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Abstract

In this paper, a two-stage iterative algorithm is proposed to improve the con-

vergence of Krylov based iterative methods, typically those of GMRES variants.

The principle of the proposed approach is to build an external iteration over the

Krylov method, and to frequently store its current residual (at each GMRES

restart for instance). After a given number of outer iterations, a least-squares

minimization step is applied on the matrix composed by the saved residuals, in

order to compute a better solution and to make new iterations if required. It

is proven that the proposal has the same convergence properties as the inner

embedded method itself. Several experiments have been performed using the

PETSc toolkit (using default parameters in the absence of detail) to solve linear

and nonlinear problems. They show good speedups compared to GMRES with

up to 16,394 cores with di�erent preconditioners.

Keywords: Iterative Krylov methods; sparse linear and nonlinear systems;

two-stage iteration; least-squares residual minimization; PETSc.

1. Introduction

Iterative methods have recently become more attractive than direct ones to

solve very large sparse linear systems [1]. They are more e�cient in a parallel

context, supporting thousands of cores, and they require less memory and arith-

metic operations than direct methods [2]. This is why new iterative methods are5

frequently proposed or adapted by researchers, and the increasing need to solve

Preprint submitted to Recent Advances in Parallel Techniques for Scienti�c ComputingOctober 28, 2016



very large sparse linear systems has triggered the development of such e�cient

iterative techniques suitable for parallel processing.

Most of the successful iterative methods currently available are based on so-

called �Krylov subspaces�. They consist in forming a basis of successive matrix10

powers multiplied by an initial vector, which can be for instance the residual.

These methods use vectors orthogonality of the Krylov subspace basis in order

to solve linear systems. The best known iterative Krylov subspace methods are

conjugate gradient and GMRES ones (Generalized Minimal RESidual).

However, iterative methods su�er from scalability problems on parallel com-15

puting platforms with many processors, due to their need of reduction opera-

tions, and to collective communications to achieve matrix-vector multiplications.

The communications on large clusters with thousands of cores and large sizes

of messages can signi�cantly a�ect the performances of these iterative meth-

ods. As a consequence, Krylov subspace iteration methods are often used with20

preconditioners in practice, to increase their convergence and accelerate their

performances. However, most of the good preconditioners are not scalable on

large clusters.

In this research work, a two-stage algorithm based on two nested iterations

called inner-outer iterations is proposed. This algorithm consists in solving the25

sparse linear system iteratively with a small number of inner iterations, and

restarting the outer step with a new solution minimizing some error functions

over some previous residuals. Two-stage algorithms are easy to parallelize on

large clusters, and the least-squares minimization technique proposed in this

paper improves their convergence and performances. For further information30

on two-stage iteration methods, interested readers are invited to consult [3].

The present article is organized as follows. Related works are presented

in Section 2. Section 3 details the two-stage algorithm using a least-squares

residual minimization, while Section 4 provides convergence results regarding

this method. Section 5 shows some experimental results obtained on large clus-35

ters using routines of PETSc toolkit. This research work ends by a conclusion

section, in which the proposal is summarized while intended perspectives are
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provided.

2. Related works

Krylov subspace iteration methods have increasingly become key techniques40

for solving linear and nonlinear systems, or eigenvalue problems, especially since

the increasing development of preconditioners [1, 4]. One reason for the pop-

ularity of these methods is their generality, simplicity, and e�ciency to solve

systems of equations arising from very large and complex problems.

GMRES is one of the most widely used Krylov iterative method for solving45

sparse and large linear systems. It has been developed by Saad et al. [5] as a

generalized method to deal with unsymmetric and non-Hermitian problems, and

inde�nite symmetric problems too. In its original version called full GMRES,

this algorithm minimizes the residual over the current Krylov subspace until

convergence in at most n iterations, where n is the size of the sparse matrix.50

Full GMRES is however too expensive in the case of large matrices, since the

required orthogonalization process per iteration grows quadratically with the

number of iterations. For that reason, GMRES is restarted in practice after each

m � n iterations, to avoid the storage of a large orthonormal basis. However,

the convergence behavior of the restarted GMRES, called GMRES(m), in many55

cases depends quite critically on the m value [6]. Therefore in most cases, a

preconditioning technique is applied to the restarted GMRES method in order

to improve its convergence.

To enhance the robustness of Krylov iterative solvers, some techniques have

been proposed allowing the use of di�erent preconditioners, if necessary, within60

the iteration itself instead of restarting. Those techniques may lead to consid-

erable savings in CPU time and memory requirements. Van der Vorst in [7]

has for instance proposed variants of the GMRES algorithm in which a di�erent

preconditioner is applied in each iteration, leading to the so-called GMRESR

family of nested methods. In fact, the GMRES method is e�ectively precon-65

ditioned with other iterative schemes (or GMRES itself), where the iterations
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of the GMRES method are called outer iterations while the iterations of the

preconditioning process is referred to as inner iterations. Saad in [8] has pro-

posed Flexible GMRES (FGMRES) which is another variant of the GMRES

algorithm using a variable preconditioner. In FGMRES the search directions70

are preconditioned whereas in GMRES the residuals are preconditioned. How-

ever, in practice, good preconditioners are those based on direct methods, as

Incomplete LU (ILU) preconditioners [1], which are not easy to parallelize and

su�er from the scalability problems on large clusters of thousands of cores.

Recently, communication-avoiding methods have been developed to reduce75

the communication overheads in Krylov subspace iterative solvers. On modern

computer architectures, communications between processors are much slower

than �oating-point arithmetic operations on a given processor. Communication-

avoiding techniques reduce either communications between processors or data

movements between levels of the memory hierarchy, by reformulating the communication-80

bound kernels (more frequently SpMV kernels) and the orthogonalization op-

erations within the Krylov iterative solver. Di�erent works have studied the

communication-avoiding techniques for the GMRES method, so-called CA-GMRES,

on multicore processors and multi-GPU machines [9, 10, 11].

