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Abstract: Vibroacoustical systems as well as their behavior are coupled by nature. However, it may be of first 

interest for engineers to work on decoupled models, so that behavior of the structural/acoustic sub-system can 

be easily predicted and investigated. This work focuses on a virtual decoupling approach for vibroacoustics, 

with the objective to reconstruct decoupled and reduced system matrices from coupled experimental 

measurements. As a promising identification technique, the properness enforcement method has been 

developed in the literature for both symmetric and non-symmetric systems. During the decoupling process, 

however, this methodology still needs to be improved from two aspects: 1) the introduction of an additional 

correlation process so that the structural/acoustic sub-model can be correctly extracted from the coupled 

system; and 2) the additional optimization step after the complex vectors are approximately corrected by the 

properness enforcement method. These two key points are addressed by an integrated framework containing 

three aspects (i.e. identification, optimization, and correlation), which are specially designed for 

vibroacoustical applications. The finally identified system matrices of a decoupled and reduced equivalent 

system can exhibit the same behavior as the experimentally measured one. A simulated example is first 

presented to illustrate the use of this approach in detail. Then an experimental case study is used to 

demonstrate its feasibility in engineering applications. 
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1 Introduction 

Decoupled and reduced models of the acoustic and structural parts extracted from a vibroacoustical coupled 

system are significant for predicting and improving the noise performance in fields such as automobiles [1], 

aeronautics and astronautics [2]. This specific vibroacoustical application pushes model identification into a 

more challenging battle, where not only the overall coupled system but also the decoupled structural/acoustic 

sub-model should be identified [3]. In practical application, the combined vibrational/acoustic frequency 

response function (FRF) is measured from the coupled system, and the modes extracted from the FRF are 

coupled by nature. However, it is significant for the engineer to decide each of the modes is governed by the 

structural part or acoustic part, such that each mode can be specifically managed to control the structural 

vibration or acoustical noise. The decoupling of vibroacoustics is critical as it provides not only a 

comprehensive understanding of the coupling mechanism but also a precise prediction on the specific 

structural/acoustic behavior. On the other hand, decoupling of vibroacoustics is important in terms of model 

validation. Decoupled models are often used in the design stage, either in vacuum structural analysis or rigid 

walled acoustic analysis. However, the practical measurement is always performed on the coupled system. 
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Hence being able to represent the decoupled behavior from the coupled measurement is the key preparation 

for validation of the numerical models used for the design. 

As a promising identification technique, the properness enforcement method has been developed in the 

literature for both symmetric and non-symmetric systems. The concept of properness condition is described 

with various names in different literatures [4-6]. Ideally, this condition is automatically fulfilled by the exact 

complex modes of the system without noise. In real applications, however, the noised modes must be 

corrected to make sure the properness condition is enforced, so that the modes can be safely used to 

reconstruct the system matrices. Balmès [7] developed a method to enforce this properness condition in 

structural dynamics, which has been recently extended to non-symmetrical problems [8] and the specific 

vibroacoustical applications [9]. However, there is still a remarkable obstacle when the engineer attempts to 

apply this method on real vibroacoustical problems. This obstacle arises from the following four aspects. 

First, the vibroacoustical coupling implies the acoustic and structural responses are dependent with each 

other, hence the coupled behavior must be analyzed as one unity [10, 11]. This consideration leads to a 

problem which exists only in vibroacoustics: the correlation between the coupled and decoupled models. 

Assume that n coupled modes are identified from the measurement. Each mode, exhibiting a coupled behavior, 

founds its origin either in the acoustic part or in the structural part of the system. In the current procedure, the 

engineer must assign the nature of each mode (structural/acoustic) from the coupled mode list. An incorrect 

judgment of the configuration obviously leads to unphysical degree of freedoms (dofs) of the 

structural/acoustic sub-model and, furthermore, leads to redundant or missed decoupled modes. In this context, 

the term correlation explicitly refers to the procedure to decide the physical number of the structural/acoustic 

modes. This problem should be the primary consideration in vibroacoustical identification, but the published 

research on this issue is unfortunately limited. Note that the correlation in this context is different with the 

term described in Ref [9] whose purpose is to find the best sensors and actuators placement for modal analysis. 

Other literatures in model updating [12, 13] and validation [14, 15] refer to correlation as the process of 

checking the spatial coincidence between two vectors, which is also different with the correlation considered 

herein. 

Second, compared with the structural dynamics, the vibroacoustical system behavior has more challenging 

characteristics: 1) The value of acoustical response is several orders of magnitude larger than the structural 

response, implying that the system response is quite sensitive to the noise; 2) The coupling between the 

acoustic and structural parts as well as the damping terms [16, 17] of the system are more complex and more 

difficult to be correctly represented; 3) Hard-to-control factors (e.g. sealing effectiveness and microphone 

sensitivity) lead the vibroacoustical experiment operationally more complex than the traditional structural 

experiments, introducing more noise in the measurement [18]. These difficulties hinder the properness 

enforcement method from providing precise results, especially in complex cases such as strong coupling or 

closed modes in given frequency range. Appropriate techniques besides the properness enforcement method 

are desired to optimize the modes before they can be safely used to construct the system matrices. 

Third, vibroacoustics leads to non-symmetrical formulations in modal analysis, which require specific 

extensions against the classical techniques. The corresponding non-symmetric extensions are described in Ref. 

[8], however, explicit equation development for the vibroacoustical eigenvectors is still absent in the literature. 

Consequently, this paper proposes an extended least-square complex frequency-domain (LSCF) method which 

provides the calculation equations for the right and left eigenvectors during vibroacoustical identification. 

The last aspects, for cases with large number of sensors in the experiment, the dofs of the model is too large, 

leading to a huge calculation burden for its further application. Being able to identify the models with a 

smaller size, i.e. with reduced dofs, is another common and important aspect in model identification [19, 20].  



