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SUMMARY

Sensor devices are limited resource power and energy, thus providing security services for sensor networks
is very difficult. Elliptic Curve Cryptography (ECC) is one of the most famous asymmetric cryptographic
schemes which offers the same level of security with much shorter keys compared to the other widely used
asymmetric cryptographic algorithm, RSA. In ECC, the main and most-heavily used operation is the scalar
multiplication kP, where the scalar value k is a private integer and must be secured. In this work, we present
a new approach to accelerate the main scalar multiplication on ECC over prime fields for sensor networks.
This approach uses an equivalent representation of points and can act as a support for existing schemes in
a selected interval. The simulation results showed that the proposed technique increases the efficiency of
the computation time. For example, on this scalar multiplication we obtain a gain of 4 bits in 161 bits for
6.25% of the scalars. This gain can sometimes reach 100% in some cases. After this significant reduction of
the scalar k, we present a fast precomputation algorithm in a distributed scalar multiplication on kP to avoid
storage of precomputation points, which requires extra memory. c©

. . .

KEY WORDS: Wireless Sensor Networks, Elliptic Curve Cryptography, Fast Scalar Multiplication,
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1. INTRODUCTION

Wireless Sensor Networks (WSN) presents physical and technological vulnerabilities which expose
them to the risks of many kinds of attacks [1]. Symmetric cryptographic algorithms usually have
low computational cost, but in WSN key management is a critical issue especially in the presence
of compromised nodes. In asymmetric cryptography, key management becomes easier, but the
computational cost is more expensive [2]. In this paper, we use the Elliptic Curve Cryptography
(ECC), a famous asymmetric cryptographic scheme which is feasible and more flexible for WSN.
It has attracted increasing attention recently because of its shorter key length requirement compared
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to the other widely used asymmetric cryptographic algorithm RSA [3]. The security of ECC relies
mainly on the difficulty of discrete logarithm problems. For example: Q = kP where Q and P are
2 points on the curve and k is a positive integer. It is extremely difficult to compute the value of k
given Q and P if k is big enough.

The scalar multiplication kP is the central and most time-consuming computation in ECC, it is
involved in all major operations: key generation, encryption of data, decryption of data, signature
and verification of messages. To permit fast computation of scalar multiplication, much research
has been carried out on point arithmetic levels [6],[11], [10], [9], [21], [29], [28], [31], [32].
Some solutions use technical implementation on different microcontroller architectures [4], [33]
and others use multiprocessor architectures to perform several operations, but they need to store
precomputed points [5], [30], [18], [27].
Our main contributions are as follows:

1. We first propose a scalar reduction technique to run fast computation of scalar multiplication.
In the scalar multiplication kP, we make an equivalent representation tP with a scalar t
<k. This technique is based on the negative of point and the point order. According to our
knowledge, this is the first method based on this technique. Existing algorithms can basically
use our technique to accelerate computation.

2. After a significant reduction of the scalar k, we present a fast precomputation algorithm in a
parallel scalar multiplication on kP to accelerate computation. Most existing methods based on
precomputation require some extra memory [5], [27], [8], [22]. Our goal is to avoid the storage
of precomputation points. To deal with this, we propose to accelerate the precomputation
phase. This method is an improvement of the Double-and-Add and quadruple-and-quadruple
algorithm and based on an algorithm to scan the scalar[6]. This method involves the level of
scalar arithmetic and point arithmetic in Jacobian coordinates.

The discussion on this article proceeds as: In Section 2 we start with the background on ECC over
prime fields. Section 3 gives related work on fast and parallel scalar multiplication, followed by
the description of our new scalar reduction and an efficiency analysis on it in Section 4. Section
5 proposes our method to accelerate precomputation point. After defining the partitioning scalar
method in (Section 5.1) and discussing its reliability in (Section 5.2), we present the acceleratiion of
the precomputation points in (Section 5.3) and make a comparison in (Section 5.4). The conclusion
and perspectives are given in the last section.

