
Distributed Collision-free Data Aggregation
Approach for Wireless Sensor Networks

Mohammed Amine Merzoug∗, Ahmed Mostefaoui† and Samir Chouali†
∗Department of Computer Science, Faculty of Exact Sciences

University of Bejaia, 06000 Bejaia, Algeria
amine.merzoug@gmail.com

†FEMTO-ST Institute, DISC Dep.
University of Bourgundy-Franche-Comte, France

ahmed.mostefaoui@univ-fcomte.fr, samir.chouali@univ-fcomte.fr

Abstract—This paper presents a distributed serial data aggre-
gation approach, called Spreading Aggregation (SA), in which
one packet hops sequentially over nodes and aggregates their
data. The next hop of the aggregation packet is determined locally
by each traversed node using only its one-hop neighborhood
information, so no network topology information needs to be
known by nodes, nor collisions are generated as only one
node is communicating at any given time. This localized and
distributed characteristic makes the proposed approach highly
scalable and very efficient in terms of communication-reduction,
energy conservation, and aggregation time, as confirmed by the
numerous simulation results we obtained. These results confirm
also the superiority of the proposed approach over the state-of-
the-art serial approaches, particularly in very large scale network
deployments.

Index Terms—Collision-free data aggregation, Serial data ag-
gregation, Wireless sensor networks.

I. INTRODUCTION

Typically, a Wireless Sensor Network (WSN) is composed
of hundreds or even thousands of smart autonomous wireless
sensor nodes [1]. After being deployed in the area of interest,
nodes aggregate sensed data and send it to the sink. The
way data is aggregated has a great impact on the overall
network performances, in particular energy consumption and
response time. In general, we distinguish in the literature
two main categories [2]: (a) tree-based approaches [3] [4]
that rely on some pre-constructed spanning trees for both
query dissemination and data collection/aggregation. In ad-
dition to the high cost in terms of energy consumption for
maintaining such structures, these approaches exhibit a very
poor scalability which renders them unsuitable for large scale
network deployments. (b) Serial approaches [2][5] where data
is aggregated sequentially, from node to node, until visiting the
entire network. The main drawback of serial aggregation is that
it requires the construction of a path that starts from the sink
and crosses every node in the network. However, in opposi-
tion to tree-based approaches, they combine path-construction
and data-aggregation; while the path is constructed, data is
aggregated at the same time. Furthermore, serial approaches
exhibit another interesting feature that is collision-free since
at any given instant of time, in the entire network, only one
node is allowed to communicate. This unique characteristic

allows serial approaches to outperform tree-based approaches
in terms of data aggregation time (i.e., latency), as confirmed
by previous research works [2].

In this paper, we propose a novel serial approach, specifi-
cally tailored for very large scale network deployments. The
proposed approach ensures the following requirements:
• Network exploration and aggregation completeness: pro-

vided that the network is connected, the proposed ap-
proach has to be able to cope with any possible topology
and aggregate data of all nodes.

• Structure-free design and failure-robustness: in order to
be robust against links and nodes failures, the proposed
approach has to construct the path gradually. That is,
instead of attributing a next hop to each node, the current
traversed node has to be able to autonomously select the
next hop. We mention that a pre-constructed path renders
the aggregation process very vulnerable to links/nodes
failures. If at some point, the predetermined next hop is
unavailable, the current node will have no choice but to
stop the aggregation process.

• Localized design and scalability: in order to be scalable,
the proposed approach has to be localized. That is, when
selecting the next hop, the current traversed node has
to use only its local one-hop neighbor information, no
further information is required.

In order to show the improvement of the proposed approach,
we have conducted several simulation series. The obtained
results confim the effectiveness of our proposal in particular
in very large scale network deployments.

The rest of the paper is organized as follows: Section II
reviews the preliminaries required for this paper. Section III
presents the proposed distributed approach and details its
behavior through examples. Section IV presents and comments
the simulation results. Finally, Section V concludes the paper
and discusses possible future research directions.

II. BACKGROUND AND PRELIMINARIES

A. Network model

We denote the finite set of nodes by N = {N1, . . . , Nn},
and the finite set of links by L = {L(i,j) | Ni, Nj ∈ N ∧



i 6= j}. We consider non-oriented bi-directional links, i.e.,
link L(i,j) is the same as L(j,i). A link L(i,j) exists, if nodes
Ni and Nj communicate directly with each other. We assume
that the network is connected and all nodes are aware of their
locations through any localization technique [6]. Further, we
assume that the communication range of all nodes is set to
the same value R [7][8] and that each node is aware of its
one-hop neighbors and their locations. The neighbors set of
node Ni is denoted by Vi = {Nj | L(i,j) or L(j,i) ∈ L}.
B. Boundary Traversal

The key idea behind our serial data aggregation approach
is boundary traversal. So, in this section, we explain the
priniciple of operation of boundary traversal algorithms.

