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Abstract In this paper, the problem of using prognos-

tics information of Micro-Electro-Mechanical Systems

(MEMS) for post-prognostics decision in distributed

MEMS-based systems is addressed. A strategy of post-

prognostics decision is proposed and then implemented

in a distributed MEMS-based conveying surface. The

surface is designed to convey fragile and tiny micro-

objects. The purpose is to use the prognostics results

of the used MEMS in the form of Remaining Useful Life

(RUL) to maintain as long as possible a good perfor-

mance of the conveying surface. For that, a distributed

algorithm for distributed decision making in dynamic

conditions is proposed. In addition, a simulator to sim-

ulate the decision in the targeted system is developed.

Simulation results show the importance of the post-

prognostics decision to optimize the utilization of the
system and improve its performance.

Keywords Prognostics and Health Management ·
Micro-Electro-Mechanical Systems · post-prognostics

decision · distributed systems

1 Introduction

A failure in an engineering system results not only in

a loss of timely services and productivity to the cos-

tumers, but also in safety and environmental problems,

for example, aircraft crash due to engine failure, rail
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accident due to bearing failure, etc. This risk empha-

sizes the need of maintaining engineering systems before

a failure could happen. For that reason, maintenance

strategies have progressed rapidly and shifted from un-

planned breakdown maintenance to preventive mainte-

nance, then to Condition-Based Maintenance (CBM)

and recently to Predictive Maintenance (PM).

Unlike the traditional maintenance strategies (break-

down and preventive maintenance), for which interven-

tions are performed after the occurrence of the failure

or regardless of the system status, the CBM is based on

the current health state of the system for deciding main-

tenance interventions [29]. In the case of PM, the cur-

rent health state is projected into the future to predict

future maintenance actions [29]. These two smart poli-

cies aim to improve the reliability, the availability and

the security of the system while reducing its mainte-

nance costs. Therefore, prognostics becomes a necessary

step to anticipate and predict the time to the failure of

a degrading equipment. The implementation of these

maintenance strategies requires a scientific approach in-

volving different tasks such as condition monitoring,

modeling, analysis and decision making. These tasks

can be performed within the Prognostics and Health

Management (PHM) framework [30].

PHM is the combination of seven modules that col-

lectively enable to link failure mechanisms with life

management (Fig. 1). It is a discipline that deals with

the study of a system failure mechanisms to better man-

age its health. Among the PHM modules, prognostics

have attracted significant research interest due to the

need of models for accurate prediction for different ap-

plications [30]. It is defined by the PHM community as

the estimation of the Remaining Useful Life (RUL) of

physical systems based on their health state and their

future operating conditions. The RUL estimation can
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Fig. 1 Prognostics and Health Management cycle [26].

be done by using three main approaches [4]: data-driven

prognostics [39], model-based prognostics [20] and hy-

brid prognostics [9].

Although the benefits of the PHM are related to the

decision module, research on how to use the prognostics

results for decision is in its early stages. The purpose

of the decision module of the PHM is to determine ap-

propriate maintenance actions and to choose an appro-

priate system configuration in response to prognostics

predictions [1, 2, 12, 21].

In this paper, we focus on using already obtained

prognostics results to perform decision making. Our

targeted system consists in a distributed MEMS-based

conveyor designed to convey fragile and tiny micro-

objects. It is a surface composed of an array of blocks

that communicate together to fulfill a common mission,

which is the transport of objects. It is important to

notice that there is no work in the literature dealing

with post-prognostics decision in distributed systems.

In the targeted conveyor, the critical component that

needs to be monitored and to anticipate its failures by

calculating its RUL is the MEMS. To do so, in a previ-

ous work [36], the data acquisition, data processing and

prognostics (RUL estimation) steps of the PHM cycle

were applied to the MEMS used in the conveyor. The

objective in this paper is to exploit the obtained prog-

nostics results to ensure continuity of operation of our

distributed conveyor, optimize its usage and increase its

lifetime.