2. PRELIMINARIES ON ELLIPTIC CURVE CRYPTOGRAPHY

In this section, we give a brief overview on ECC over finite prime fields. An elliptic curve E over
finite field F (of order n ) denoted by E(F) can be defined by the Weierstrass equation [16]:

E : y2=x3+ax+b (1)

where a and b ∈ Fp, and Fp a prime field.
Most important finite fields used to date to implement cryptosystem have been binary, prime and
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extension fields. In this paper, we work with a prime field Fp , where p >3 and p= qr, with r=1 and
q a prime number called the characteristic of Fp.

To be used for cryptography, the necessary condition is the discriminant of polynomial:

f(x) = x3 + ax+ b,4 = 4a3 + 27b2 6= 0. (2)

The set of pairs (x, y) that solves (1), where x,y ∈ Fp, and the point at infinity (denoted∞) form an
abelian group. The scalar multiplication directly depends on two basic operations over points on an
elliptic curve: point doubling (2P) and point addition (P+Q) where P and Q are two different points
on the elliptic curve.
If P = (xp,yp) and Q = (xq,yq) 2 points ( 6= ∞ ) on the elliptic curve over Fp denoted by E(Fp),
then point addition P + Q = (xpq,ypq) or point doubling 2P = P + Q = (xpq,ypq) if P = Q can be
calculated as: xpq = λ2 − xp − xq

ypq = λ(xp − xp+q)− yp
(3)


λ =

yq − yp
xq − xp

if P 6= Q

λ =
3x2p + a

2yp
if P = Q

(4)

Figure 1. Points addition in ECC

The negative of a point P = (xp,yp) is the point -P (xp,-yp), where P and -P are two points on the
elliptic curve.

3. RELATED WORK

To perform fast computation of scalar multiplication, much research has focused on the arithmetic
level and parallel computing.
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On the scalar arithmetic level, traditional methods (Double-and-Add algorithm, Non-Adjacent
Form (NAF), sliding window algorithm) use binary representation of the scalar k and compute a
sequence of given point doubling and point addition operations and reduce effectively the number of
point operations [11], [6]. Other algorithms like Double-Base Number System have been developed
to accelerate scalar multiplication by using binary and ternary representation [10], [9], [21]. Unlike
the previous ones where the scalar is represented in a one base number system, in the Double-
Base Number System [10], the scalar is represented in a two bases number system. Optimization
is done by some approaches which also use the binary representation of the scalar k [29], [28],
[31]. For other solutions, optimization is based on selecting a set of elliptic curves for cryptography
(Weierstrass curve, twisted Edwards curve) on which scalar multiplication is faster than the recent
implementation record on the corresponding NIST curve.

On point arithmetic, algebraic substitutions can be used. For example, the multiplication operation
can be substituted by squaring or other cheaper field operations such as addition, subtraction
and multiplication or division by a small constant [20]. Some other schemes use the concept of
optimizing formulas like point addition formulas by computing the sum of any two points on
any odd-order elliptic curve with q>= 5 [34]. The authors claim that the cost of their addition
formulas is 12 field multiplications (12M), while the fastest known addition formulas require 14
field multiplications (12M+2S) in homogeneous coordinates and 16 field multiplications (11M +
5S) in Jacobian coordinates.

The parallel computing of scalar multiplication has become an important topic in cryptography.
In the literature, various solutions focus on the scalar arithmetic level and base on precomputation,
but most of them are hardware implementations using FPGA or multi-core architectures [24],
[25]. Parallel computing of fast exponentiation is introduced in [18]. The paper [8] presents a fast
exponentiation method using precomputed table. Another method based on point precomputation is
proposed in [22].