Compared to all these works and to all the other works on Krylov iterative85

methods, the originality of our work is to build a second iteration over a Krylov

iterative method and to minimize the residuals with a least-squares method

after a given number of outer iterations.

3. TSIRM: Two-stage iteration with least-squares residuals minimiza-

tion algorithm90

TSIRM is a two-stage algorithm based on subspace Krylov methods to solve

large sparse linear systems. The main idea behind the algorithm is to restart

a Krylov method after a few outer iterations with an accurate guess which

minimizes the residuals computed with the given Krylov method. The TSIRM

algorithm uses a minimization process based on the least-squares method to95
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compute the solution minimizing the Euclidean norm of the residual. The ap-

proach used by the TSIRM method allows to improve the slow convergence

of the subspace Krylov methods. In the following, two kinds of iterations are

considered: the iterations of the Krylov method and the iterations of the mini-

mization method. In practice, these iterations are classical iterations as in any100

iterative methods.

Algorithm 1 summarizes the main key points of the TSIRM method. It

solves a sparse linear system of n equations of the form Ax = b, where A is the

sparse square and nonsingular matrix, x is the solution and b is the right-hand

side. As explained previously, TSIRM is an inner-outer iteration method. In105

the inner iteration (line 4), TSIRM solves the linear systems partially by using

a few iterations, mxItkryl, of an iterative Krylov method called inner solver.

The GMRES method [5], or any of its variants, can potentially be used as inner

solver. Moreover, a tolerance threshold tolkryl must be speci�ed for the inner

solver. In practice, this threshold must be much smaller than the convergence110

threshold of the TSIRM algorithm (i.e., toltsirm). A threshold tolerance is used

to stop an iterative method when the current error is lower than this threshold.

Before the minimization step, TSIRM executes s outer iterations and stores

the approximations in a dense matrix S. This task consists in copying the

solution xk computed by the inner solver into the column k mod s of S (line 5),

so that s is much smaller than the size of the linear system (s � n). Then,

TSIRM performs a minimization on the residuals (b−AS) of the approximations

stored inside the matrix S. The objective of the minimization is to compute

a new approximation x with a minimal residual. For this, TSIRM solves the

linear least-squares problem:

min
α∈Rs

||b−ASα||2 (1)

to �nd α ∈ Rs which minimizes the residuals ||b − AS||2. The new solution

x is then computed with x = Sα. In our context, an iterative method such

as the Conjugate Gradient method for Least Squares (CGLS) [12] or the Least115

Squares (LSQR) method [13] is used to solve the least-squares problem (line 9).
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Remark that these methods are more appropriate than a single direct method

in a parallel context. CGLS has recently been used to improve the performance

of multisplitting algorithms [14]. Two parameters are required for these least-

squares methods: the maximum number of iterations mxItls and the threshold120

tolls to stop the method.

The TSIRM algorithm iterates until reaching the convergence with a desired

precision toltsirm. In our case, TSIRM stops the iterations when the residual

norm (see lines 2, 6 and 11) is less than the norm of the right-hand side by a

prede�ned factor toltsrim:

||b−Axk||2 < toltsirm · ||b||2 (2)

where xk is the solution computed at iteration k. During the resolution, the

inner solver is initialized with the last obtained approximation, and the matrix

S is reused after each minimization step with new values of the residuals.

Let us summarize the most important parameters of TSIRM:125

• toltsirm: the threshold that stops the TSIRM method;

• mxItkryl: the maximum number of iterations for the Krylov method;

• tolkryl: the threshold used to stop the Krylov method;

• s: the number of outer iterations before applying the minimization step;

• mxItls: the maximum number of iterations for the iterative least-squares130

method;

• tolls: the threshold used to stop the least-squares method.

The parallelization of TSIRM relies on the parallelization of all its parts.

More precisely, except the least-squares step, all the other parts are easy to

achieve out in parallel. In order to develop a parallel version of our code,135

we have chosen to use PETSc [15]. Line 8, the matrix-matrix multiplication is

implemented and e�cient since the matrix A is sparse and the matrix S contains
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Algorithm 1 TSIRM

Input: A (sparse matrix), b (right-hand side)

Output: x (solution)

1: Set the initial guess x0

2: error = ||b−Ax0||2
||b||2

3: for k = 1, 2, . . . until error < toltsirm do

4: xk = Solvekryl(A, xk−1, b,mxItkryl, tolkryl)

5: Sk mod s = xk

6: error = ||b−Axk||2
||b||2

7: if k mod s = 0 and error > toltsirm then

8: R = AS

9: α = Solvels(R, b,mxItls, tolls)

10: xk = Sα

11: error = ||b−Axk||2
||b||2

12: end if

13: end for

few columns in practice. In practice, the MatMatMult function is used to do

that in PETSc.

As explained previously, at least two methods seem to be interesting to solve140

the least-squares minimization, the CGLS and the LSQR methods.

The TSIRM code and the CGLS code have been integrated to the PETSc

tool. TSIRM has been implemented as any solver for linear systems in PETSc.

As it requires to use another solver, we have used a very interesting feature of

PETSc that enabled us to use a preconditioner as a linear system with the func-145

tion PCKSPGetKSP. As the LSQR function was already implemented in PETSc,

we have used it. CGLS had not been implemented yet, so we implemented

it and de�ned it as a minimization solver in PETSc similarly to LSQR. Both

CGLS and LSQR are not complex from a computational point of view. They

involve matrix-vector multiplications and some classical operations: dot prod-150

uct, norm, multiplication, and addition on vectors. As presented in Section 5
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the minimization step is scalable.