The paper is structured in six sections. Next sec-

tion presents a brief literature review related to post-

prognostics decision and the proposed strategy for dis-

tributed systems. The targeted distributed system and

the decision algorithm are presented in Section 3. The

developed simulator and the simulation results are pre-

sented respectively in Section 4 and 5. Finally, conclu-

sions are drawn in Section 6.

2 Post-prognostics decision

In the PHM context, the decision making consists in

exploiting the results of the prognostics step to deter-

mine the appropriate actions, such as maintenance in-

terventions, mission reconfiguration, etc. The objective

of this type of decision is to optimally use the available

information to minimize costs and avoid failures.

Several research works dealing with the post prog-

nostics decision were published. These works concern

various applications, for example aerospace [2, 11], wind

turbines [19, 38], batteries [32], and electronic systems [3,

34]. The three main decisions used in these applications

are: 1) the maintenance optimization, 2) the control and

3) the missions reconfiguration, presented in the follow-

ing.

2.1 Maintenance optimization

Most of the research works related to the decision part

of the PHM focus on the maintenance optimization.

This type of decision consists in using prognostics re-

sults, the current and future health state of compo-

nents and the health state of the system for mainte-

nance planing [11]. The main aim is to alert the user in

time to plan optimally the necessary maintenance ac-

tions. The maintenance optimization using prognostics

information has been used in several applications, such

as electronic systems [3, 34], aerospace [2, 11] and wind

turbines [5, 27].

For example, Camci et al. [11] proposed a tool for in-

tegrating PHM data with maintenance data. The PHM

data are mainly the results of the prognostics step in

the form of RUL. The maintenance data includes the

resources needed for maintenance actions (personnel,

hardware, tools, etc.), the resources available in the

inventory, and the time to receive the resources or-

dered. The PHM process and the maintenance system

are based on the return of the integration to update

their data. Also, the proposed tool allows analyzing the

information about the programmed missions to obtain

more accurate RUL values since the mission profile af-

fects the degradation rate of an equipment. In their

work, Camci et al. [11] implemented this tool for fighter

aircraft to validate its performance.

2.2 Control

The prognostics results are also used to improve the

control of systems by determining immediate or rapid

actions.
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For example, Bole et al. [7] worked on the distribu-

tion of tasks based on the prognostics data to perform

the control of a system. The idea consists in integrat-

ing the prognostics model into the control system. This

latter uses the prognostics data to distribute the effort

between the equipment of the system in order to better

manage the risks generated by the uncertain estimates

and the future performance of the system. To validate

its performance, this methodology were applied to an

autonomous vehicle subjected to degradation caused

by thermal stresses. Further works on improving con-

trol using prognostics data may also be cited, such as

the works of Bogdanov et al. [6] on servomotors and of

Brown et al. [10] on the control of electro-mechanical

actuators.

2.3 Missions reconfiguration

The data provided by the prognostics step can also be

used to reconfigure the mission of a system depending

on its health state. This type of decision is not yet suf-

ficiently developed in the literature. However, there are

some works that were proposed in specific contexts, in-

cluding production scheduling [1], sensors network man-

agement [16], battery management [31] and the man-

agement of autonomous vehicles [37].

For example, Asmai et al. [1] have shown that know-

ing the RUL value can be very useful for the production

scheduling. Indeed, this value gives information on the

health state of the production equipment, which can

be taken into account when launching new production

tasks. This can prevent loss of production and waste of

materials that can be caused by a failure occurring dur-

ing the production. The decision using the prognostics

information can take many forms, such as an immediate

stop of the machine to avoid further damage, a contin-

uation of normal production, a preventive maintenance

intervention, or a re-scheduling of the production.

This paper deals with the post-prognostics decision

in distributed systems. The main aim is to define the

appropriate decision based on obtained prognostics re-

sults to optimize the usage of such systems.