Recently, has been developed concept of using multiprocessor architectures to compute the scalar
multiplication by several operations simultaneously. At the scalar arithmetic level, the concept of
parallelization is used to compute the series of doubling and addition operations with two processor
architectures using a shared memory [5]. The first processor computes the point doubling operation
and stores the result in the shared memory, and the second processor computes the point addition
operation. The same technique is used in [33] with two scalar multipliers. Each scalar multiplier has
one processor and a buffer residing between the two processors.This parallelization is used in [30],
[18] by partitioning the scalar into v equal-length bit substrings on multiprocessor architectures.
This technique is also used on sensor nodes in [27] by partitioning the scalar in v blocks for v
sensor nodes, where each sensor node computes one block. At the point arithmetic level, some
works already propose the parallelization of ECC formulas for architectures such as the well-known
SIMD [20]. In this case, parallel computing of terms in the formula can be used according to the
order of priority in the point operation formula.
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4. NEW SCALAR REDUCTION METHOD (SR)

4.1. Context

We present a new technique to accelerate computation on the scalar arithmetic level. This
improvement is based on the negative of a point and a specific reduction of the scalar in a selected
interval. Using negation is a well-known trick in cryptanalysis (e.g. the negation map optimization
in Pollard rho for computation of discrete logarithms) as well as in cryptography for computation
of scalar multiplication with addition-subtraction chains. [13], [14].

Assume that the characteristic of Fp is greater than 3. Let E(Fp) be an elliptic curve over Fp and
#E(Fp) denote the number of points of E(Fp). #E(Fp) is also called the order of the group of points.
The theorem of Hasse indicates that [16]: |#E(Fp) - p - 1 ≤ 2

√
p |. Let G be a cyclic group of E(Fp)

of order n generated by a base point P (namely, the generator point). The points in G are expressed
as multiples of P: G=〈P〉={∞, P, 2P, ....., (n-2)P, (n-1)P}⊆ E(Fp) with nP=∞. The order of point
P (denoted by #P) is n.

4.2. Description of the scalar reduction method

We propose to replace the point kP by an equivalent representation of point tP in the main scalar
multiplication operation where k and t are scalars and k > t. This technique is used in the interval
[bn/2c+1, n-1], where bn/2c denotes the integer-part function of n/2. As the negative of a point is
obtained freely, we use it to make fast computation. Given the point P=(xp, yp) in affine coordinates,
to compute the negative of the point kP=(xkp, ykp), we can compute kP=(xkp, ykp) and then change
the sign on the y-coordinate (ykp). Thus, by kP we get equivalent point tP through equation(5).1. If k ∈ ]bn2 c, n-1], kP = tP where t = (k− n)

2. If k ∈ ]0, bn2 c], kP = tP where t = k
(5)

Without losing generality, we use an example in order to better express the reduction method.
Assume that p =23 is a prime number; this is only for explaining our new method, but in real life p
is much bigger than this. If we consider an elliptic E over F23 defined by E(F23): y2=x3+x+1, then
# E(F23)=28, E(F23) is a cyclic group and P( 0, 1) is a generator point.

In Figure 2, we make an equivalent representation of all points in [bn/2c+1, n-1]. Thus we can
see that computing the points 16P, 22P and 27P can be replaced respectively by -12P, -7P, and -P.
In this case, computing 27P is replaced by computing -P and is almost free.

4.3. Analytical evaluation

For WSN, replacing computation kP by tP using equation (5.1) in [bn2 c+1, n-1 ] can accelerate
scalar multiplication. From equation(6), we can scan all scalars:

n−1∑
k=1

kP =

bn/2c−1∑
k=1

kP + bn
2
cP +

n−1∑
k=bn/2c+1

kP (6)

c©



6 Y. FAYE, H. GUYENNET, Y. YANBO AND I. NIANG
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Figure 2. Circular representation of points over elliptic curve cryptography

In the interval [bn2 c+1, n-1 ], based on the Figure 2 we have:

[15]P = [13]P + 2([1]P );

[16]P = [12]P + 2([2]P );

[17]P = [11]P + 2([3]P );

......... = ...........................;

.......... = .........................;

[26]P = [2]P + 2([12]P );

[27]P = [1]P + 2([13]P ).