4. Convergence results

We suppose in this section that GMRES(m) is used as solver in the TSIRM

algorithm applied on a complex matrix A. Let us denote A∗ the conjugate155

transpose of A, and let R(A) =
1

2
(A+A∗), I(A) =

1

2i
(A−A∗). We now

discuss various convergence situations according to the properties of matrix A.

4.1. R(A) is positive

Proposition 1. If R(A) is positive, then the TSIRM algorithm is convergent.

Proof 1. If R(A) is positive, then even if A is complex, it is possible to state160

that the GMRES algorithm is convergent, see, e.g., [6]. In particular, its residual

norm decreases to zero.

At each iteration of the TSIRM algorithm, either a GMRES iteration is real-

ized or a least square resolution (to �nd the minimum of ||b−Ax||2 is achieved on

the linear span of the iterated approximation vectors span (xk−s+1, xk−s+2, . . . , xk)165

of the last GMRES stage, where span(S) =
{∑k

i=1 λivi

∣∣∣k ∈ N, vi ∈ S, λi ∈ R
}
.

Obviously, the minimum of ||b−Ax||2 on the set span (xk−s+1, xk−s+2, . . . , xk)

is lower than or equal to ||b−Axk||2, which is the last obtained GMRES-residual

norm. So we can conclude that the intermediate stage of the least square reso-

lution inserted into the GMRES algorithm does not break the decrease to zero170

of the GMRES-residual norm.

In other words, the TSIRM algorithm is convergent.

Regarding the convergence speed, we can claim that,

Proposition 2. If A is a positive matrix, then the convergence of the TSIRM

algorithm is linear.175

Furthermore, let rk be the k-th residue of TSIRM, then we have the following

bounds:

||rk|| 6
(
1− α

β

) km
2

||r0||, (3)

where M is the symmetric part of A, α = λmin(M)2 and β = λmax(A
TA).
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Proof 2. Let us �rst recall that, when A is a positive real matrix with symmetric

part M , then the residual norm provided at the m-th step of GMRES satis�es:

||rm|| 6
(
1− α

β

)m
2

||r0||,

where α and β are de�ned as in Proposition 2. These well-known results can be

found, e.g., in [5].

We will now prove by a mathematical induction that, for each k ∈ N∗, ||rk|| 6(
1− α

β

)mk
2

||r0|| when A is positive.180

The base case is obvious, as for k = 1, the TSIRM algorithm simply con-

sists in applying GMRES(m) once, leading to a new residual r1 that follows the

inductive hypothesis due to the results recalled above.

Suppose now that the claim holds for all m = 1, 2, . . . , k − 1, that is, ∀m ∈

{1, 2, . . . , k − 1}, ||rm|| 6
(
1− α

β

) km
2

||r0||. We will show that the statement185

holds too for rk. Two situations can occur:

• If k 6≡ 0 (mod m), then the TSIRM algorithm consists in executing GM-

RES once. In that case, and by using the inductive hypothesis, we obtain

||rk|| 6
(
1− α

β

)m
2

||rk−1|| 6
(
1− α

β

) km
2

||r0||.

• Else, the TSIRM algorithm consists in two stages: a �rst GMRES(m)

execution leads to a temporary xk whose residue satis�es:

||rk|| 6
(
1− α

β

)m
2

||rk−1|| 6
(
1− α

β

) km
2

||r0||

and a least squares resolution. Let span(S) =
{∑k

i=1 λivi

∣∣∣k ∈ N, vi ∈ S, λi ∈ R
}

190

be the linear span of a set of real vectors S. So,

minα∈Rs ||b−Rα||2 = minα∈Rs ||b−ASα||2
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= minx∈span(Sk−s+1,Sk−s+2,...,Sk) ||b−ASα||2
= minx∈span(xk−s+1,xk−s+2,...,xk) ||b−ASα||2
6 minx∈span(xk) ||b−Ax||2
6 minλ∈R ||b− λAxk||2
6 ||b−Axk||2
= ||rk||2

6

(
1− α

β

) km
2

||r0||,

which concludes the induction and the proof.

4.2. R(A) is positive de�nite195

Proposition 3. Convergence of the TSIRM algorithm is at least linear when

R(A) is positive de�nite. Furthermore, the rate of convergence is lower than

min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

m
2

;

1− λ
R(A)
min

2

||A||2

m
2

 ,

where λXmin (resp. λXmax) is the lowest (resp. largest) eigenvalue of matrix X.

Proof 3. If R(A) is positive de�nite, then it is positive, and so the TSIRM

algorithm is convergent due to Proposition 1.

Furthermore, as stated in the proof of Proposition 1, the GMRES residue is

under control when R(A) is positive. More precisely, it has been proven in the200

literature that the residual norm provided at the m-th step of GMRES satis�es:

1. ||rm|| 6

1− λ
R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

mk
2

||r0||, see, e.g., [16],

2. ||rm|| 6

1− λ
R(A)
min

2

||A||2

mk
2

||r0||, see [17],

which proves the convergence of GMRES(m) for all m under such assumptions

regarding A.205

We will now prove by a mathematical induction, and following the same

canvas than in the proof of Prop. 1, that: for each k ∈ N∗, the TSIRM-residual
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norm satis�es

||rk|| 6 min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

m
2

;

1− λ
R(A)
min

2

||A||2

m
2

 ||r0||
(4)

when A is positive de�nite.

The base case is obvious, as for k = 1, the TSIRM algorithm simply con-

sists in applying GMRES(m) once, leading to a new residual r1 that follows the

inductive hypothesis due to the results recalled in the items listed above.

