the kth maintenance task ;
zi,k = 0 otherwise. Let yi1,i2 ∈ {0, 1} (1 6 i1 < i2 6 n) be the binary variable used
to express the predefined precedence constraints between trips. Values associated to all the
variables yi1,i2 are set before the problem resolution according to the following convention:
yi1,i2 = 1 if the trip Ji1 ends before the starting of the trip Ji2 ; yi1,i2 = 0 otherwise.

As mentioned in previous section, the objective is to maximize the degradation of each
train before maintenance. The degradation level of each train Mj before each kth mainte-
nance is denoted Γj,k. The expression of this degradation is split in two parts for each train.
First one, detailed in Equation (2), corresponds to the degradation caused by all the trips
performed by the considered train Mj before the first maintenance operation (k = 1). This
first part allows to take into account the initial degradation levelH0

j of the trainMj . Second
part, detailed in Equation (3), gathers the degradation levels of the train before each main-
tenance operation excluding the first one (for 2 6 k 6 K). Based on these two equations,
the objective function can be expressed as defined in Equation (4).

Γj,1 = H0
j +

n∑
i=1

δi · xi,j · zi,1 ∀ 1 6 j 6 m (2)

Γj,k =

n∑
i=1

δi · xi,j · (zi,k − zi,k−1) ∀ 1 6 j 6 m, ∀ 2 6 k 6 K (3)

max min
16j6m

(
Γj,1 +

K∑
k=2

Γj,k

)
(4)

Constraints defined in following equations allow to take into account characteristics
related to the trains, the trips and the maintenance. First set of constraints, detailed in Equa-
tion (6), ensures that a train Mj and only one is assigned to each trip Ji in the considered
timetable.

m∑
j=1

xi,j = 1 ∀ 1 6 i 6 n (5)

A train unit Mj can be assigned to two different trips Ji1 and Ji2 only if one of these
two trips is scheduled before the other one, with no overlapping (see Equation (6)).

xi1,j + xi2,j 6 1 + yi1,i2 ∀ 1 6 i1 < i2 6 n, ∀ 1 6 j 6 m (6)

A train Mj can be assigned to a trip Ji only if its state of health is sufficient, that is, if
the degradation caused by the trip added to the train actual degradation level does not pass
the degradation threshold ∆j (see Equation (7)).



Γj,k 6 ∆j ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (7)

As stated by Equation (8), each maintenance operation can be launched on a train Mj

only after the end of the trip Ji′ assigned to this train which directly precedes the mainte-
nance. As the constraint considers all the trips Ji, for all 1 6 i 6 n, the term U · (1− zi,k)
has been added to arbitrarily underestimate the lower bound set for the determination of the
starting date τj,k of each maintenance that has to be launched after the trip Ji′ . The constant
U ∈ R∗+ should be greater than the time horizon of the considered timetable.

(ti + pi) · xi,j 6 τj,k + U · (1− zi,k) ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, (8)

∀ 1 6 k 6 K, U ∈ R∗+

The last set of constraints (Equation (9)) sets that trips can start only after the end of
maintenance operations. In the same way as for the previous constraint, the term −U · zi,k
has been added to arbitrarily overestimate the upper bound set for the determination of the
starting date τj,k of each maintenance.

ti > (τj,k + pm) · xi,j − U · zi,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, (9)

∀ 1 6 k 6 K, U ∈ R∗+

The mathematical program defined by the previously defined objective function and
constraints is detailed in the set of Equations (10).



max min
16j6m

(
Γj,1 +

K∑
k=2

Γj,k

)
(10a)

Γj,1 = H0
j +

n∑
i=1

δi · xi,j · zi,1 ∀ 1 6 j 6 m (10b)

Γj,k =
n∑

i=1

δi · xi,j · (zi,k − zi,k−1) ∀ 1 6 j 6 m, ∀ 2 6 k 6 K (10c)

s.t.
m∑
j=1

xi,j = 1 ∀ 1 6 i 6 n (10d)

xi1,j + xi2,j 6 1 + yi1,i2 ∀ 1 6 i1 < i2 6 n, ∀ 1 6 j 6 m (10e)
Γj,k 6 ∆j ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (10f)
(ti + pi) · xi,j 6 τj,k + U · (1− zi,k) ∀ 1 6 i 6 n, ∀ 1 6 j 6 m,(10g)

∀ 1 6 k 6 K, U ∈ R∗+

ti > (τj,k + pm) · xi,j − U · zi,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, (10h)
∀ 1 6 k 6 K, U ∈ R∗+

with xi,j ∈ {0, 1} ∀ 1 6 i 6 n, ∀ 1 6 j 6 m (10i)
zi,k ∈ {0, 1} ∀ 1 6 i 6 n, ∀ 1 6 k 6 K (10j)
τj,k ∈ R+ ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (10k)



3 Resolution method

Linear optimization is proposed to be used to cope with the optimization problem detailed in
previous section. The mathematical program previously expressed in set of Equations (10)
being not linear, some modifications are mandatory.