It can be inferred that:
n−1∑

k=bn/2c+1

kP=
bn/2c−1∑

k=1

kP+ 2
bn/2c−1∑

k=1

kP

Thus:
n−1∑
k=1

kP = 2

bn/2c−1∑
k=1

kP + bn
2
cP + 2

bn/2c−1∑
k=1

kP (7)

In our technique, we can replace respectively [15]P, [16]P, ........., [26]P, [27]P] by [-13]P, [-

12]P, ........., [-2]P,[-1]P in interval [bn2 c+1, n-1]. The expression
n−1∑

k=bn/2c+1

kP can be replaced by

bn/2c−1∑
k=1

|k|P , and the equation(7) can be replaced by equation(8).

n−1∑
k=1

kP =

bn/2c−1∑
k=1

kP +

bn/2c−1∑
k=1

|k|P + bn
2
cP. (8)
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For kP in [bn2 c+1, n-1 ], we gain a rate of
∑bn/2c−1

k=1 2kP from equation(7) and equation(8). The
gain α for a given scalar kP is:

α = 2(k − (
n

2
)) (9)

From Figure 2:

• Computing kP=24P, can be replaced by computation of 4P, the gain is 2(24-(28/2))= 20P
since 20P+ 4P= 24P.

• Computing ([26]P=[24]P+[2]P) is equal to compute [2]P, the gain is [22]P= 2(26-(28/2)).

The complexity of scalar multiplication can be determined by the bit length of k which is equal
to blog2(k)c+1, or log2(k) if k=2x, where x is an integer. In binary representation, log2(k) can be
replaced in our Scalar Reduction technique by:

log2(k − 2(k − n

2
)) = log2(k) + log2(1 +

n− 2k

k
) (10)

Thus, the gain α in bit length is:

α = |log2(1 +
n− 2k

k
)| = |log2(

|t|
k
)|. (11)

Optimization can be done in interval [bn2 c+1, n-1] if the order n is an even number .

• If n >2 is even:
∑n−1

k=bn/2c+1 kP=3
∑bn/2c−1

k=1 kP

• If n ≥3 is odd: 3
∑bn/2c−1

k=1 kP >
∑n−1

k=bn/2c+1 kP ≥ 2
∑bn/2c−1

k=1 kP .

5 10 15 20 25
2

2.5

3

3.5

Order values

G
a
in

 

 

Even Order

Odd Order

Figure 3. Gain between even order and odd order

From Figure 3, we can see that if the order n is odd, the line y=3 is a horizontal asymptote for the
gain curve.

To achieve a good security level of ECC, the scalar k will be chosen in the interval [0, n-1], and
should be coded in 160 bits according to NIST- 192 recommended parameters.
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Figure 4. The number of bits scanned depending upon the values of k

For example: given an order n= 2161 ≈ 2923.1044 coded in 161 bits, if k is the biggest scalar
coded in 160 bits, k= 2160 ≈ 146151044 and k ∈[0, 2161]. Note that one half of the values of interval
[0, 2161-1] are in the interval [0, 2160[ and the other half are in [2160, 2161]. In the case of ECC, k
∈[2160, 2161-1], and in this interval there are 14615.1044 values.

Using our scalar reduction method, we can examine closely the number of bits to scan for some
values of the scalar k in the interval [2160, 2161-1]. The results are given in Table I.

Table I. Number of bits to scan and gain for some values of scalar k

Values of k 2161 − 2159 2161 − 2146 2161 − 2110 2161 − 210 2161 − 2

Bits scanned 159bits 146bits 110bits 10bits 1bit
Gain 1bits 14bits 50bits 150bits 159bits

Figure (4-a) shows the number of bits to scan based on a set of values of k coded with the same
number of bits. We can see significant evolution for scalars > 2161 − 2146 ≈ 29229.1044. In this
interval there are 44601.1044 scalars. From Figures (4-b), (4-c) and (d), we can see more details
after 146 bits scanned. Table II shows the gain expressed in number of bits and the corresponding
percentage. We can see that, 6.25% of scalars have a gain ≥ 4 bits. Note that there are less and
less values in intervals where the gain of bits is more important. To choose a scalar k, we can use
a random number generator function based on a non-uniform probability distribution per interval.
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Thus for an interval where the gain of bits is important, the scalars are generated by high-probability
functions.