Suppose now that the claim holds for all u = 1, 2, . . . , k − 1, that is, ∀u ∈210

{1, 2, . . . , k − 1}, ||ru|| 6

1− λ
R(A)
min

2

||A||2

mu
2

||r0||. We will show that the state-

ment holds for rk too. Two situations can occur:

• If k 6≡ 0 (mod m), then the TSIRM algorithm consists in executing GM-

RES once. In that case and by using the inductive hypothesis, we obtain

||rk|| 6

1− λ
R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

m
2

6

1− λ
R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

mk
2

||r0||,

due to [16]. Furthermore, we have too that: ||rk|| 6

1− λ
R(A)
min

2

||A||2

m
2

||rk−1|| 6

1− λ
R(A)
min

2

||A||2

mk
2

||r0||, as proven in [17] and by using the inductive hy-

pothesis. So we can conclude that

||rk|| 6 min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

mk
2

;

1− λ
R(A)
min

2

||A||2

mk
2

× ||r0||
.

• Else, the TSIRM algorithm consists in two stages: a �rst GMRES(m)

execution leads to a temporary xk whose residue satis�es, following the
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previous item:

||rk|| 6 min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

m
2

;

1− λ
R(A)
min

2

||A||2

m
2

× ||rk−1||
6 min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

mk
2

;

1− λ
R(A)
min

2

||A||2

mk
2

× ||r0||
and the least squares resolution of minα∈Rs ||b−Rα||2.

Let span(S) =
{∑k

i=1 λivi

∣∣∣k ∈ N, vi ∈ S, λi ∈ R
}

be the linear span of a

set of real vectors S, as de�ned previously. So,215

minα∈Rs ||b−Rα||2 = minα∈Rs ||b−ASα||2

= minx∈span(Sk−s+1,Sk−s+2,...,Sk) ||b−ASα||2
= minx∈span(xk−s+1,xk−s+2,...,xk) ||b−ASα||2
6 minx∈span(xk) ||b−Ax||2
6 minλ∈R ||b− λAxk||2
6 ||b−Axk||2
= ||rk||2

6 min


1− λ

R(A)
min

2

λ
R(A)
min λ

R(A)
max + λ

I(A)
max

2

mk
2

;

1− λ
R(A)
min

2

||A||2

mk
2

× ||r0||

.

due to the inductive hypothesis. So the statement of Equation (4) holds for the

k-th iterate too, which concludes the induction and the proof.
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4.3. A last linear convergence220

Proposition 4. Let us de�ne the �eld of values of A by

F(A) =

{
x∗Ax

x∗x
, x ∈ Cn \ {0}

}
.

Then if F(A) is included into a closed ball of radius r and center c, which

does not contain the origin, then the convergence of the TSIRM algorithm is at

least linear. More precisely, the rate of convergence is lower than 2
r

|c|
.

Proof 4. This inequality comes from the fact that, in the conditions of the

proposition, the GMRES residue satis�es the inequality: |rk| 6 2
r

|c|
k
|r0|. An225

induction inspired by the proofs of Propositions 2 and 3 can transfer this in-

equality to the TSIRM residue.

Remark that a similar proposition can be formulated at each time the given

solver satis�es an inequality of the form ||rn|| 6 µn||r0||, with |µ| < 1. Fur-

thermore, it is a priori possible in some particular cases regarding A, that the230

proposed TSIRM converges while the GMRES(m) does not.

5. Experiments using PETSc

In this section four kinds of experiments have been performed. First, some

experiments on real matrices issued from the Sparse Matrix Collection of the

University of Florida, called Davis collection [18], have been achieved out. Sec-235

ond, some experiments in parallel with some linear problems are reported and

analyzed. Third, some experiments conducted in parallel with some nonlinear

problems are illustrated. Finally some parameters of TSIRM are studied in

order to understand their in�uences.

It should be noticed that preconditioners ILU (Incomplete LU), SOR (Suc-240

cessive Over Relaxation), MG (Multigrid), ASM (Additive Schwarz Method)

and BJAC (Block Jacobi)) applied in all the experiments conducted in this pa-

per are used with their default parameters as they are implemented in PETSc.
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5.1. Real matrices

In order to see the behavior of our approach when considering only one245

processor, a �rst comparison with GMRES or FGMRES and the new algorithm

detailed previously has been experimented. Matrices that have been used with

their characteristics (names, �elds, number of rows, and nonzero coe�cients) are

detailed in Table 1. These latter, which are real-world applications matrices,

have been extracted from the Davis collection [18].250

Matrix name Field # Rows # Nonzeros

crashbasis Optimization 160,000 1,750,416

parabolic_fem Comput. �uid dynamics 525,825 2,100,225

epb3 Thermal problem 84,617 463,625

atmosmodj Comput. �uid dynamics 1,270,432 8,814,880

bfwa398 Electromagnetics pb 398 3,678

torso3 2D/3D problem 259,156 4,429,042

Table 1: Main characteristics of the sparse matrices chosen from the Davis collection

Chosen parameters are detailed below. We have stopped the GMRES every

30 iterations (i.e., mxItkryl = 30), which is the default setting of GMRES

restart parameter. The parameter s has been set to 8. CGLS minimizes the

least-squares problem with parameters tolls = 10−40 and mxItls = 20. The

external precision is set to toltsirm = 10−10. These experiments have been255

performed on an Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz with the 3.5.1

version of PETSc.