2.4 Post-prognostics decision in distributed systems

After defining the post-prognostics decision, its differ-

ent types and its main uses, this subsection is intended

to position the contribution proposed in this paper in

the post-prognostics decision. As presented before, most

of the works dealing with the post-prognostics decision

focus on applications involving a single system or equip-

ment. Contrary to these works, our work aims to go fur-

ther in the sense that we consider a set of autonomous

equipment which communicate and interact with each

other using a communication network to fulfill a com-

mon mission, i.e. a distributed system.

Concerning the post-prognostics decision, such sys-

tems can have two levels: the module and the overall

system. At the module level, it must be independent

and able to assess in real time its health, estimate its

RUL and auto-reconfigure depending on its health state

to operate with the performance expected by the oper-

ator. Then, at the overall system level, modules com-

municate their health state and their RUL to their di-

rect neighbors. This allows to detect degraded or failed

modules in the system and reconfigure or adapt its mis-

sion based on module health states. Two types of post-

prognostics decision can be used in this case: the con-

trol for the module level and missions reconfiguration

for the overall system level.

This strategy can be applied to several modular ap-

plications such as sensor networks and modular robots [25].

In this work, this strategy is applied to a distributed

MEMS-based conveyor presented in the next section.

For clarity of presentation, only the mission reconfigu-

ration is considered in this work. In the following, we

assume that we have a control system at the module

level.

3 Implementation in a distributed

MEMS-based conveyor

3.1 System description

Most of the existing solutions to convey objects in pro-

duction lines rely on contact-based technologies. How-

ever, these solutions are not appropriate for fragile and

tiny micro-objects (medicines, micro-electronics parts,

etc.), which can be easily damaged, contaminated or

even scratched during conveying. Thus, conveyors based

on contact-less air-jet technology, which avoid contact

with conveyed objects, can be a solution in this case

[23, 13, 18].

A conveyor generally consists of a single monolithic

block dedicated to a specific task in a fixed environ-

ment. As a consequence, in case of failure or environ-

ment change, the conveyor will not be able to perform

the dedicated task and has to be replaced. To address

these issues, self-reconfigurable systems, which consist

generally of small MEMS-based modules, can be used

[24, 33].

A MEMS is a micro-system that integrates mechan-

ical components using electricity as source of energy
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Fig. 3 (a) Design scheme of a smart block and (b) prototype
of a manufactured smart block.

in order to perform measurement functions and/or op-

erating in structure having micro-metric dimensions.

Thanks to their miniaturization, low power consump-

tion and tight integration with control and sense elec-

tronics, MEMS devices come in a wide variety of fields

such as aerospace, automotive, bio-medical and com-

munication technologies. Classical MEMS include ac-

celerometers, gyroscopes, pressure sensors and micro-

mirror arrays.

A self-reconfigurable conveying system is proposed

by Boutoustous et al. [8]. It consists of a contact-less

distributed MEMS-based conveying surface for safe and

fast conveying of fragile and tiny micro-objects (Fig. 2).

It is composed of an array of decentralized blocks, called

smart blocks. In this conveyor, only one MEMS valve

is used in each smart block to control the air flow.

In this paper, a similar conveyor is proposed, but

with some modifications. We designed a new smart block

(Fig. 3), in which four MEMS valves are used to con-

trol the air flow in the four directions (one MEMS valve

for each direction) and a blinky block [22]. This latter

allows a block to communicate with its four neighbors

and integrates the prognostics and decision algorithms.

Through the blinky blocks, smart blocks commu-

nicate with each other to exchange information about

their health state to ensure a common goal, which is the

transport of objects. The conveying principle consists in

transferring objects from a start block to a final desti-

nation using controlled airflow controlled by the MEMS

valves. To do so, all MEMS valves involved in conveying

the objects have to be in a good health state and able

to accomplish the mission. Then, the objective consists

in using the information provided by the prognostics

step to take appropriate decisions in order to minimize

the risk of mission failure, anticipate MEMS failures,

avoid the loss of the transported objects, optimize the

utilization of the surface and maintain as long as pos-

sible a good level of performance. The post-prognostics

decision consists in finding the best path that the ob-

ject must take from the point of view of the health state

of MEMS in the conveyor.