Table II. Gain (bits) and its corresponding scalar percentage

Gain (bits) 1bit 2bits 3 bits 4bits 5bits 6bits ≥7bits
% of k values 50% 25% 12,5% 6,25% 3,125% 1,5625% 1,5625%

4.4. Performance Evaluation

We have implemented a simulator in Java to test the performance of the scalar reduction technique
on an elliptic curve over Fp using NIST-192 recommended parameters which are given in Table III.
P (xP , yP ) is the generator point with order n. For implementation, we have chosen 6 values of 192

Table III. NIST-192 recommended elliptic curve parameters

Parameter NIST-192 recommended values
p 2192 − 264 − 1
a −3
b 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
xP 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
yP 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
n 0xffffffffffffffffffffffff99def836146bc9b1b4d22831

bits for k which are distributed uniformly in ]0, n− 1] (see Table IV).
Under these assumptions, we have tested the scalar reduction method using affine and Jacobian

coordinates. The scalars are in binary and NAF form combined with the Scalar Reduction approach.
The results are given in Tables V and VI and illustrated in Figure 5 and 6.

Table IV. Values of k chosen for performance evaluation

k Values in hexadecimal
n
6 0x 2aaaaaaa aaaaaaaa aaaaaaaa 99a5295e 58bca19d 9e2306b2
n
3 0x555555555555555555555555334a52bcb179433b3c460d65
n
2 0x7fffffffffffffffffffffffccef7c1b0a35e4d8da691418
2n
3 0xaaaaaaaaaaaaaaaaaaaaaaaa6694a57962f28676788c1aca
5n
6 0xd555555555555555555555550039ced7bbaf281416af217a

n-1 0xffffffffffffffffffffffff99def836146bc9b1b4d22830

Table V. Running times (ms) using affine coordinates (SR: Scalar reduction)

NAF SR DA Gain n
6

n
3

n
2

2n
3

5n
6 n-1√

6579 6572 7604 6555 6931 7471√
6282 6326 5317 6239 6698 5114√
6578 6573 7600 6416 6600 27√ √
6279 6325 5320 6100 6556 27√ √

α(sr/da) 2,12% 4,77% 99,63%√ √
α(sr/naf) 1,46% 99,47%√ √ √

α(sr−naf/da) 6,94% 5,41% 99,63%
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Figure 5. Running times (ms) using affine coordinates

Table VI. Running times (ms) in jacobian coordinates (SR: Scalar reduction)

NAF SR DA Gain n
6

n
3

n
2

2n
3

5n
6 n-1√

3066 3102 3621 3072 3202 3520√
3053 3074 3592 3071 3189 3541√
3070 3100 3622 3030 3107 9√ √
3050 3075 3597 3029 3094 9√ √

α(sr/da) 1,36% 2,96% 99,74%√ √
α(sr/naf) 1,33% 2,57% 99,74%√ √ √

α(sr−naf/da) 1,39% 3,37% 99,74%

As shown in results of performance evaluation respectively in Tables V and VI, we can notice
that when k ∈]0, n2 ], the proposed SR is not better solution. However, when k ∈]n2 , n− 1], the
computation task can be simplified and carried out more quickly in SR. In Jacobian coordinates,
as we don’t need to repeat the modular inverse, computation strongly run faster than case in affine
coordinates as illustrated in Figure 5 and 6. The acceleration rate strongly depends on scalar value of
k. We can see that the computation in NAF form is faster than the one in binary form. We can notice
that in both cases, if k ∈]n2 , n− 1], scalar reduction accelerate slightly the computation. Especially
if k is close to n− 1, the computation can be done instantaneously since (n− 1)P = −P .