Experiments comparing a GMRES variant with TSIRM in the resolution

of linear systems are given in Table 2. The second column describes whether

GMRES or FGMRES has been used for linear systems solving. Di�erent pre-260

conditioners have been used according to the matrices. With TSIRM, the same

solver and the same preconditioner are used. Table 2 shows that TSIRM can

drastically reduce the number of iterations needed to reach the convergence,

when the number of iterations for the normal GMRES is more or less greater
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than 500. In fact this also depends on two parameters: the number of iter-265

ations before stopping GMRES and the number of iterations to perform the

minimization.

Matrix name Solver/precond
GMRES TSIRM CGLS

Time # Iter. Time # Iter.

crashbasis GMRES / none 15.65 518 14.12 450

parabolic_fem GMRES / ILU 1,009.94 7,573 401.52 2,970

epb3 FGMRES / SOR 8.67 600 8.21 540

atmosmodj FGMRES / SOR 104.23 451 88.97 366

bfwa398 GMRES / none 1.42 9,612 0.28 1,650

torso3 FGMRES / SOR 37.70 565 34.97 510

Table 2: Comparison between sequential standalone TSIRM using (F)GMRES with

(F)GMRES (time in seconds).

5.2. Parallel linear problems

In order to perform larger experiments, we have tested some example appli-

cations of PETSc. These applications are available in the ksp part [19], which270

is suited for scalable linear equations solvers:

• ksp.ex15 on is an example that solves in parallel an operator using a �nite

di�erence scheme to discretize a 2D Laplacian operator. This example is

used in many physical phenomena, for example, heat and �uid �ow, wave

propagation, etc.275

• ksp.ex54 is another example that solves the 2D Laplacian operator with

quadrilateral �nite elements (the standard �ve point stencil). In this exam-

ple, the user can de�ne the scaling of material coe�cient in an embedded

circle called α.

It should be noticed that both examples use positive-de�ned matrices.280
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For more technical details on these applications, interested readers are in-

vited to read the codes available in the PETSc sources. These problems have

been chosen because they are scalable with many cores.

In the following, larger experiments are described on two large scale ar-

chitectures: Curie and Juqueen. Both these architectures are supercomputers285

respectively composed of 80,640 cores for Curie and 458,752 cores for Juqueen.

Those machines are respectively hosted by GENCI in France and Jülich Super-

computing Center in Germany. They belong with other similar architectures to

the PRACE initiative (Partnership for Advanced Computing in Europe), which

aims at proposing high performance supercomputing architecture to enhance290

research in Europe. The Curie architecture is composed of Intel E5-2680 pro-

cessors at 2.7 GHz with 2Gb memory by core. The Juqueen architecture, for its

part, is composed by IBM PowerPC A2 at 1.6 GHz with 1Gb memory per core.

Both those architectures are equipped with a dedicated high speed network.

In many situations, using preconditioners is essential in order to �nd the so-295

lution of a linear system. There are many preconditioners available in PETSc.

However, for parallel applications, all the preconditioners based on matrix fac-

torization are not available. In our experiments, we have tested di�erent kinds

of preconditioners, but as it is not the subject of this paper, we will not present

results with many preconditioners. In practice, we have chosen to use a multi-300

grid (MG) and successive over-relaxation (SOR). For further details on the

preconditioners in PETSc, readers are referred to [15].

Table 3 shows the execution times and the number of iterations of example

ksp.ex15 of PETSc on the Juqueen architecture. Di�erent numbers of cores are

studied ranging from 2,048 up-to 16,383 with the two preconditioners MG and305

SOR. In these experiments, the number of components (or unknowns of the

problems) per core is �xed at 25,000, also called weak scaling. This number

can seem relatively small. In fact, for some applications that need a lot of

memory, the number of components per processor requires sometimes to be

small. Moreover, with a small number of components per core, the scalability310

is more di�cult to obtain, which is interesting to show the e�ciency of our

16



nb. cores precond
FGMRES TSIRM CGLS TSIRM LSQR

best gain
Time # Iter. Time # Iter. Time # Iter.

2,048 MG 403.49 18,210 73.89 3,060 77.84 3,270 5.46

2,048 SOR 745.37 57,060 87.31 6,150 104.21 7,230 8.53

4,096 MG 562.25 25,170 97.23 3,990 89.71 3,630 6.27

4,096 SOR 912.12 70,194 145.57 9,750 168.97 10,980 6.26

8,192 MG 917.02 40,290 148.81 5,730 143.03 5,280 6.41

8,192 SOR 1,404.53 106,530 212.55 12,990 180.97 10,470 7.76

16,384 MG 1,430.56 63,930 237.17 8,310 244.26 7,950 6.03

16,384 SOR 2,852.14 216,240 418.46 21,690 505.26 23,970 6.82

Table 3: Comparison of TSIRM using FGMRES with FGMRES for example ksp.ex15 of

PETSc/KSP with two preconditioners (MG and SOR) having 25,000 components per core

on Juqueen (toltsirm = 10−3, mxItkryl = 30, s = 12, mxItls = 15, tolls = 10−40), time is

expressed in seconds.

method. Other parameters for this application are described in the legend of

this table.

In Table 3, we can notice that TSIRM is always faster than FGMRES. The

last column shows the ratio between FGMRES and the best version of TSIRM315

according to the minimization procedure: CGLS or LSQR. Even if we have

computed the worst case between CGLS and LSQR, it is clear that TSIRM is

always faster than FGMRES. For this example, the multigrid preconditioner

(MG) is faster than SOR. The gain between TSIRM and FGMRES is more or

less similar for the two preconditioners. Looking at the number of iterations320

to reach the convergence, it is obvious that TSIRM allows the reduction of the

number of iterations. It should be noticed that for TSIRM, in these experiments,

only the iterations of the Krylov solver are taken into account. Iterations of

CGLS or LSQR were not recorded but they are time-consuming. In general, each

mxItkryl×s iterations which corresponds to 30×12, there are mxItls iterations325

for the least-squares method which corresponds to 15 in this experiment.
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Figure 1: Number of iterations per second with ksp.ex15 and the same parameters as in

Table 3 (weak scaling)

In Figure 1, the number of iterations per second corresponding to Table 3 is

displayed. It can be noticed that the number of iterations per second of FGM-

RES is constant whereas it decreases with TSIRM with both preconditioners.