 

 

The objective of this work is to build mass, stiffness and damping matrices of an equivalent system which is 

capable of representing the same behavior as the experimentally measured one, but also to have the ability to 

be decoupled, which means that structural and acoustics effects can be investigated independently 

Considering the above mentioned difficulties, an integrated approach containing three aspects, i.e. 

identification, optimization and correlation, is proposed to overcome the obstacle in vibroacoustical 

identification. 
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Fig. 1: The integrated framework for vibroacoustical identification 

As shown in Fig. 1, this framework starts directly from the experimental measurements, from which the 

complex modes are identified by an extended LSCF method. A reduction technique based on the QR 

decomposition is subsequently executed on the complex modes. The reconstruction procedure from the 

complex modes to the system matrices, i.e. the inverse procedure, is quite sensitive to the noise, leading to 

large changes in the represented system behavior. Consequently, an optimization procedure is critical before 

the inverse procedure. Two optimal methods are employed, respectively the properness enforcement method 

and the “minimum FRF” method. The properness enforcement method has been described in Ref. [9], while 

the alternative minimum FRF method is proposed here as a necessary supplement especially in practical 

applications where more noise and strong coupling effects can occur. The last aspect of this framework is 

correlation, which is a specially required procedure for the vibroacoustical application. A discrimination 

technique based on the classical modal assurance criterion (MAC) [21] is proposed to filter the redundant 

modes, so that the physical configuration of the structural and acoustic dofs is obtained in the finally identified 

model. In case the criterion is not satisfied during correlation, a new judgement of the structural/acoustic dofs 

is proposed and a new round of identification is executed as shown in Fig. 1. 

This paper is organized as follows. Section 2 is about the initial identification procedure where the specific 

formulation of vibroacoustics and the extended LSCF method are described. Section 3 recalls the properness 

enforcement method and proposes the minimum FRF method which is employed in the optimization 

procedure. Section 4 introduces two specially designed techniques, i.e. the QR decomposition reduction 

method and the MAC correlation procedure. Two case studies are given in Section 5. The simulated case study 

is presented to illustrate each aspect of the approach in detail so that the reader can reproduce the result. The 



 

 

following experimental case study is given to demonstrate the feasibility in practical application with 

emphases on noise and strong coupling effects. Finally, Section 6 presents the conclusions and perspectives of 

this work. 

2 Formulation of vibroacoustics and identification of complex modes 

2.1 Vibroacoustical second-order problem 

The classical second-order formulation of the structural dynamics is 

 ( ) ( ) ( ) ( )t t t t  Mq Cq Kq f  (1) 

where q(t) is the system response; f(t) is the excitation vector; M, C, and K are respectively the mass, 

damping, and stiffness matrices. All the system matrices are assumed to be real, but as for the vibroacoustical 

problem considered herein, they are not necessarily symmetric. 

A fluid domain (i.e. cavity) surrounded by an elastic domain is typically proposed to represent the 

vibroacoustical system. The response is described based on natural fields which are directly measured from 

different domains, i.e. displacement of the structure and acoustic pressure of the cavity. Then the system has a 

specific topology as  
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where x(t) is the displacement of the structure, p(t) is the acoustic pressure of the cavity, Fs(t) is the excitation 

on the structure, ( )a tQ  is the acoustic excitation source (volume acceleration [10]) in the cavity. Ms and Ks 

are respectively the mass and stiffness matrices of the structure; Ma and Ka are respectively the mass and 

stiffness matrices of the cavity; Cs and Ca are respectively the structural and acoustic losses; L is the coupling 

matrix. 

The right and left eigenvectors are required to describe the associated non-symmetrical quadratic 

eigenvalue problem:  
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where  ,  1,2, , ,j i n   is the i-th eigenvalue associated to the i-th right and left eigenvector Riφ  and Liφ ; 

and n is the total number of dofs.  

The specific topology of the system matrices in Eq. (2) involves the hypothesis that there is no loss at the 

coupling between the structural and acoustic parts, and the internal losses can be represented using equivalent 

viscous models. A detailed description of the vibroacoustical formulation and its damping conditions is given 

by Ref. [9]. 

2.2 State-space representation 

The non-symmetrical nature of the vibroacoustics implies that the right and left modes must be described 

separately. The state-space representation of Eq. (1) is  
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The corresponding eigenvalue problem is then represented as  
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The eigenvalues are stored in the spectral matrix          j
 
  

Λ , then the matrix form of the eigenvectors are 

expressed as 
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then Eq. (5) is simply rewritten as  
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Let          j
 
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ξ denote a diagonal matrix with n arbitrary diagonal elements, the orthogonality between 

different modes is represented as 

 T

L R  U ξ  or .T

L R  A ξΛ  (8) 

In the following context, it is important to note the arbitrary diagonal matrix ξ  is normalized as nξ E  

where En is the n-by-n identity matrix. This normalization condition is significant in the following inverse 

procedure to properly reconstruct the system matrices. 

For a general non-symmetrical problem, the right and left eigenvectors are different and have no certain 

relationship. While in this vibroacoustical case, due to the specific topology in Eq. (2), there is a direct link 

between the right and left modes [10]: 
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where X is the sub-eigenvector corresponding to the structural dofs; P is the sub-eigenvector corresponding to 

the acoustic dofs. Note that this relationship is valid under the situation with only viscous damping and 

without structural-acoustic cross damping [9]. This hypothesis is fundamental for the vibroacoustical problem 

considered herein and it is also important for the extended LSCF method in the following section.  

2.3 Extension of the LSCF identification method 

The classical LSCF method has been demonstrated as a reliable technique to identify the complex modes 

from experimental measurements [22, 23]. As this method is initially developed for symmetrical systems, an 

extension is required for this non-symmetrical case. Based on the complex curve-fitting of the FRF, the first 

step is to identify the complex poles (i.e. eigenvalues λi). This can be done in exactly the same way as if the 

system were symmetrical, since the eigenvalues associated with the right and left eigenvectors are equal. Once 

the poles have been identified, the right and left eigenvectors are calculated based on the so-called residue 

matrix. Construction of the residue matrix is relative to the position of the excitation. Assume the excitation is 

applied on the k-th dof, the residue matrix is 

 k R k R D  (10) 

where R  is the unknown right eigenvector matrix; Dk is the modal participation matrix, which is diagonal 



 

 

and whose terms are the k-th row of the unknown left eigenvector matrix. This indicates each column of Rk is 

proportional to a right eigenvector. Note that depending if the excitation is applied on a structural or acoustic 

dof, the proportionality coefficients in Rk are different, and consequently the calculation of eigenvectors 

belongs to two situations. 

 When the excitation is applied on a structural dof: 

Eq. (10) is rewritten as  
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where Riφ  is the i-th right eigenvector; kix  is the unknown coefficient. As xki is simultaneously the element 

in the k-th row of the left eigenvector matrix which corresponds to the structural dof, it can be evaluated from 

the residue matrix by 

 ( , ), 1,  ,  ki kx k i i n  R  (12) 

where ( , )k k iR is the element positioned at the k-th row and i-th column in matrix Rk. Then the right 

eigenvector is extracted as 
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where (:,  )k iR  is the i-th column of Rk, afterwards the left eigenvector is calculated following Eq. (9). 