The gain rate depends on the value of k. For comparison, we define (αrs/da), (αrs/naf ),
(αrs−naf/da) respectively as the gain rate of the Scalar Reduction (SR) method compared to Double-
and-Add (DA), NAF and SR combined with NAF compared to DA. If Tda, Tnaf , Trs and Trs−naf
respectively are computation time for the binary method (DA), NAF method, and Scalar Reduction
(RS) combined with the NAF, then the percentage of the gain in terms of computation time for an
algorithm x compared to an algorithm y can be expressed as:

αx/y =
(Ty − Tx) ∗ 100

Tx
(12)
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The results are given in Tables V and VI, and we can notice that there is no gain in the interval
]0, n2 ]. However, we can see that the gain rate of SR combined with NAF compared to DA is the most
significant and approaches 100 % as k tends to (n-1). Thus the SR method keeps its performances
when combined with others schemes.

5. EFFICIENT PRECOMPUTATION ALGORITHMS

In this section, after a significant reduction of the scalar k, we present a fast precomputation
algorithm in a parallel scalar multiplication on kP to accelerate computation. Most existing
methods based on precomputation require some extra memory. Our goal is to avoid the storage
of precomputation points. To deal with this, we propose to accelerate the precomputation phase.
Our method is an improvement of the Double-and-Add algorithm. This method involves the level
of scalar arithmetic and point arithmetic in Jacobian coordinates.

5.1. Partitioning scalar

To make a parallel computation of kP between N sensor nodes, we can split the scalar k to m blocks
of length v = k/N bits, and each block is computed by one sensor node. We also split the optimization
algorithm (Double-and-Add, NAF, etc.) to m blocks and each block mi of the algorithm operates
on one block mi of the scalar. Algorithm 1 and Algorithm 2 show respectively block i for Double-
and-Add and NAF algorithms.
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Algorithm 1 Double-And-Add for node i
input : d= (dv−1,.......,d1,d0)2, P ∈ E(Fp)
output: dP

begin
Q←−∞ for j ← 0 to v − 1 do

// begin scan from right to left step by step

if dj=1 then
Q←− Q+ 2viP // 2vi is the pre-computed point

P ←− 2P
Return(Q)

Algorithm 2 NAF for node i
input : NAF(d)=(dv−1,.......,d1,d0)2, P ∈ E(Fp)
output: dP

begin
Q←−∞ for j ←− 0 to v − 1 do

// begin scan from right to left step by step

P ←− 2Q

if dj=1 then
Q←− Q+ 2viP // 2viP is the pre-computed point

if dj=-1 then
Q←− Q− 2viP // 2viP is the pre-computed point

Return(Q)

5.2. Reliability of partitioning scalar

After partitioning the scalar k to m blocks of length v, the node which leads computation copies
one of the m blocks into its local memory and distributes (m-1)blocks to others nodes. In this case,
one possibility is to send the (m-1) blocks in secure mode by symmetric encryption. If they are
sent randomly in clear mode, the intruder, after gaining (m-1) blocks of the m blocks, will compute
(m!2v)P to find scalar k. Moreover, if the intruder gains the (m-1) results sent by other nodes, security
is not compromised. It is as difficult to find k from kP as k from the (m-1) points resulting from
computation scalar multiplication on (m-1) blocks. For each block diP, the intruder needs to find di.
After that, it also needs to compute (m!2v)P before getting scalar k.