This can be explained by the fact that when the number of cores increases, the330

time for the least-squares minimization step also increases but, generally, when

the number of cores increases, the number of iterations to reach the threshold

also increases, and, in that case, TSIRM is more e�cient to reduce the number

of iterations. So, the overall bene�t of using TSIRM is interesting.

In Table 4, some experiments with example ksp.ex54 on the Curie architec-335

ture are reported. For this application, we �xed α = 0.6. As it can be seen

in that table, the size of the problem has a strong in�uence on the number of

iterations to reach the convergence. That is why we have preferred to change

the threshold. If we set it to 10−3 as with the previous application, only one

iteration is necessary to reach the convergence. So Table 4 shows the results of340

di�erent executions with di�erent number of cores and di�erent thresholds. As

with the previous example, we can observe that TSIRM is faster than FGMRES.
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nb. cores toltsirm
FGMRES TSIRM CGLS TSIRM LSQR

best gain
Time # Iter. Time # Iter. Time # Iter.

2,048 8× 10−5 108.88 16,560 23.06 3,630 22.79 3,630 4.77

2,048 6× 10−5 194.01 30,270 35.50 5,430 27.74 4,350 6.99

4,096 7× 10−5 160.59 22,530 35.15 5,130 29.21 4,350 5.49

4,096 6× 10−5 249.27 35,520 52.13 7,950 39.24 5,790 6.35

8,192 6× 10−5 149.54 17,280 28.68 3,810 29.05 3,990 5.21

8,192 5× 10−5 785.04 109,590 76.07 10,470 69.42 9,030 11.30

16,384 4× 10−5 718.61 86,400 98.98 10,830 131.86 14,790 7.26

Table 4: Comparison of TSIRM using FGMRES with FGMRES for ksp.ex54 of PETSc/KSP

(both with the MG preconditioner) with 25,000 components per core on Curie (mxItkryl = 30,

s = 12, mxItls = 15, tolls = 10−40), time is expressed in seconds.

The ratio greatly depends on the number of iterations for FGMRES to reach

the threshold: the greater the number of iterations to reach the convergence is,

the better the ratio between our algorithm and FGMRES is. This experiment345

is also a weak scaling with approximately 25, 000 components per core. It can

also be observed that the di�erence between CGLS and LSQR is not signi�cant.

Both can be good but it seems not possible to know in advance which one will

be the best.

Table 5 shows a strong scaling experiment with example ksp.ex54 on the350

Curie architecture. So, in this case, the number of unknowns is �xed at 204, 919, 225

and the number of cores ranges from 512 to 8192 with the power of two. The

threshold is �xed at 5× 10−5 and only the MG preconditioner has been tested.

Here again we can see that TSIRM is faster than FGMRES. The e�ciency of

each algorithm is reported (i.e. E�.). It can be noticed that the e�ciency of355

FGMRES is better than the TSIRM one except with 8, 192 cores and that its

e�ciency is greater than one whereas the e�ciency of TSIRM is lower than one.

Nevertheless, the ratio of TSIRM with any version of the least-squares method
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is always faster. With 8, 192 cores when the number of iterations is far more

important for FGMRES, we can see that it is only slightly more important for360

TSIRM.

In Figure 2 we report the number of iterations per second for the experiments

reported in Table 5. This �gure highlights that the number of iterations per

second is more or less the same for FGMRES and TSIRM with a little advan-

tage for FGMRES. It can be explained by the fact that, as we have previously365

explained, the iterations of the least-squares steps are not taken into account

with TSIRM.

nb. cores
FGMRES TSIRM CGLS TSIRM LSQR

best gain
Time # Iter. E�. Time # Iter. E�. Time # Iter. E�.

512 3,969.69 33,120 1 709.57 5,790 1 1622.76 5,070 1 6.37

1024 1,530.06 25,860 1.30 290.95 4,830 1.21 307.71 5,070 1.01 5.25

2048 919.62 31,470 1.08 237.52 8,040 .75 194.22 6,510 .80 4.73

4096 405.60 28,380 1.22 111.67 7,590 .79 91.72 6,510 .84 4.42

8192 785.04 109,590 .32 76.07 10,470 .58 69.42 9,030 .56 11.30

Table 5: Comparison of TSIRM using FGMRES with FGMRES for ksp.ex54 of PETSc/KSP

(both with the MG preconditioner) with 204,919,225 components on Curie with di�erent

number of cores (toltsirm = 5× 10−5, mxItkryl = 30, s = 12, mxItls = 15, tolls = 10−40),

time is expressed in seconds.

5.3. Parallel nonlinear problems

With PETSc, linear solvers are used inside nonlinear solvers. The SNES

(Scalable Nonlinear Equations Solvers) module in PETSc implements easy to370

use methods, like Newton-type, quasi-Newton or full approximation scheme

(FAS) multigrid to solve systems of nonlinears equations. As SNES is based

on the Krylov methods of PETSc, it is interesting to investigate if the TSIRM

method is also e�cient and scalable with non linear problems. In PETSc, some

examples are provided. An important criteria is the scalability of the initial code375
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Figure 2: Number of iterations per second with ksp.ex54 and the same parameters as in

Table 5 (strong scaling)

with classical solvers. Consequently, we have chosen two of these examples:

• snes.ex14 is the code which solves the Bratu (SFI - solid fuel ignition) non-

linear partial di�erence equations in 3 dimension, the matrix is a positive-

de�nite one.