 When the excitation is applied on an acoustic dof: 

In this case, Eq. (10) should be rewritten in a different way compared with Eq. (11): 
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where kip  is the unknown coefficient with the same sense as xki in Eq. (11). pki is simultaneously the element 

in the k-th row of the left eigenvector, but herein it corresponds to the acoustic dof. Consequently, pki is 

calculated as  

 2( , ) , 1,  ,  .ki k ip k i i n   R  (15) 

Then the right eigenvector is extracted as 
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Similarly, the left eigenvector can be obtained following Eq. (9). 

3 Optimization of the identified complex modes 

Identified from the measurements, the complex modes are unavoidably polluted by noise, which comes 

from both the measurements and the identification process. The optimization procedure is required before the 

directly identified modes can be safely utilized to reconstruct the system matrices. The reconstruction 

procedure is derived from the orthogonality relationship in Eq. (8). When ξ is normalized as En (the 

normalization condition), the inverse of U and A are obtained as  
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Recalling Eq. (6), the above equations is rewritten as 

 

1 1

21 1 1

1 11

1

0

0

0 0
.

0 0

T T

R L R L

T T

R L R L

T T

R L R L

T T

R L R L

 

  

 



       
     

        

        
     

        

C M ΛM

M Λ ΛM M CM

K ΛK

M Λ ΛM

 (18) 

Then the system matrices are extracted as  
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The above inverse procedure is valid only if the so-called properness condition is satisfied, which can be 

easily yielded from Eq. (18) as 

 0T

R L   . (20) 

Note that the above properness condition is universal for all non-symmetrical problems. For the particular 

vibroacoustical case, the properness condition can be rewritten only using the right eigenvector as 
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where X and P have the same sense as in Eq. (9).  

3.1 Properness enforcement method 

Due to the noise, the identified complex modes generally do not verify the properness condition. Hence the 

eigenvectors should be corrected so that the condition is reinforced. The properness enforcement method has 

already been described in Ref. [9]. Considering theoretical integrity, this method is briefly recalled in this 

subsection. Note that this method is found to be unsteady in some complex applications (see Section 5). 

Consequently, the minimum FRF method is proposed as a necessary supplement in the following subsection.  

The enforcement procedure is essentially an optimization problem: Find the approximate X  and P , 

minimizing 
1 2|| ||  and  || ||f f   X X P P , with the constraints as 
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To solve this problem, a hybrid matrix combining both the right and left eigenvectors is constructed as 
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Considering the properness condition 0T ΨΨ , one can get the constraints as 
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The usage of Ψ simplifies the problem from a vibroacoustical case to the typically symmetrical case. The 

methodology proposed in Ref. [7] can be easily employed here by solving a Riccati equation. This equation is 

derived from the simplified optimization problem: 

 FindΨ , minimizing || ||Ψ Ψ , while 0.T ΨΨ  (25) 

Solution of this problem is achieved by a Lagrange multiplier matrix δ : 

 1[ ] [ ]m

  Ψ E δδ Ψ δΨ  (26) 

where Em is the identity matrix; m is the dofs in Ψ ; the overbars denotes the complex conjugate. δ  is 

obtained by solving the Riccati equation: 

 0T T T   T
ΨΨ δΨΨ ΨΨ δ δΨΨ δ  (27) 

3.2 Minimum FRF method 

An alternative method is to directly consider the relationship between the measured frequency response and 

the system matrices. In case the harmonic excitation is added on the system, Eq. (1) can be rewritten under the 

frequency domain: 

 2( i )    M C K G F  (28) 

where G and F are respectively the complex amplitude of q(t) and f(t) in Eq. (1). Given a measured G 

associated with the excitation F, the system matrices can be directly found by solving the minimization 

problem: 

 Find ( , , )M  C  K , minimizing 2 1|| ( i ) ||     M C K F G , while ( , , )M  C  K  (29) 

where   is the space of admissible matrices fulfilling the specific vibroacoustical topology in Eq. (2). The 

objective function can be reorganized as a set of linear equations 

 ˆ ˆGα F  (30) 

where Ĝ  is a reorganized matrix containing elements of ω and G; α is the unknown vector containing the 

elements extracted from the system matrices; F̂  is the reorganized vector containing the elements of F. α is 

determined by the pseudo-inverse of Ĝ  to achieve the least-square error,  

 1ˆ ˆ ˆ ˆ( ) .T α G G GF  (31) 

This method directly finds the matrices with the consideration to minimize the error between the simulated 



 

 

frequency response and measured frequency response, without calculating the complex modes. Obviously, it 

involves high calculation cost, especially when the system has a large number of dofs. In case of low order 

reduced models, this method can serve as an efficient supplement of the properness enforcement method. 

4 Correlation of the identified modes 

4.1 QR decomposition for modal reduction 

The objective of model reduction is to find an equivalent model with reduced dofs, which continues to 

exhibit the same system behavior as the full size one. Ref. [24] describes a methodology based on QR 

decomposition to optimize the placement of sensors in experiments. Though with different motivations, the 

activity in Ref. [24] obeys the same logic as which proposed in this work, which is screening the “key” dofs to 

represent the system behavior. Under this sense, the QR decomposition is a suitable technique to achieve this 

objective. 

In order to discriminate the key dofs, the identified full size eigenvector matrix is investigated. The idea is 

that the most linear independent rows in this matrix construct a reduced matrix which provides a MAC with 

minimized off-diagonal terms. In other words, these dofs are capable of representing the maximum number of 

modes. QR decomposition is proposed here to extract these rows from the original eigenvector matrix  : 

 T E QR  (32) 

where Q is an orthogonal matrix; R is an upper triangular matrix; E is a column permutation matrix with the 

purpose of making the diagonal terms of R rank in descending order. The row vectors with the most 

significant independence are then discriminated according to the rearranged column number in matrix E. 

Two principles are fulfilled by this technique when reducing the dofs: i) The selected dofs are sensitive to 

the maximum number of modes in the frequency range of interest; ii) The system response on each selected 

dof is different (i.e. independent) enough compared with other dofs, allowing the maximum number of modes 

to be distinguishable. This is the reason why the technique is not only feasible for optimizing the placement of 

sensors before the experiment, but also for reducing a large size original model after the experiment. The 

MAC matrix of the reduced model can be employed to evaluate the effect of this technique by checking if the 

off-diagonal terms are minimized. 

4.2 Correlation between the coupled and decoupled model 

A special problem of vibroacoustical identification is to decide the right number of the structural/acoustic 

modes from the coupled mode list. The number of the coupled modes is n: 

 
s an n n   (33) 

where ns and na are respectively the number of the structural and acoustic modes. For a fixed n, this paper 

proposes configuration to denote different choices of 
s an n . An incorrect configuration will lead to 

redundant or missed modes of the decoupled model. In this context, the term correlation is explicitly referring 

to the procedure to decide the physical configuration. 