5.3. Accelerating precomputation points

In the case of parallel scalar multiplication on kP, precomputation points are in the form dP=2viP
for the block i, where d=2vi. From (vi+1) bits representating the integer 2vi, only the most
significant bit is 1; the last significant vi bits are equal to 0. In the rest of this paper, notations used
to specify the computation time (or computation cost) are listed below: A (addition or subtraction),
M (multiplication), S (field squaring) and I(inversion). It is widely accepted that 1S = 0.6M or 1S
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= 0.8M and 1S = 1M [7], [12], [19]. In Jacobian coordinates, doubling is cheaper than adding [20];
in the general case, the cost of doubling is 8M+3S and the cost of adding is 12M+ 4S. We can only
use point doubling operations since the Hamming weight is next to nothing in pre-computed points.
The concept of the direct computation of several repeated doublings was first suggested in [15] on
elliptic curves over F2n in affine coordinates. This concept increases the speed of repeated doubling
by computing directly 2xP (with x integer) from P ∈ E(Fp) without computing the intermediate
points 2P, 22P, ....., 2x−1P [23]. However, the known formula works only with small x (2, 3 or
4). Paper [26] gives efficient formulas to compute directly 2xP from P ∈ E(Fp) for all k>=1. The
existing formulas for doubling, quadrupling and computing 2xP repeated doubling in the Jacobian
coordinate system are defined follows:



α1 = 3X2
1 + aZ4

1

β1 = 4X1Y
2
1

γ1 = 8Y 4
1

X2 = α2 − 2β

Y2 = α(β −X2)− γ

Z2 = 2Y1Z1

Doubling (13)



α = 3X2
1 + aZ4

1

β = α2 − 8X1Y
2
1

γ = −8Y 4
1 + α(12X1Y

2
1 − α2)

ω = 16aY 4
1 Z

4
1 + 3β2

X4 = −8βγ2 + ω2

Y4 = −8γ4 + ω(12βγ2 − ω2)

Z4 = 4Y1Z1γ

Quadrupling (14)
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α1 = X1

β1 = 3X2
1 + a

γ1 = −Y1
For i from 2 to x, compute αi, βi, γi

αi = β2
i−1 − 8αi−1γ

2
i−1

βi = 3α2
i + 16i−1a(

i−1∏
j=1

γj)
4

γi = −8γ4i−1 − βi−1(αi − 4αi−1γ
2
i−1)

ωx = 12αxγ
2
x − β2

x

X2x = β2
x − 8αxγ

2
x

Y2x = 8γ4x − βxωx

Z2x = 2x

x∏
i=1

γi

2x-uple (15)

In our proposed algorithm, namely Double-and-Double, from (vi+1) bits representing the integer
2vi,we scan the vi bits from left to right and only use repeated doubling to replace addition in the
Double-and-Add algorithm by doubling. To accelerate computation, we can optimize by using the
existing formula of quadruple operation of a point [15] and build a new algorithm named Quadruple-
and-Quadruple. We can also make a generalization of this algorithm by using the formula of 2x-uple
point where x is an integer. From Algorithm 3, Algorithm 4 and Algorithm 5, we can see respectively
our proposed Double-and-Double algorithm, Quadruple-and-Quadruple algorithm and the general
2x-uple-and-2x-uple algorithm.

Algorithm 3 Double-And-Double for node i
input : d=2v=(dv,dv−1,.......,d1,d0)2, P ∈ E(Fp)
output: dP

begin
Q←− P for j ← v − 1to 0 do

// begin scanning on the (v-1)th bit with single step

Q←− 2Q // doubling operation

Return(Q)

5.4. Overhead comparisons and performance evaluation

[20] shows that the total cost to compute w consecutive doublings is 4wM+2(2w+1)S. Theoretically,
the efficiency of the formula using Jacobian coordinates can be determined by the number of
multiplication (M) and of square (S) operations which compose it. Recall that operations like
addition, subtraction and multiplication with a constant are negligible when faced with square and
multiplication of 2 variables. Table VII shows the cost of each formula.
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Algorithm 4 Quadruple-and-Quadruple for node i
input : d=2v=(dv,dv−1,.......,d1,d0)2, P ∈ E(Fp)
output: dP

begin
Q←− P
j ←− v
repeat

j ←− j − 2 // begin scanning on the (v-1)-th bit with steps of
two bits
if j<0 then