The optimization function is first a Max-Min problem. It can be expressed as a linear
function by defining an additional constraint which limits the term that has to be minimized.
For recall, this term corresponds to the minimal cumulative degradations before mainte-
nance among trains, which depends on the problem solution. Then, a variable denoted Γ̃
is introduced and the optimization function defined by Equation (10a) in the mathematical
program is replaced with the Equation (11), associated to the constraint in Equation (12).

max Γ̃ (11)

Γ̃ 6
K∑

k=1

Γj,k ∀ 1 6 j 6 m (12)

The product of the two binary variables xi,j and zi,k has also to be linearized. This can
be done by introducing a new variable si,j,k ∈ R associated to the constraints detailed in
the set of Equations (13) (Billionnet, 2007).


si,j,k 6 xi,j ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (13a)
si,j,k 6 zi,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (13b)
1− xi,j − zi,k + si,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (13c)
si,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (13d)

Finally, the product of the real variable τj,k with the binary variable xi,j is linearized
by introducing the variable ei,j,k ∈ R with the additional constraints defined in the set of
Equations (14) (Billionnet, 2007). In these equations, tmax corresponds to an upper bound
for each τj,k: τj,k ∈ [0, tmax] ∀ 1 6 j 6 m, ∀ 1 6 k 6 K. tmax can be expressed as the
maximal date in the considered train timetable to which we subtract the duration pm of a
maintenance.


ei,j,k 6 xi,j · tmax ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (14a)
ei,j,k 6 τj,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (14b)
ei,j,k > τj,k − (1− xi,j) · tmax ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K(14c)
ei,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (14d)

The whole linear program associated to the considered optimization problem is detailed
in the set of Equations (15). Solving this linear program with a fixed number of mainte-
nance for each train (K) allows to obtain an optimal assignment of trains to the trips in the
considered timetable, associated to an optimal scheduling of maintenance operations. The
proposed linear program allows to find solutions in reasonable time only for small size in-
stances of the problem, that is for problem instances considering a limited number of trains
and a limited number of trips.





max Γ̃ (15a)

Γ̃ 6
K∑

k=1

Γj,k ∀ 1 6 j 6 m (15b)

Γj,1 = H0
j +

n∑
i=1

δi · si,j,1 ∀ 1 6 j 6 m (15c)

Γj,k =

n∑
i=1

δi · (si,j,k − si,j,k−1) ∀ 1 6 j 6 m, ∀ 2 6 k 6 K (15d)

si,j,k 6 xi,j ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15e)
si,j,k 6 zi,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15f)
1− xi,j − zi,k + si,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15g)
si,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15h)

s.t.
m∑
j=1

xi,j = 1 ∀ 1 6 i 6 n (15i)

xi1,j + xi2,j 6 1 + yi1,i2 ∀ 1 6 i1 < i2 6 n, ∀ 1 6 j 6 m (15j)
Γj,k 6 ∆j ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15k)
(ti + pi) · xi,j 6 τj,k + U · (1− zi,k) ∀ 1 6 i 6 n, ∀ 1 6 j 6 m,(15l)

∀ 1 6 k 6 K, U ∈ R∗+

ti > pm · xi,j + ei,j,k − U · zi,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, (15m)
∀ 1 6 k 6 K, U ∈ R∗+

ei,j,k 6 xi,j · tmax ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15n)
ei,j,k 6 τj,k ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15o)
ei,j,k > τj,k − (1− xi,j) · tmax ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, (15p)

∀ 1 6 k 6 K

ei,j,k > 0 ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15q)
with xi,j ∈ {0, 1} ∀ 1 6 i 6 n, ∀ 1 6 j 6 m (15r)

zi,k ∈ {0, 1} ∀ 1 6 i 6 n, ∀ 1 6 k 6 K (15s)
si,j,k ∈ R ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15t)
ei,j,k ∈ R ∀ 1 6 i 6 n, ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15u)
τj,k ∈ R+ ∀ 1 6 j 6 m, ∀ 1 6 k 6 K (15v)

4 Demonstration of the problem

The use of the proposed linear program is illustrated on a simple use case withm = 2 trains,
n = 5 trips and K = 1 maintenance allowed for each train. The characteristics taken into
account are detailed in the two next tables. In Table 1, the initial degradation level H0

j , the
degradation threshold ∆j , the number K of maintenance allowed and the duration of each
maintenance are shown for each train Mj (1 6 j 6 2).The duration of each maintenance is
supposed to be the same for each train: pm = 1 unit of time. In Table 2, the starting date ti,



the duration pi and the degradation rate δi are shown for each trip Ji (1 6 i 6 5).

Table 1: Trains characteristics
Train Mj H0

j ∆j K pm

M1 0.2 0.9 1 1
M2 0.3 0.9 1 1

Table 2: Trips characteristics
Trip Ji ti pi δi

J1 8 2 0.4
J2 9 2 0.6
J3 12 1 0.19
J4 15 1 0.06
J5 16 2 0.2

The solution obtained for this use case with the proposed linear program is depicted in
Figure 3. One can see that one maintenance has been scheduled for each train, allowing the
respect of the train timetable.

time8

train

M2

M1

J1

J2

J3

J4

J5

Ji Train trip

Maintenance

10 12 14 16 18

Figure 3: Schedule obtained with the linear program for the considered use case

5 Conclusion

A joint optimization of train assignment and maintenance scheduling has been proposed in
a Prognostics and Health Management (PHM) context. Advantage is taken from the knowl-
edge of prognostics information in the form of degradation levels to launch maintenance
operations only when they are needed, that is when degradation levels have reached a fixed
threshold. A mathematical formulation has been detailed, including an objective function
which aims to minimize the degradation level reached before each maintenance and sev-
eral constraints related to the railway application context. Linear programming has been
proposed to tackle the considered optimization problem. The use of the proposed linear
program has been illustrated on a simple use case with few trains and few trips.

As future work, performance of the proposed optimal approach will be assessed through
exhaustive simulations for small size instances of the optimization problem. For more re-
alistic problem sizes, with more trains and more trips, defining scalable heuristics will be
mandatory.
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