Before correlation, it is necessary to make clear the concepts between the coupled mode and the decoupled 

mode. The coupled mode associates with the coupled system matrices with the size as n-by-n. Because the 

coupled system matrices are reconstructed following the hypothetical topology, the decoupled matrices (Ms, 

Cs, Ks and Ma, Ca, Ka) are easily extracted following Eq. (2). The decoupled natural frequencies and 

eigenvectors are then calculated based on these decoupled matrices with the size as ns-by-ns/na-by-na. 



 

 

The proposed correlation procedure contains two aspects. The first aspect is based on the natural frequency, 

and secondly the eigenvector. The general idea is that a physical decoupled mode should be steady in different 

configurations. In other words, if there is a similar frequency value continually appears in different 

configurations, this frequency is assumed to reveal a physical mode.  

Correlation of the eigenvector is performed by the MAC matrix between the decoupled and coupled 

eigenvectors. The crucial point for this comparison is to choose the suitable data to calculate the MAC. As the 

correlation procedure should be separately executed on the structural and acoustic parts, acoustic correlation is 

taken as an example in the following description.  

The decoupled acoustic eigenvector matrix Φa is calculated from the acoustic matrices, with the size as 

na-by-na: 

 
1 2, ,...,

aa nu u u      (34) 

where ,   1,..., ,i au i n   is the i-th acoustic eigenvector. Recalling Eq. (9), P is the coupled eigenvector 

matrix but only corresponding to the acoustic dofs. Clearly, P has the size as na-by-n, and it is constructed as  

  1 2, ,..., .nv v vP  (35) 

where ,   1,..., ,iv i n   is the i-th coupled eigenvector but only corresponding to the acoustic dofs. Then the 

correlation MAC is calculated as 
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Each configuration has its unique MAC matrix with the size as na-by-n. The MACs are evaluated focusing 

on each row which corresponds to each decoupled acoustic mode. The principles are: 1) The physical 

decoupled eigenvector should steady for different configurations (i.e. in different MACs). The term “steady 

rows” denotes rows with exactly the same elements, or at least, the rows are proportional with each other. 2) 

The physical acoustic eigenvector should only depend on its corresponding coupled eigenvector and be 

independent to all the other coupled eigenvectors. Consequently, a physical decoupled mode behaves as a 

unique row where only one element is equal to unity while others are close to zero. 

Correlation based on natural frequency and eigenvector should be performed together so that a robust 

conclusion is obtained. Usage and feasibility of this correlation procedure is demonstrated in the following 

case studies. 

5 Case studies 

5.1 The simulated case with large size matrices 

The overall approach is firstly illustrated by a simulated case study. The FRFs are not measured from an 

experiment, but calculated from per-defined system matrices. The matrices are extracted from a virtual 

hexahedral cavity (780×850×600 mm3) whose top surface is covered by a 4 mm thickness aluminum plate 

(780×850 mm2) and other five surfaces are surrounded by rigid walls. Bulk modulus and density of the air 

inside the cavity are respectively 1.42×105 Pa and 1.225 kg/m3; elastic modulus and density of aluminum are 

respectively 7.2×1010 Pa and 2.7×103 kg/m3. The illustration follows the key aspects: 



 

 

1. Identification of the original data: the starting point is the system matrices following the specific 

vibroacoustical topology. The theoretical FRF and natural frequencies are calculated based on these 

matrices. Identification is performed on the theoretical FRF, and the identified data is termed as “original” 

data which is served as reference in the following procedure. 

2. Reduction: The complex eigenvectors are reduced from the original size to a much smaller size using the 

QR decomposition technique introduced in Section 4.1. 

3. The direct data: the reduced modes are then utilized in the inverse procedure to reconstruct the system 

matrices, based on Eq. (19). These matrices are termed as “direct” because they are obtained from the 

modes without optimization. The direct FRF and frequencies are calculated based on the direct matrices.  

4. The optimized data: the properness enforcement method and the minimum FRF method are respectively 

employed to obtain the optimized data, which are respectively termed as “proper” and “mini-frf” data. 

5. Correlation: the correlation is performed on different configurations of the structural and acoustic dofs. 

The decoupled and reduced model with the physical configuration is finally obtained. 

5.1.1 Identification and reduction of the original data 

The proposed vibroacoustical system contains 130 structural dofs and 123 acoustic dofs, therefore the 

per-defined system matrices have the size as 253-by-253. The theoretical FRFs are calculated by adding a unit 

“acoustic force”, which is expressed in term of acoustic volume acceleration with the unit as m3/s2 [10]. An 

identification procedure based on the extended LSCF method is performed, as shown in Fig. 2. This 

identification procedure is performed in MODAN, which is an integrated structural dynamic identification 

software developed by Femto-ST Institute. 

 

Fig. 2: The identification procedure and selection of the poles in MODAN 

Note that there are differences between the theoretical FRF and the original FRF. The theoretical FRF is 

calculated from the per-defined system matrices, while the original FRF is identified from MODAN based on 

the theoretical FRF. As shown in Fig. 3, the original (i.e. identified) FRF has lost some modes nearby 250 Hz 

and 400 Hz compared with the theoretical FRF. Explanation for this discrepancy can be checked in Fig. 2 

where some discrete poles nearby 250 Hz and 400 Hz are not selected. As these modes have been lost in the 

first step of identification, it is natural that the identified FRF cannot exactly represent the theoretical FRF. 

This phenomenon of mode losing is more common in real experimental case when there is more 

uncontrollable noise in the measurements. A more obvious influence of this phenomenon is revealed in the 

next case study.  



 

 

 

Fig. 3: The theoretical and identified (original) FRFs in MODAN 

The frequency range considered herein is 0-400 Hz where 15 modes are identified. The QR decomposition 

is utilized to reduce the size of the eigenvectors from 253 to 15. Before performing the reduction, it is 

important to make clear that each coupled mode corresponds to the structural part or acoustic part. The exact 

number of structural/acoustic modes among these 15 coupled modes is important for determining how many 

structural/acoustic dofs should be reserved in the reduced model. Since the original system matrices are 

pre-defined in this simulated example, the theoretical coupled and decoupled frequencies can be exactly 

calculated, as detailed in Table 1. For clarity, the decoupled frequencies are placed in the same row as their 

corresponding coupled frequencies, and the decoupled acoustic modes and their corresponding coupled modes 

are marked as bold and italic. 