3.2 System Characteristics

The object of study is a conveying surface composed of

m smart blocks denoted bk, where k ∈ {1, 2, ...,m} is

the number identifying the block in the surface. Each

block contains four MEMS valves denoted Mk,i, where

k ∈ {1, 2, ...,m} is the number identifying the block

and i ∈ {1, 2, 3, 4} is the number identifying the MEMS

valve in the block. Thanks to the MEMS valves, each

block is able to transfer objects to its neighbors in four

directions (d1, d2, d3, d4). The directions correspond to

the four sides of the square surface of the block.

The conveyor can be divided in two levels: 1) the

smart block level and 2) the overall system level.

3.2.1 The smart block level

We consider that the health state of the conveyor is

given by the health state of the smart blocks, which in

turn is given by the health state of the MEMS valves

inside. To evaluate the health state of the MEMS valve

and predict its RUL, we have first to define its degra-

dation model. This model was obtained in a previous

work [36] and is generic for all the MEMS valves. It is

related to the decrease in the magnitude of a physical

parameter of the MEMS, called Health Indicator (HI).

The projection of this HI can be exploited to predict

the future behavior of the MEMS valve and estimate

its RUL. For more details about how the degradation

model is defined and the obtained prognostics results

(RUL values), interested readers can refer to Skima et

al. [36].

Each MEMS valve in the smart block is character-

ized by:
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– A degradation model HIt(k, i). It represents the health

state at time t of the MEMS Mk,i :

HIt(k, i) = a. exp(b.Nt(k, i)) + c. exp(d.Nt(k, i)) (1)

where Nt(k, i) is the number of cycles performed by

the MEMS Mk,i up to time t and a, b, c and d are

the parameters of the degradation model.

– A RUL value RUL(k, i) = F (HIt(k, i)): the remain-

ing useful life expressed in number of cycles. This

value is estimated by using the degradation model

and a state estimation tool (see [36]).

– A transfer time of the object T (k, i): the time that

takes an object to traverse a block and reach the

next one. This parameter can be presented in two

forms:

– T (k, i) = G(HIt(k, i)): it can be variable and

depend on the degradation of the MEMS valve.

The more degraded the MEMS is, the higher the

transfer time is.

– T (k, i) = const: it can be a constant value. This

is related to the control decision. The MEMS

valve is electro-thermally actuated and by in-

creasing the input voltage, we can have the same

performance (air pressure) even if the MEMS is

degraded. Thus, by controlling the input voltage,

we can maintain the same performance of the

MEMS valve and then the same transfer time.

3.2.2 The overall system level

The conveying surface is composed of a set of m smart

blocks. Each one is surrounded at most by four other

blocks with which is able to communicate (send and

receive information about the health state) thanks to its

communication module (blinky block). Moreover, each

block can transfer objects to its neighbors. This transfer

is performed by the air flow controlled by the MEMS

valves inside the block. Fig. 4 illustrates an example of

a conveying surface composed of 9 smart blocks. For

example, the block b5 can communicate with its four

neighbors b2, b4, b6 and b8. An object located on the

surface of the block b5 can be transferred in directions

d1, d2, d3 and d4 (respectively to blocks b2, b4, b6 and

b8).

3.3 Mission of the system

The mission of the conveying surface consists in trans-

porting objects by using a controlled air flow. This mis-

sion results in the search of the path allowing to go from

a source block to a destination block. Thus, the convey-

ing of an object can be characterized by a path that cor-

responds to a set of n blocks that participated in the

𝑏1 𝑏2 𝑏3

𝑏4

𝑏7

𝑏5

𝑏8

𝑏6

𝑏9
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𝑑1 𝑑3

𝑑4

Fig. 4 Illustration of a conveying surface composed of 9
smart blocks.
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Fig. 5 Illustration of a path between the source block S and
the destination block D.

transport of the object, path = {S, bk2 , ..., bkn−1 , D},
where S corresponds to the source block bk1

and D

to the destination block bkn
. The index j, with j ∈

{1, ..., n = length(path)}, is the order of the block on

the path. For example, bkj
is the block number j on

the path. A path is valid when bkj
and bkj+1

are two

neighboring blocks. Since two consecutive blocks on the

path are neighbors, we can then deduce the unique di-

rection between these two blocks that we denote by di,

where i ∈ {1, 2, 3, 4}. Fig. 5 illustrates an example of

a path on a given surface. For example, in this path

denoted path = {b8, b9, ..., b27, b28}, d4 is the direction

to go from the block number 10 on the surface (b10 to

the block 17 on the surface (b17).