Q←− 2Q // doubling operation
else

Q←− 4Q // quadrupling operation

until j <=0
Return(Q)

Algorithm 5 2x-uple-and-2x-uple for node i
] input : d=2v=(dv,dv−1,.......,d1,d0)2, P ∈ E(Fp)
output: dP

begin
Q←− P
j ←− v // begin scanning on the (v-1)th bit with step of x-bits
repeat

if j<x then
Q←− 2jQ // 2j-upling operation

else
Q←− 2xQ // 2x-upling operation

j ←− j − x

until j <=0
Return(Q)

Table VII. Cost of each formula

Formulas Number of operations

Double 4M + 4S
Quadruple 9M + 10S

2x-uple(x>=2) 6M + 8S +(x-2)(5M + 5S)

Generally speaking, we assume that the cost of square is equivalent to 0.6 to 0.8 of the cost of
multiplication. Hence, for a scalar multiplication with a scalar of length of n bits, we can determine
the ratio (r=S/M) from which each formula can justify the best efficiency. As we can see in figure 7,
the formula of quadruple is more efficient with the ratio r >=0.5, and the ratio of 2x-uple is more
efficient than the one of double when r = 9.5 approximately.

We use a Java simulator with recommended parameters found in Table III (see section 4.5) to
test the performance of our method on an elliptic curve over Fp using NIST- 192. The length of
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Figure 7. Number of multiplications based on ratio r = S/M

Table VIII. Running times (ms) using Jacobian coordinates

Method 1 Processor 2 Processors 3 Processors 4 Processors
Double 3508 1690 1111 841
23-uple 4032 2016 1344 1008

Quadruple 3141 1504 995 744
24-uple 3744 1872 1248 936
2x-uple 17435 4779 2400 1506

the scalar used is 192 bits; the program is first run on one processor. Then we perform parallel
computing using 2, 3 and 4 processors. The test results in Jacobian coordinates are given in Table
VIII.

Theoretically, the 2x-uple formula seems to be very promising, but we can see that the quadruple
formula is the most efficient in both cases.

The theoretical efficiency of our scanning algorithm seems to depend on the step-size of every
iteration and on all the elemental arithmetic operations (addition, subtraction, multiplication and
reverse in finite fields) which compose it. If the step-size is much larger, our scanning algorithm
will be more efficient. For a scalar of di=2vi, the objective is to find an efficient formula which
can perform scanning using a step-size greater or equal to vi. Thus, the main difficulty is to find a
formula with a big step-size.

6. CONCLUSION

This paper presents a new technique to run quickly the computation of scalar multiplication ECC.
This approach, based on the negative and order of points reduces computation time in the interval
[bn/2c+1, n-1 ]. We show that the usage of an even order is more efficient. This technique can
be easily applied to almost all existing fast scalar multiplication methods (as shown in NAF) and
is suitable for use in embedded devices such as WSN. Through simulations based on evaluations,
we show that the proposed solution does accelerate the computation of scalar multiplication on
NIST-192 parameters for ECC. We obtain a gain of 4 bits in 161 bits for 6.25% of the scalars. This
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gain is greater than 7 bits for 1.5625% of the scalars and can sometimes reach 100% (160bits) in
some cases. In our second contribution, we propose efficient precomputation algorithms to avoid
storage of precomputation, which requires extra memory in sensor networks. We show that our
improvement method based on the Double-and-Add algorithm is very efficient, especially when it
is used in Jacobian coordinates. Even the 2x-uple formula seems to be very promising theoretically;
through simulation, we show that the quadruple formula is the most efficient. Note that, we use
existing formulas in our scanning algorithm. Our future research could be to use our approach on
real sensor nodes with elliptic curves over finite prime fields using recommended parameters to
maintain a good level of security. We will also discover a new efficient formula for 2x-uple which
seems to be very promising.
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