Table 1: The theoretical natural frequencies calculated from the pre-defined matrices 

Mode No. 
Theoretical natural frequencies (Hz) 

Coupled Decoupled structural Decoupled acoustic 

1 21.79  28.38 

2 38.16 29.54  

3 69.35 69.79  

4 76.64 77.10  

5 116.42 116.76  

6 137.65 137.90  

7 157.07 157.35  

8 182.20 182.42  

9 194.65 194.96  

10 202.98  202.47 

11 222.03  221.66 

12 284.93  283.94 

13 301.70  301.49 

14 348.77  348.49 

15 363.49  363.16 

As shown in Table 1, among these 15 modes there are actually 8 structural modes and 7 acoustic modes, 

indicating 8 structural dofs and 7 acoustic dofs should be reserved in the reduced model. As mentioned in 



 

 

Section 4.1, the MAC matrix can be utilized to evaluate the effect of reduction. Fig. 4 shows the MAC 

matrices of the reduced and original models, showing the degree of independence among the eigenvectors. 

Both MAC matrices in Fig. 4 correspond to the acoustic part of the system. The MAC in Fig. 4(a) results from 

the eigenvector matrix reduced by QR decomposition (termed as MAC_QR); the MAC in Fig. 4(b) is obtained 

from an eigenvector matrix whose 7 rows are randomly selected from the original 130 rows of the acoustic 

eigenvector matrix (termed as MAC_Random). 

The diagonal terms of these two MAC matrices are naturally equal to one, while the off-diagonal terms of 

them are obviously different. The off-diagonal terms of MAC_QR are basically minimized to zero indicating a 

high degree of independence among the rows. Contrary, the off-diagonal terms of MAC_Random have 

different values from zero to one, which means some rows in the randomly reduced matrix are dependent with 

others, and consequently, they are not the dofs suitable enough to be reserved during model reduction. 

  

 (a) MAC_QR                                  (b) MAC_Random 

Fig. 4: MAC matrices of the QR reduced model (MAC_QR) and the randomly reduced model (MAC_Random) 

5.1.2 Comparison of the coupled data 

In practical applications where the exact number of structural and acoustic modes (i.e. ns and na) are 

unknown, all the possible configurations of “ns+na” should be evaluated. The configurations considered herein 

(respectively termed as Configs 1-4) are listed in Table 2. Undoubtedly different configurations bring different 

identification outcomes. For clarity, only the results of Config-1 and Config-2 are presented. The properness 

enforcement method is first executed, and the minimum FRF method is employed as a supplement on the 

specific part where the proper data is not perfect enough. 

Table 2: Configurations of structural/acoustic dofs for the 15 coupled modes 

Configuration No. ns na 

1 6 9 

2 7 8 

3 8 7 

4 9 6 

 

 comparison of the proper FRFs 

The original, direct, and proper FRFs for Config-1 and Config-2 are respectively compared in Figs. 5 and 6. 

The proper FRFs for Config-1 fit with the original ones quite well on both structural and acoustic dofs. As the 



 

 

properness condition is not fulfilled by the direct data, the direct FRFs naturally fail to represent the original 

ones. 

For Config-2, Fig. 6 shows the proper FRFs fail to represent most of the modes in range of 0-200 Hz, 

although they can fit with the original FRFs quite well in range of 200-400 Hz. Possible explanations for this 

discrepancy are: 

 1) The fact is most of the modes in the 0-200 Hz range are structural modes (recalling Table 1). The 

reserved structural dofs may be unphysical in Config-2, leading to a false representation of the structural 

modes. This implies a robust methodology for estimating the correct number of structural and acoustic dofs is 

necessary. 

 2) System responses of vibroacoustics have different units for different parts, i.e. m for structural 

displacement and Pa for acoustic pressure. The absolute value of displacement is much smaller than acoustic 

pressure, implying the structural modes are more difficult to be handled especially when the structural dofs are 

unsuitably reduced. A “pre-adjustment” procedure is suggested to apply an amplification factor on the 

structural FRFs so that the FRFs of different dofs are adjusted to a similar scale. Even so, the difficulty 

remains in a certain dof (e.g. the 15th dof in Figs. 5 and 6) where the structural resonances are much weaker 

than the acoustic ones.  

 

 (a) the 5th dof -- structural part         (b) the 15th dof -- acoustic part 

Fig. 5: The original, direct, and proper FRFs of the 5th and 15th dofs for Config-1 

 

 (a) the 5th dof -- structural part         (b) the 15th dof -- acoustic part 

Fig. 6: The original, direct, and proper FRFs of the 5th and 15th dofs for Config-2 



 

 

 comparison of the mini-frf FRFs 

As the proper result is not perfect for Config-2, the minimum FRF method is performed as a supplement. 

This method can be executed on different frequency ranges. As a least-square technique, it clearly has more 

difficulties on a wider frequency range where more modes need to be fitted. Fig. 7 presents the case when the 

minimum FRF method is performed on the overall 0-400 Hz range. Clearly, the optimized FRF fails to fit 

most of the modes. 

An alternative procedure is to divide the overall frequency range into different sub-ranges. The FRF is then 

corrected separately on the sub-ranges. As the proper FRFs have already fitted with the original data well on 

200-400 Hz, only the range of 0-200 Hz is considered. This range is further divided into four sub-ranges as: 

0-50 Hz, 50-100 Hz, 100-150 Hz, and 150-200 Hz. The mini-frf results based on these four sub-ranges are 

respectively termed as “mini-frf 1-4”. Comparison of these corrected FRFs is illustrated in Fig. 8 where 

interesting results are presented. Taken mini-frf-1 in Fig. 8(a) as an example, the mini-frf-1 FRF fits with the 

original FRF only on its corresponding sub-range (0-50 Hz), while on other sub-ranges, the mini-frf-1 FRF is 

far from the original FRF. Similar results are obtained on the other three cases, implying the minimum FRF 

method is feasible under specific conditions. An interesting perspective to this approach consists in the 

determination of frequency-dependent matrices from experimental measurements. 

 

 
Fig. 7: The original, direct, and mini-frf FRFs on the 5th dof for Config-2 

 

 the natural frequencies corrected by these two methods 

The original and proper natural frequencies for Config-1 and Config-2 are compared in Table 3. 

Corresponding to the comparison in Figs. 5 and 6, the proper frequencies for Config-1 fit very well with the 

original data. For Config-2, however, several frequencies inside the range of 0-200 Hz exhibit significant 

error.  