We defined the following two metrics on the path,

namely the RUL and the transfer time of this path:

– the path RUL value (RUL(path)) corresponds to

the minimum of all the RUL values of the MEMS

valves that participated in conveying the object on

this path:

RUL(path) = min
j=1,...,n

RUL(kj , i) (2)

– the path transfer time (Time(path)) is the sum of

all the transfer times of the MEMS valves that par-

ticipated in conveying the object on this path:

Time(path) =

n∑
j=1

T (kj , i) (3)

The objective of a conveying mission is to maximize

the lifetime of the surface, optimize its utilization and
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improve its performance. This can result in the maxi-

mization of the RUL of the path and the minimization

of the transfer time of the objects from the source S to

the destination D. In the next section, an algorithm to

solve this problem is presented.

3.4 Decision algorithm

Finding an optimal path from a start block to a destina-

tion one on the conveying surface is similar to some clas-

sical problems in the graph theory. The conveyor can

be modeled as a weighted undirected graph, where each

vertex represents a block with four edges connected to

its neighbors. Each edge in the graph has two weights,

which are the RUL and the transfer time.

The minimization of the transfer time is similar to

the search of the shortest path in a graph and the max-

imization of the RUL is similar to the search of the

maximum flow in a network. In the literature, several

algorithms are proposed to find solutions to these clas-

sical problems, for example Dijkstra [14] and Bellman-

Ford [28] algorithms for the time minimization, and

Ford-Fulkerson [17] and Edmonds-Karp [15] algorithms

for RUL maximization. However, in our case, the chal-

lenge is to find a path between a source and a des-

tination that maximizes the RUL and minimizes the

transfer time.

Among the available algorithms, the Dijkstra’s al-

gorithm can be used to solve this problem. Indeed, this

algorithm meets our need in term of transfer time mini-

mization, but not in term of RUL maximization. There-

fore, we adapted it to maximize the RUL in addition to

the minimization of the transfer time.

The modified Dijkstra’s algorithm, presented in Al-

gorithm 1, finds an optimal path with maximum RUL,

and in case of equal paths (same path RUL), it chooses

the path that has the minimum transfer time (fastest

path). Note that, the obtained algorithm maintains the

same complexity as the original Dijkstra’s algorithm.

The optimized criteria need to be ordered according

to their importance. In Algorithm 1, the path RUL is

maximized as a principal criterion and the transfer time

is minimized if there is more than one path with the

same path RUL value. Recall that the path RUL value

is the minimum RUL value on the path, cf. (2), and the

path transfer time is the sum of all MEMS transfer time

on the path, cf. (3). If we want to minimize the transfer

time as a principal criterion, the relaxation part in the

algorithm (line 19) should be changed to:

if timeThroughU < Ts[w] or (timeThroughU ==

Ts[w] and RULThroughU > Rs[w])

Algorithm 1 Modified Dijkstra’s algorithm.

1: function ModifiedDijkstra (Graph, s)
2: for each vertex w in the Graph do
3: Ts[w] =∞ // time from the source s to w
4: Rs[w] = 0 // RUL from the source s to w
5: P [w] = undefined // previous block in the path
6: end for
7: Ts[s] = 0 // transfer time from the source to the source
8: Rs[s] =∞ // RUL from the source to the source
9: Q = initially contains the s vertex // Q is a priority

queue
10: while Q is not empty do
11: u = vertex in Q with the biggest RUL in Rs[]
12: remove u from Q
13: for each neighbor w of u do
14: ∆x = wx − ux