• snes.ex20 is the code which solves a 3 dimension radiative transport test380

problem.

For more details on these examples, interested readers are invited to see the

code in the PETSc examples [20]. For both these examples, a weak scaling case

is chosen where processors have approximately a number of components equals

to 100,000.385

In Table 6 we report the results of our experiments for the example snes.ex14

with the block Jacobi preconditioner. For TSIRM the CGLS algorithm is used

to solve the minimization step. In this table, we can see that the number

of iterations used by the linear solver is smaller with TSIRM compared with

FGMRES. Consequently the execution times are smaller with TSIRM. The gain390
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between TSIRM and FGMRES is around 6 and 7. The parameters of TSIRM

are expressed in the caption of the table.

nb. cores
FGMRES/BJAC TSIRM CGLS/BJAC

gain
Time # Iter. Time # Iter.

1,024 159.52 11,584 26.34 1,563 6.06

2,048 226.24 16,459 37.23 2,248 6.08

4,096 391.21 27,794 50.93 2,911 7.69

8,192 543.23 37,770 79.21 4,324 6.86

Table 6: Comparison of TSIRM using FGMRES with FGMRES for snes.ex14 of PETSc/SNES

with a Block Jacobi preconditioner having 100,000 components per core on Curie (toltsirm =

10−10, mxItkryl = 30, s = 12, mxIterls = 15, tolls = 10−40), time is expressed in seconds.

In Table 7, the results of the experiments with the example snes.ex20 are

reported. The block Jacobi preconditioner has also been used and CGLS to

solve the minimization step for TSIRM. For this example, we can observe that395

the number of iterations for FGMRES increases drastically when the number

of cores increases. With TSIRM, we can see that the number of iterations

is initially very small compared to the FGMRES ones and when the number

of cores increases, the number of iterations increases slighther with TSIRM

than with FGMRES. For this example, the gain between TSIRM and FGMRES400

ranges between 8 with 1,024 cores to more than 16 with 8,192 cores.

5.4. In�uence of parameters for TSIRM

In this section we present the in�uence of some parameters on the perfor-

mances of the TSIRM algorithm (the total number of iterations and the execu-

tion time). We study the in�uence of the following parameters: the method to405

solve the linear least-squares problem in the minimization step, the maximum

number of inner iterations mxItkryl, and the size s of matrix AS (i.e. matrix S)

of the least-squares problem. In the following, we call nbResMin the number

of residuals used for the minimization step (i.e. the s). We conducted experi-
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nb. cores
FGMRES/BJAC TSIRM CGLS/BJAC

gain
Time # Iter. Time # Iter.

1,024 667.92 48,732 81.65 5,087 8.18

2,048 966.87 77,177 90.34 5,716 10.70

4,096 1,742.31 124,411 119.21 6,905 14.61

8,192 2,739.21 187,626 168.9 9,000 16.22

Table 7: Comparison of TSIRM using FGMRES with FGMRES for snes.ex20 of PETSc/SNES

with a Block Jacobi preconditioner having 100,000 components per core on Curie (toltsirm =

10−10, mxItkryl = 30, s = 12, mxItls = 15, tolls = 10−40), time is expressed in seconds.

ments on a processor of 16 cores to solve linear and nonlinear problems of size410

200, 000 components per core. We solved problems token from examples ksp [19]

and snes [20] of PETSc. We took two examples of linear problems: ksp.ex15

and ksp.34, and three examples of nonlinear problems: snes.ex14, snes.ex20

and snes.ex35. These examples were previously described except ksp.ex34 and

snes.ex35. The general descriptions of these latter examples are:415

• ksp.ex34 solves an example based on a 3D Laplacian operator.

• snes.ex35 solves a Laplacian u = b as a nonlinear problem.

It should be noticed that all these examples use positive-de�ned matrices.

We �xed some parameters in the TSIRM algorithm as follows: the nonlin-

ear systems are solved with a precision of 10−8, the tolerance threshold in the420

TSIRM algorithm is toltsirm = 10−10, the FGMRES method is used as the inner

solver with a tolerance threshold tolkryl = 10−10, the additive Schwarz method

(ASM) is used as a preconditioner for the FGMRES method, and the least-

squares problem in the minimization step is solved with a precision tolls = 10−40

and a maximum number of iterations mxItls = 20.425

Figure 3 shows the total number of iterations and the execution time to

reach the convergence by using two di�erent methods CGLS and LSQR in the

minimization step. We can see from Figure 3 that both the CGLS and LSQR
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methods might lead to di�erent results depending on the nature of the problem.

In these experiments, it is more interesting to use the TSIRM algorithm with430

CGLS to solve linear systems (about 10%) and the TSIRM algorithm with LSQR

to solve nonlinear systems (about 22%). LSQR is known to use less memory

storage than CGLS and it is likely to obtain more accurate solutions in fewer

iterations for ill-conditioned problems [21]. However, CGLS is more e�cient in

term of the number of �oating-point operations per iteration.435

In the following, we show the performances of the TSIRM algorithm, the

total number of iterations and the execution time, in 2D �gures by varying

both parameters: the maximum number of inner iterations mxItkryl and the

number of residuals for the minimization nbResMin. In all experiments whose

results are shown in Figures 4, 5, 6, 7, and 8, we used the LSQR method in the440

minimization step. It should be noticed that the total number of iterations and

the execution time in Figures 4 and 8 at mxItkryl = 10 and nbResMin = 2

are put to the maximum values compared to other con�gurations, because both

examples ksp.ex15 and snes.ex35 converge very slowly. One should also remark

that values are interpolated in these �gures for all values inside computed values445

(in order to obtain beautiful �gures). For all these �gures except for Figure 5,

the total number of iterations is highly correlated to the execution times. For

Figure 5, it is not the case because the number of iterations is quite small.