 

 

  

(a) Mini-frf-1 calibrated in sub-range 0-50 Hz;    (b) Mini-frf-2 calibrated in sub-range 50-100 Hz; 

 

(c) Mini-frf-3 calibrated in sub-range 100-150 Hz;    (d) Mini-frf-4 calibrated in sub-range 150-200 Hz; 

 Fig. 8: Comparison of the mini-frf results on different sub-ranges (performed on the 5th dof for Config-2) 

 

As a supplement, the mini-frf frequencies for Config-2 are listed in Table 4. Recalling Fig. 8, the mini-frf 

data is only valid on their corresponding sub-ranges. For example, only five modes are presented in mini-frf-1 

column, as they lie within the sub-range of 0-50 Hz. By comparing these five frequencies with the original 

frequency list, it is easy to extract the 3rd and 5th modes as the physical modes which have the same value as 

the original ones. Other frequencies with strikethrough in this column are ignored. Similarly, physical modes 

are extracted in the last three columns in Table 4, and the total number of the extracted modes is nine which is 

the same as the original column.  

5.1.3 Correlation of the decoupled data 

The above comparisons of the FRFs and natural frequencies are about the coupled data, while the 

decoupled data is also significant for vibroacoustical design. The decoupled data is evaluated by the 

correlation framework, and the question “which one of Configs 1-4 is the physical configuration?” is 

answered. For clarity, only the acoustic data is considered in the following context, as the structural data can 

be evaluated by the same approach. 

 

 



 

 

Table 3: The original and proper coupled frequencies for Config-1 and Config-2 (% errors in parentheses) 

Mode  

No. 

Original  

frequencies (Hz) 

Proper frequencies (Hz) 

Config-1 Config-2 

1 21.79 21.78   (-0.1) 21.78   (-0.1) 

2 38.16 38.15   (-0.0) 27.24   (-28.6) 

3 69.35 69.29   (-0.1) 38.16   (-45.0) 

4 76.64 76.38   (-0.3) 71.16   (-7.2) 

5 116.42 117.14  (0.6) 85.29   (-26.7) 

6 137.65 137.67  (0.0) 116.29  (-15.5) 

7 157.07 157.06  (-0.0) 136.38  (-13.2) 

8 182.20 181.85  (-0.2) 157.39  (-13.6) 

9 194.65 194.79  (0.1) 194.62  (-0.0) 

10 202.98 202.98  (0) 202.98  (0) 

11 222.03 222.03  (0) 222.03  (0) 

12 284.93 284.93  (0) 284.93  (0) 

13 301.70 301.70  (0) 301.70  (0) 

14 348.77 348.77  (0) 348.77  (0) 

15 363.49 363.49  (0) 363.49  (0) 

 

Table 4: The Original and mini-frf frequencies for Config-2 on different sub-ranges 

Mode  

No. 
Original (Hz) 

Config-2 (Hz) 

Mini-frf-1 Mini-frf-2 Mini-frf-3 Mini-frf-4 

 -- 12.12    

 -- 12.12    

1 21.79 21.79     

 -- 28.74    

2 38.16 38.16     

3 69.35  69.35   

 --  72.62   

4 76.64  76.64   

5 116.42   116.42  

6 137.65   137.65  

 --    156.76 

7 157.07    157.07 

8 182.20    182.20 

9 194.65    194.65 

 --    197.33 

 

As detailed in Table 5, acoustic frequencies for Configs 1-4 are presented to compare with the coupled data. 

If there is a frequency continually appears in different configurations, then this frequency is termed as “steady” 

frequency. The steady frequencies are marked with bold and italic, and the unsteady frequencies are marked 

with strikethrough. For clarity, the steady frequencies in different configurations are placed in the same row as 

their corresponding coupled frequency. All frequencies for Config-3 are steady, and each of these frequencies 

has a corresponding value in the coupled column. This implies Config-3 is the physical configuration in this 



 

 

example. Note that the 1st frequencies for Configs 1-3 have an obvious discrepancy compared with the 1st 

coupled frequency. This is because the 1st acoustic mode has a strong coupling relationship with the first two 

coupled modes, as it will be shown later. 

 

 

Table 5: Correlation of the decoupled acoustic frequencies for different configurations 

Mode No. 
Coupled 

(Hz) 

Decoupled acoustic (Hz) 

Config-1 Config-2 Config-3 Config-4 

1 21.79 26.78 28.33 28.34 37.31 

2 38.16 47.41 99.26  218.81 

3 69.35 125.10   233.47 

4 76.64    300.01 

5 116.42    323.71 

6 137.65    360.66 

7 157.07     

8 182.20     

9 194.65     

10 202.98 202.97 202.96 202.95  

11 222.03 222.03 222.03 221.33  

12 284.93 284.82 284.28 282.71  

13 301.70 301.96 301.66 301.30  

14 348.77 348.93 348.82 348.12  

15 363.49 363.49 363.49 363.38  

 

The above conclusion is also demonstrated by the MAC matrices between the acoustic eigenvector and the 

coupled eigenvector as shown in Fig. 9. For different configurations, the MAC matrices clearly have different 

sizes, and they are respectively termed as “MAC-Configs 1-4”. Taken Fig. 9(b) as an example, the size of 

MAC-Config-2 is 8-by-15. The 8 rows denote the 8 decoupled acoustic modes, and the 15 columns denote the 

15 coupled modes. The idea is that when there is a row where only one element is close to one and others are 

close to zero, then this row denotes a physical decoupled mode. And its corresponding coupled mode is also 

decided by the column number of the element closing to one. Under this sense, the 4th-8th modes are physical 

and their corresponding coupled modes are the 11th-15th modes in the coupled column. The 1st and 3rd rows do 

not have the exactly same feature as the 4th-8th rows, but rows with the similar style can be found in 

MAC-Config-1 and MAC-Config-3, implying these two modes are also steady. The 2nd row in MAC-Config-2 

has 6 elements close to one, and no similar row can be found in other MACs. Consequently, the 2nd acoustic 

mode of Config-2 is a redundant mode. Finally, the number of physical acoustic modes is determined as 7. 

The 1st acoustic mode is corresponding to the 1st coupled mode, and the other acoustic modes are 

corresponding to the 10th-15th coupled modes. This correlation result is same as the conclusion obtained from 

the natural frequencies. 



 

 

 

 (a) MAC-Config-1         (b) MAC-Config-2 

 

 (c) MAC-Config-3         (d) MAC-Config-4 

Fig. 9: MAC matrices between the acoustic and coupled eigenvectors for different configurations 

More attention should be taken on the 1st and 2nd acoustic modes in Fig. 9 (c). There are two elements close 

to one in the 1st row, and the 9th element in the 2nd row is not minimized to zero. These strange features can be 

explained by the strong coupling between these modes. This can be checked in Table 1 where the 1st acoustic 

frequency has a value in the middle of the 1st and the 2nd coupled frequency. In other words, the strong 

coupling makes the 1st acoustic mode dependent with more than one mode in the coupled mode list.  