15: ∆y = wy − uy

16: ∆ = ∆y+2+2∆x // number of the MEMS allowing
to move toward the neighbor

17: timeThroughU = Ts[u] + u.getT[∆]
18: RULThroughU = min(Rs[u], u.getR[∆])
19: if RULThroughU > Rs[w] or (RULThroughU ==

Rs[w] and timeThroughU < Ts[w]) then
20: Rs[w] = RULThroughU
21: Ts[w] = timeThroughU
22: P [w] = u
23: add w to Q
24: end if
25: end for
26: end while
27: end function

This algorithm can be implemented in the blinky

block of each smart block as a decision maker. In the

next section, it is used to simulate post-prognostics de-

cision in the distributed conveying surface.

4 The DiMEMS Simulator

To show the importance of the post-prognostics deci-

sion making in the distributed MEMS-based conveyor

(resulting in a longer life for the surface), we have devel-

oped DiMEMS Simulator, a simulator written in Java

programming language and which is multi-threaded.

Once launched, it allows to choose the dimensions of

the conveying surface, the number of objects to intro-

duce on the surface, their source(s), their destination(s)

and the principal criterion (RUL or transfer time). It

creates the surface with random values for both criteria

in each block.

In a previous work [35], the simulator used only 1

MEMS per block and used a simpler, linear degradation

model; also, this work does not analyze surface lifetime,

but the evolution of the best path during conveying.

In this paper, the simulator is updated to use four

MEMS per block and the degradation model previously

described. Each time a MEMS Mk,i participates at con-

veying an object, its number of cycles N(k, i) is incre-
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mented. As a consequence, its HI value HI(k, i) de-

creases, its RUL(k, i) decreases and its transfer time

T (k, i) increases. Hence, RUL and transfer time of blocks

change dynamically.

At the beginning of the simulation, each block stores

a matrix of the same size as the surface. Each cell of this

matrix maps to the corresponding block in the surface

and contains the RUL and the transfer time for each of

its four MEMS. Initially, the cell of its own block has

the right values of RUL and transfer time, and all the

other cells contain 0 for both criteria. Before starting

the simulation, each block communicates with its four

neighbors and sends them its matrix. When a neighbor

receives the matrix, it compares values in this matrix

with its matrix and stores the maximum, since the RUL

and transfer time cannot be less than or equal to 0.

After some time, all the blocks have the same matrix

which contains the right values of the surface.

Once this step is finished, the first object is sent

in the surface. Blocks execute asynchronously the algo-

rithm shown in Algorithm 2 (Fig. 6). If the block detects

the presence of an object, it executes the modified Dijk-

stra’s algorithm and sends the object to the next block

according to the result that it finds. Thus, the RUL

and the transfer time of the MEMS which participates

at conveying the object change. Then, it sends its up-

dated matrix with the new values to its four neighbors.

When a neighbor receives the matrix, it compares val-

ues in this matrix with its matrix and stores the min-

imum RUL as this criterion can keep the same value

or decrease and the maximum transfer time as it can

keep the same value or increase. We call this step diffu-

sion. If a block does not detect an object, it continues
to send its matrix to its neighbors (diffusion). Thus,

blocks have always an updated matrix. Fig. 7 shows

the steps performed by each block. The big advantage

of being asynchronous is that the surface does not need

a global clock for all the blocks, which facilitates the

surface manufacturing.

Algorithm 2 Algorithm executed asynchronously by

each block.
1: if the object is above the block then
2: execute modified Dijkstra’s algorithm with itself as

starting block, thus finding out the next block
3: send the object to the next block
4: consequently, the degradation of the used MEMS

changes
5: update its matrix by changing the values (RUL and

transfer time) of its own cell
6: end if
7: send its matrix to its four neighbors, so that the next

block have always the updated matrix

Table 1 Numerical values of the exponential models param-
eters.