The best con�guration for each �gure is given on Table 8. We can see

that examples ksp.ex15 and snes.ex35 need more inner iterations due to their450

slow convergence. The best con�guration (mxItkryl,nbResMin) depends on

the nature and the convergence of the application. We can conclude from these

experiments and for these sizes of problems that the good convergence might be

reached for a small number of nbResMin when the number of inner iterations is

enough to compute accurate vectors for matrix S. In fact, in order to improve455

the convergence, the TSIRM algorithm executes nbResMin (i.e. s) times a

few iterations (i.e. mxItkryl) of inner solver FGMRES, performs the residual

minimization on nbResMin solutions, and restarts the resolution with accurate

data. In this case of applications having a slow convergence, it is better to
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Figure 3: The total number of iterations and the execution time in seconds using two dif-

ferent methods for the minimization: CGLS and LSQR (toltsirm = 10−10, tolkryl = 10−10,

mxItkryl = 30, s = 10, tolls = 10−40, mxItls = 20), ASM preconditioner
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execute enough inner iterations and build a small matrix S with accurate vectors460

than to execute a small number of inner iterations and build a large matrix S.

The latter situation leads to perform a residual minimization on inaccurate

solutions.

Problem mxItkryl nbResMin Total nb. of iter. Execution time (s)

ksp.ex15 55 7 2730 43.06

ksp.ex34 35 4 300 9.80

snes.ex14 35 4 927 16.31

snes.ex20 35 5 3019 52.34

snes.ex35 55 2 8034 126.13

Table 8: The best con�guration for each example: ksp.ex15, ksp.ex34, snes.ex14, snes.ex20

and snes.ex35.

5.5. In�uence of the least-square iteration on TSIRM

In this part, we have measured the execution time of the least-square (LS)465

iteration on some examples and we have compared it with the total execution

time of the TSIRM method. We have also compared the number of least-square

iterations with the total number of iterations. In fact we consider that the

total number of iterations is the sum of all the iterations of the inner solver

(i.e. the Krylov solver). As for these experiments we did not have access to the470

supercomputers used previously, we have performed them on a small machine

composed of a bi-processor Xeon(R) CPU E5-2640 v3 @ 2.60GHz. This machine

contains 16 real cores. For each tested problem of PETSc, the parameters are

given below. It must be noticed that FMGRES has always been used as the

inner solver:475

• ksp.ex15: size of the problem: 2, 0002, toltsirm = 10−6, mxItkryl = 30,

mxItls = 15, tolls = 10−40, LS solver: CGLS, preconditioner: mg
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Figure 4: The total number of iterations and the execution time in seconds in example ksp.ex15

of PETSc by varying the number of inner iterations and the size of the least-squares problem.
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Figure 5: The total number of iterations and the execution time in seconds in example ksp.ex34

of PETSc by varying the number of inner iterations and the size of the least-squares problem.
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Figure 6: The total number of iterations and the execution time in seconds in example

snes.ex14 of PETSc by varying the number of inner iterations and the size of the least-squares

problem.
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problem.
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Figure 8: The total number of iterations and the execution time in seconds in example

snes.ex35 of PETSc by varying the number of inner iterations and the size of the least-squares
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• ksp.ex45: size of the problem: 2003, toltsirm = 10−10, mxItkryl = 30,

mxItls = 15, tolls = 10−40, LS solver: CGLS, preconditioner: asm

• snes.ex14 and snes.ex20: size of the problem: 2003, toltsirm = 10−12,480

mxItkryl = 30, mxItls = 15, tolls = 10−40, LS solver: CGLS, precondi-

tioner: block-jacobi.

In Table 9, experiments run with 16 cores are reported. In this table, the

example of PETSc, the total execution time, the execution time of the least-

square (LS) method, the total number of iterations, and the number of iterations485

of LS are provided. We can see that the minimization step based on the least-

square method is not a time-consuming task in the TSIRM solver. In these

experiments, the minimization step represents about 2% to 3% of the total

execution time and the total number of iterations respectively.

Problem Total exec. LS exec. Total nb. Nb. of iter.

time (s) time (s) of iter. of the LS

ksp.ex15 82.65 1.11 1,200 45

ksp.ex45 69.75 0.99 510 15

snes.ex14 95.06 2.39 1,200 45

snes.ex20 358.91 6.91 3,090 105

Table 9: Comparison of the execution times and number of iterations of the TSIRM method

and of the Least-Square method for some problems on a 16 cores machine.

6. Conclusion490

In this paper a new two-stage algorithm TSIRM has been described. This

method allows us to improve the convergence of Krylov iterative methods. It is

based on a least-squares minimization step which uses the Krylov residuals.

We have implemented our code in PETSc in order to show that it is e�cient

and scalable. Some experiments with classical examples of PETSc for linear495

and nonlinear problems have been performed. We have observed that TSIRM
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outperforms GMRES variants when the number of iterations is large. TSIRM

is also scalable since we made some experiments with up to 16,394 cores.

We have also observed that TSIRM is e�cient with di�erent preconditioners.

The in�uence of some important parameters for TSIRM have been studied500

(the number of inner iterations, the number of residuals used for the mini-

mization step, ...). It can be noticed that they have a strong in�uence on the

convergence speed.

In future works, we plan to study other problems coming from di�erent

research areas. Other e�cient Krylov optimisation methods as communication505

avoiding techniques may be interesting to investigate.
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