Compared with the first three configurations, Config-4 provides chaotic acoustic modes where neither the 

natural frequencies nor the modal shapes correspond to the coupled modes. This means that when the 

proposed dofs number is greater than the actual number, this kind of configuration can provide physical 

modes plus some redundant modes. But when the proposed dofs number is lower than the actual one, most of 

the obtained modes are unphysical. Hence Config-4 is not utilized in the correlation procedure. 

Based on the above analysis, key principles of correlation are summarized: 

i. if a mode is steady, and its corresponding row in MAC has only one element close to one and others are 

minimized to zero, this mode is a physical mode with weak coupling to other modes; 

ii. if a mode is steady, and its corresponding row in MAC has more than one element close to one, this 

mode is a physical mode with strong coupling to other modes; 

iii. if a mode is unsteady in different configurations, this mode is a redundant mode because the proposed 

dofs in this configuration are more than the actual number; 

iv. if all modes are unsteady in a configuration, the proposed dofs are less than the actual number of 

modes.  

These principles are important for practical engineering where more noise and stronger coupling 



 

 

relationships are present in the experimental measurement. 

5.1.4 Summary 

The illustration on this 253 dofs simulated case study is detailed and it involves most of the issues which 

the engineer should encounter in practical application. Key steps and their outcomes are summarized to 

generate a clear understanding of this integrated approach.  

1. 15 coupled modes are identified in the frequency range of interest (0-400 Hz); 

2. Size of the modes is reduced from 253 to 15, with the consideration of different configurations (e.g. 

6+9, 7+8, …); 

3. The reduced modes are firstly optimized by the properness enforcement method, and the minimum 

FRF method is employed as a supplement on some specific frequency ranges where the proper data is 

not perfect enough. 

4. Based on the correlation framework, Config-3 (i.e. 8+7) is determined as the physical configuration; 

5. As a final outcome, the reduced and decoupled system matrices with the physical configuration are 

obtained, and the predicted FRF, natural frequencies, and eigenvectors fit with the original data well. 

5.2 The experimental case study 

5.2.1 Description of the experimental setup 

 

    (a) with the aluminum plate    (b) with the marble cover 

Fig. 10: The experimental setup with different cover of the cavity. 

The experiment is conducted on a cavity surrounded by concrete and closed in the top surface with a 5mm 

thickness aluminum plate, as shown in Fig. 10(a). There are 5 accelerometers on the plate and 6 microphones 

inside the cavity, indicating that the measured FRF has 11 components, corresponding to a maximum of 5 

structural dofs and 6 acoustic dofs in the reduced model. The excitation is applied by a loudspeaker inside the 

cavity. The frequency range considered herein is 300-500 Hz. 

In this real case, the environment noise and uncertainties in the experimental setup play important role in 

the identification and have a significant influence on the final outcome. This influence can be first checked in 

Fig. 11 where two sets of measured FRFs are respectively identified. The upper and lower FRFs are separately 



 

 

measured with different sealing effectiveness, sensor sensitivities, and sensor placements. Ideally when there 

is no noise and the setup is perfectly constructed, these two sets should have the same identification result. 

However, the fact is some modes obviously shift. The modes which are steady in both cases are selected as 

shown in Fig. 11. This strategy leads to loss of modes, but as described in Section 5.1.1, loss of modes is 

unavoidable even in a simulated case. On the other hand, this strategy can make sure every identified mode is 

physical.  

Six modes are identified as listed in Table 6. The identified frequencies and their corresponding FRF are 

used as reference data. Besides these coupled data, the decoupled reference data is also provided. In this 

example, the decoupled data for the cavity is measured by replacing the aluminum plate by a marble cover as 

shown in Fig. 10(b). The surrounding concrete and marble cover are approximately regarded as rigid, so that 

the measured data is served as reference of the decoupled acoustic sub-model. 

 

 
Fig. 11: Selection of the poles in identification. 

5.2.2 Reduction and optimization 

Reduction is performed on the identified eigenvectors to reduce their dofs from 11 to 6. The four 

configurations considered herein (1+5, 2+4, 3+3, and 4+2) are respectively termed as “Configs 1-4”. First, the 

reduced modes are optimized by the properness enforcement method. The proper natural frequencies (Table 6) 

and FRFs (Fig. 12) are respectively compared with the identified and direct data. For clarity, only the results 

for Config-1 and Config-2 are presented. The direct natural frequencies exhibit obvious errors compared with 

the identified ones, while the proper frequencies have smaller errors for Config-1 or Config-2, as shown in 

Table 6. 

 



 

 

Table 6: The identified, direct and proper frequencies for different configurations (% errors in parentheses) 

Mode No. Identified (Hz) Direct (Hz) 
Proper (Hz) 

Config-1 Config-2 

1 318.3 326.3  (2.5) 317.4  (-0.3) 317.8  (-0.2) 

2 321.8 339.5  (5.5) 332.8  (3.4) 325.7  (1.2) 

3 336.6 346.9  (3.1) 339.1  (0.7) 336.9  (0.1) 

4 339.6 386.0  (13.7) 354.1  (4.3) 349.5  (2.9) 

5 392.6 386.0  (-1.6) 370.1  (-5.7) 380.1  (-3.2) 

6 470.4 422.4  (-10.2) 460.9  (-2.0) 466.6  (-0.8) 

Mean absolute error 6.1% 2.7% 1.4% 

 

 

Because of the noise and damping in the measurement, Fig. 12 shows the direct FRFs completely fail in 

representing the identified FRFs, while the proper FRFs are obviously improved compared with the direct 

ones. The proper FRFs for Config-1 and Config -2 are similar with each other, and they fit with the identified 

FRF on the whole frequency range except on the sub-range nearby 400 Hz. This discrepancy is more obvious 

for the structural dofs as shown in Fig. 12(a). The possible explanation comes from the imperfect 

measurements. The mode nearby 400 Hz corresponds to the acoustic part making the response on the plate 

much smaller than other structural resonance modes. As a result, the involved accelerometers may be not 

sensitive enough to measure the response on the plate. 