Param. MEMS 1 MEMS 2 MEMS 3 MEMS 4

a −1.025.104 −8.47.104 −3.727.105 4.041.106

b 0.0168 0.0157 0.0073 0.0116

c 1.029.104 8.48.104 3.727.105 −4.041.106

d 0.0167 0.0157 0.0073 0.0116

When the object is in the destination, it leaves the

conveyor. Meanwhile, the updated matrix spreads to

the other blocks. We assume that the information ex-

change is much faster than the movement of the object,

so the source receives the updated matrix before the ob-

ject completely leaves the conveyor.

5 Simulation and results

Before explaining how values in the surface are gen-

erated and the different scenarios of simulation, it is

necessary to set the framework of the simulations. This

framework is defined by the following assumptions:

– an object covers one block.

– multiple objects can be on the surface at the same

time, but the time between sending two consecu-

tive objects is sufficiently high to avoid collision of

objects.

– the transfer time is constant and is the same for all

MEMS:

T (k, i) = const (4)

– as the MEMS valve can perform more than 10 mil-

lion cycles, the RUL is expressed in days to get the

results more quickly (1 day = 85 000 cycles).

5.1 Data generation

In the previous work [36], four MEMS valves were tested.

The obtained experimental results allowed to define a

generic degradation model (Eq. 1) for all MEMS valves,

but with different numerical values of the model param-

eters (a, b, c and d). These values are given in Table 1.

In practice, the RUL is estimated using the degra-

dation model with a state estimation tool. The imple-

mentation of a such tool in the simulator is of interest

only when the input data are acquired online. In this

work, we propose to use prognostics results obtained in

a previous work [36]. For that, a relation between the

evolution of the HI and the RUL is defined rather than

implementing the state estimation tool:

RUL(k, i) = α. exp(β.HI(k, i)) (5)
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Algorithm executed by each block

1: if the object is above the block then

2:        execute the modified Dijkstra’s algorithm

3:        send the object to the next block

4:        change the degradation

5:        update its values (RUL and transfer time) 

6: end if

7: send its values to its neighbors

Fig. 6 Distributed operation of the surface.
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Fig. 7 Steps performed by each block.

where α = 0.2489 and β = 0.1575.

When the surface is generated, all the parameters

(a, b, c, d, α and β) are multiplied by a random value

in order to obtain different MEMS characterizations.

5.2 Scenarios of simulation

Table 2 resumes the various simulation scenarios. De-

tails are in the following.

A homogeneous initial surface means that all MEMS

are not degraded and have almost the same values (dif-

fering by a small random value). A heterogeneous sur-

face means that MEMS have various (random) initial

degradations.

Scenario one source one MEMS: simulations

consist in sending objects from a given source (one block

in the left side of the surface) to a given destination

(one block in the right side of the surface) (Fig. 4). We

assume that the destination is known by all the smart

blocks.

Four simulations are performed: 1) RUL as a princi-

pal criterion without decision (without decision means

that all objects take the path found by the source block

and taken by the first object), 2) transfer time as a prin-

cipal criterion without decision, 3) RUL as a principal

criterion with decision (each block executes the decision

algorithm once it detects an object) and 4) transfer time

as a principal criterion with decision. Note that, for

comparison purposes, the same initial surface is used.

Scenario several sources one MEMS: two types

of simulation are performed. The first type consists in

alternating sending objects from the sources (all blocks

in the left side of the surface) to a given destination.

Several simulations are performed and at each one we

change the destination. The second type consists in al-

ternating sending objects from the sources to the best
destination. This means that each block executes the

decision algorithm and sends the object to the destina-

tion that allows having the best path RUL or the best

transfer time. Thus, the destination can change during

the conveyance of the object.

Scenario several sources several MEMS: one

type of simulation is performed. It consists in alternat-

ing sending objects from the sources to the best destina-

tion. In this scenario, the transport of objects continues

even with some failed MEMS in the surface, but stops

however when there is no possible path. Blocks con-

taining these MEMS are avoided thanks to the decision

algorithm.

For each scenario, several simulations were performed

with different surface dimensions. It was deduced that

the same observations are made regardless of the sur-

face dimension. The following section presents the re-

sults obtained with the dimension 4x9 (36 blocks, 144

MEMS).
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Table 2 Scenarios of simulation.