 (a) the 1st dof -- structural part      (b) the 6th dof -- acoustic part 

Fig. 12: The identification, direct, and proper FRFs for Configs 1 and 2 

As shown in Fig. 11, four modes are identified on the sub-range of 300-360 Hz. These closely spaced 

modes in such a narrow frequency range lead to obvious difficulties for decoupling identification. The 

minimum FRF method is consequently evaluated on this specific part. It is performed separately on the 

sub-ranges of 300-330 Hz and 320-360 Hz, with the results respectively labeled as “mini-frf-1” and 

“mini-frf-2”. The identified, proper, and mini-frf FRFs are presented in Fig. 13. Similar as the simulated 

example (Fig. 8), the mini-frf FRFs fit with the identified FRFs in their corresponding sub-ranges. 



 

 

 

(a) Mini-frf-1 calibrated in sub-range 300-330 Hz;    (b) Mini-frf-2 calibrated in sub-range 320-360 Hz; 

Fig. 13: mini-frf optimized FRFs of the 6th dof (acoustic) for Config-2 

The natural frequencies within the considered range of 300-360 Hz are listed in Table 7. Two frequencies 

are reserved in the column of mini-frf-1, as they lie in the sub-range of 300-330 Hz. Similarly three 

frequencies are reserved in the column of mini-frf-2. It is interesting to note that the same frequency value 

(320.6 Hz) appears in both columns. This is because the two sub-ranges have an overlapping range as 320-330 

Hz. The last column of Table 7 is the combined frequencies extracted from the columns of mim-frf-1 and 

mini-frf-2. The mean absolute error compared with the identified data is 1.00% which is relatively smaller 

than the proper data (Table 6). 

Table 7: The identified and mini-frf frequencies within the range of 300-360 Hz for Config-2 (% errors in parentheses) 

Mode  

No. 
Identified (Hz) 

Config-2 (Hz) 

Mini-frf-1 Mini-frf-2 Combined 

  269.8    

  269.8 297.7  

1 318.3 318.2 317.0 318.2  (-0.03) 

2 321.8 320.6  320.6 320.6  (-0.37) 

3 336.6 324.4 331.5 331.5  (-1.52) 

4 339.6 324.4 346.7 346.7  (2.09) 

   362.2  

Mean absolute error   1.00% 

5.2.3 Correlation of the decoupled model 

The coupled frequencies and the decoupled acoustic frequencies for each configuration are listed in Table 8. 

For this experimental case, the correlation is more difficult than the one which has been performed in the 

simulated case because of the noise and coupling relationships between the modes. It is not easy to recognize 

a steady value in different configurations especially for the closely spaced frequencies. However, it is still 

possible to recognize that the last two frequencies (bold and italic) are steady in both Config-1 and Config-2, 

and they correspond to the last two values in the coupled column as shown in Table 8. This statement is 

confirmed with the eigenvector correlation. The MAC matrices between acoustic eigenvectors and the coupled 

eigenvectors under Configs 1-4 (termed as “MAC 1-4”) are presented in Fig. 14. Following the principles 

extracted in Section 5.1.3, the correlation results are summarized as below. 

1. Based on Principle (i), the last two rows in MAC-1 and MAC-2 are steady and only one element in each 



 

 

row close to one. So the last two modes for Config-1 and Config-2 are physical modes with weak 

coupling, and they correspond to the last two coupled modes. 

2. The 2nd row in MAC-1 has the similar style as the 1st row in MAC-2; the 3rd row in MAC-1 has the 

similar style as the 2nd row in MAC-2. Based on Principle (ii), the 2nd and 3rd modes for Config-1 are 

physical modes with strong coupling, and they correspond to the first two coupled modes. 

3. The 1st row in MAC-1 has no similar row in other MACs. Based on Principle (iii), the 1st mode for 

Config-1 is a redundant mode. 

4. All modes for Config-3 and Config-4 are unsteady. Based on Principle (iv), the proposed number of dofs 

is lower than the actual number. Config-2 is demonstrated as the physical configuration (i.e. 2+4) for this 

experimental case. In other words, among the six coupled modes, the 1st, 2nd, 5th, and 6th modes 

correspond to the cavity; while the 3rd and 4th modes correspond to the plate. 

Table 8: Correlation between the coupled frequencies and the acoustic frequencies for different configurations 

Mode No. Coupled (Hz) 
Acoustic (Hz) 

Config-1 Config-2 Config-3 Config-4 

 -- 328.3  320.0 269.0 

1 318.3 335.4 334.7 345.2 348.0 

2 321.8 351.1 342.2 441.9  

3 336.6     

4 339.6     

5 392.6 384.5 391.7   

6 470.4 465.8 473.2   

 

 
 (a) MAC-1          (b) MAC-2 

 
 (c) MAC-3          (d) MAC-4 

Fig. 14: MAC matrices between the coupled modes and the acoustic modes with different configurations 



 

 

The finally identified acoustic sub-model is evaluated according to the experimental reference data 

measured as Fig. 10(b). Config-2 is confirmed again as the physical configuration in Table 9 where four 

modes are experimentally measured in the range of 300-500 Hz. The mean absolute error of the predicted 

frequencies is only 1.38%, showing the identified model can reproduce the same behavior as the measured 

one. 

 

Table 9: Acoustic frequencies from the experiment and the identified model for Config-2 (% errors in parentheses) 

Mode No. 1 2 3 4 Mean absolute error 

Experimental (Hz) 328.8 334.9 387.9 475.9  

Config-2 (Hz) 334.7 (1.8%) 342.2 (2.2%) 391.7 (1.0%) 473.2 (-0.6%) 1.38% 

6 Conclusions and prospects 

This work concentrates on a thorough guidance for vibroacoustical identification with the consideration of 

various obstacles encountered in real application. In particular, a methodology allowing the decoupling of 

structural and acoustic effects from coupled measurements has been proposed. Compared with the authors’ 

previous work on this field, further contributions are summarized as follows: 

1. The correlation procedure is capable of filtering the redundant decoupled modes, so that the 

structural/acoustic sub-model can represent the system behavior; 

2. The integrated application of minimum FRF method and properness enforcement method provides 

satisfied outcome even in complex cases with high level noise and closed modes; 

3. The extended LSCF method is specially developed for vibroacoustics where the right and left 

eigenvectors are separately identified; 

4. The QR reduction technique significantly reduced the dofs of the identified model, ensuring the overall 

approach’s feasibility in practical application. 

Two meaningful extensions of this proposed approach are expected: First, a deeper insight into the damping 

terms. A physical description of damping in vibroacoustics is significant to be further evaluated. Second, a 

higher frequency application involving more challenging features (e.g. nonnegligible uncertainty and stronger 

coupling) is necessary to be deeply studied in the next step. Furthermore, the experimental case clearly shows 

that the measurement noise exhibits significant influence on the overall approach. A sophisticated 

experimental setup along with the MIMO identification strategy should bring better outcomes. 
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