Scenario Initial surface Simulation

1 s. 1 MEMS homogeneous

Simulation stops when one MEMS fails

1. RUL as principal criterion without decision
2. transfer time as principal criterion without decision
3. RUL as principal criterion with decision
4. transfer time as principal criterion with decision

Sev. s 1 MEMS homogeneous

Simulation stops when one MEMS fails

1. alternating sending objects from the sources to a given destination
2. alternating sending objects from the sources to the best destination

Sev. s. sev. MEMS heterogeneous

Simulation stops when there is no possible path to convey the object

– alternating sending objects from the sources to the best destination

5.3 Results

In the first scenario, Fig. 8, more objects are trans-

ported with decision than without decision. Also, with

decision better optimizes the utilization of the surface.

The minimum RUL value in the surface is greater than

without decision for the same number of transported

objects. In this scenario, the same observations are made

regardless of the optimized criterion (RUL or transfer

time).

Even with decision, only 69 objects are transported.

This can be explained by the fact that the source and

the destination are the most used and then their MEMS

fail quickly since they are more solicited.

In the second scenario, Fig. 9, the first type of sim-

ulation shows that even if sources alternate, the same

number of objects is transported as in the first scenario.

This is explained by the fact that the destination is the

most used. For that, the second type of simulation is

performed. It allows to transport more objects and to

better optimize the utilization of the surface.

The conclusion of these first two scenarios, in which

the surface is homogeneous, is that there is not a big

difference between optimizing the RUL as principal cri-

terion or the transfer time. Also, it is better to alternate

sources and choose the best destination in order to op-

timize the utilization of the surface.

The third scenario clearly shows the advantages of

optimizing the RUL as a principal criterion rather than

the transfer time. The minimum RUL value in the sur-

face is more important when optimizing the RUL (Fig. 10).

Also, the first MEMS fails after 92 objects. However,

when the transfer time is used as first criterion, the

first MEMS fails after only 71 objects. In addition, with

the transfer time as a principal criterion, we have more

failed MEMS at the end of the simulation (14 MEMS)

rather than with the RUL (5 MEMS) after transporting

the same number of objects (Fig. 11).
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Fig. 10 Scenario several sources several MEMS.
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Fig. 11 Number of failed MEMS as a function of the number
of transported objects.

To conclude, in order to maintain a good perfor-

mance of the surface, optimize its usage, transport more

objects and have less failed MEMS, it is much better

to use the third scenario with the RUL as a principal

criterion. The transfer time is still optimized in the case

of several paths with the same RUL value to take the

fastest path.
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Fig. 8 Scenario 1 source 1 MEMS.
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Fig. 9 Scenario several sources 1 MEMS.

6 Conclusion

In this paper, the problem of post-prognostics decision

in distributed MEMS-based systems is addressed. First,

a brief literature review related to the decision in the

field of PHM is provided. After that, a strategy to make

post-prognostics decision in distributed MEMS-based

systems is proposed.

The proposed strategy is then applied to a new con-

veying surface to convey fragile and tiny micro-objects.

This surface is composed of an array of decentralized

smart blocks containing MEMS valves. The main aim

is to use the prognostics information related to the

MEMS valves to optimize the usage of this surface and

maintain as long as possible a good performance. For

this purpose, the Dijkstra’s algorithm is modified and

adapted in order to optimize criteria related to the

health state of the used MEMS valves (RUL and trans-

fer time). The decision consists in finding which path an

object should take to optimize the usage of the convey-

ing surface. To simulate this decision, a simulator writ-

ten in Java programming language has been developed.

Simulation results show the significance of the proposed
strategy and the importance of the post-prognostics de-

cision to maintain the operation of the system and op-

timize its usage.

As future work, other simulation contexts will be

performed such as objects sorting and block mainte-

nance. Also, the prognostics and the decision algorithms

will be implemented in the blinky blocks to confirm the

results in a real physical system.
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