1) Notion of Boundaries: in a wireless network, a boundary
can be either the boundary of a hole inside the network or the
external boundary of the network. Fig. 1 gives an illustrative
example of boundaries. Note that the boundary of the network
or that of a hole, are both composed of a set of nodes called
boundary nodes. For example, the boundary of hole 1 is
composed of the boundary nodes N1, N2, N3, and N4.

Fig. 1. Example of boundaries in a Wireless Sensor Network.

A hole in a network can be defined as follows:

Definition 1. Hole
A hole is a closed region empty of nodes, and delimited by the
non-intersecting links of at least four nodes.

For instance, in Fig. 1, hole 1 is delimited by the following
non-intersecting links: L(1,2), L(2,3), L(3,4), and L(4,1).

2) Boundary nodes identification: in order to identify
boundary nodes, several definitions have been proposed in
the literature [2] [9] [10]. The definition adopted in this
paper is based on a specific geometric shape called Rolling-
Ball. Actually, a rolling-ball is a virtual circle Bi(ci, R/2)
attached to a node Ni and containing no other node. Fig. 2
shows a rolling-ball attached to node N1 (circle with center
c1 ∈ IR2, and radius R/2, where R is the communication
range of nodes). The details and definition of the rolling-ball

can be found in [9]. Using the rolling-ball, the definition of a
boundary node can be given as follows:

Definition 2. Boundary Node
A node Ni is said to be Boundary Node, iff when rollling
locally the ball starting from its farthest neighbor, node Ni

can be hit (touched) by the ball.

Considering Definition 2, a node can determine whether it
is boundary or not, based only on its one-hop neighborhood
information.

3) Boundary Traversal: the objective of boundary traversal
algorithms is to sequentially browse nodes belonging to a
given boundary [9] [10]. First, boundary traversal algorithms
are localized and do not require any information other than the
one-hop neighbors of each node, which serves our objective
of proposing a localized data aggregataion approach. Second,
boundary traversal algorithms are proven to ensure boundary
traversal, which serves our objective of ensuring aggregation
completeness.

The boundary traversal algorithm used in this paper is the
rolling-ball boundary traversal [9]. In this algorithm, as its
name suggests, the rolling-ball is used as a tool to traverse
boundaries. As Fig. 2 shows, in order to choose the next hop,
the initial node N1 spins the rolling-ball counterclockwise. The
first touched (hit) neighbor (node N2) is considered as the next
hop. In its turn, the second node N2 also spins the received
rolling-ball to determine the next hop. The process is repeated
at each visited node until traversing the whole boundary. We
mention that in order to ensure boundary traversal, the rolling-
ball must be all the time empty of nodes. We mention also that
the counterclockwise direction has been adopted in this paper
just for the sake of clarity. The clockwise direction can be also
used.

Fig. 2. Rolling-ball boundary traversal.

III. DISTRIBUTED APPROACH

In this section, we present the proposed serial data ag-
gregation approach. We refer to the node that launches the
data aggregation process as the APL (Aggregation Process
Launcher). We define the set of unvisited nodes and the set of
visited nodes as follows:

Definition 3. Unvisited Set
The unvisited set (Ω) is the set of all currently unvisited nodes.



Definition 4. Visited Set
The visited set (Γ) is the set of all the current visited nodes.

Initially, all nodes in the network are marked as unvisited
(Ω = N and Γ = ∅).
A. Aggregation process initialization

In the proposed approach, the APL can be any node in the
network. So, we distinct two cases: (1) whether the APL is a
boundary node or (2) the APL is a non-boundary node.

1) Boundary APL: in this case, the APL can be located on a
hole’s boundary or on the network’s boundary. In both cases,
to initiate data aggregation, the APL marks itself as visited
and launches a rolling-ball. That is, the APL is removed from
Ω and added to Γ, and the aggregation packet is sent to the
first neighbor hit by the rolling-ball (Fig. 3(a)). Upon receiving
the packet, the second node aggregates its data with the APL’s
data, marks itself as visited, spins the rolling-ball and forwards
the packet to the first hit unvisited neighbor (Fig. 3(a)).

Fig. 3. Spreading aggregation (case of a boundary APL).

Once all nodes of the initial boundary have been visited,
this boundary is removed from Ω and added to Γ (Fig. 3(b)).
In other words, a new boundary will appear in Ω and the same
process will be applied to it (i.e., this boundary will be also
visited using the rolling-ball). This way, the network will be
traversed boundary by boundary. The aggregation termination
is detected at a node when this latter has no remaining
unvisited neighbors (Fig. 3(c)). Once the aggregation process
is completed, the aggregated data can be found at the last
node in the path. Given the fact that the last node can be
different than the APL, the aggregated data needs to be sent
to this latter. To do so, any geographic routing can serve the
purpose [1] (Fig. 3 (d)).

To be able to correctly select the next hop, each node must
be aware of the status of its neighbors (visited or unvisited).
To this end, attributing a field for each neighbor (in the
neighbors table of a node) will indicate whether a neighbor
has been visited or not. This way, the current traversed

node will recognize its visited neighbors and will not select
them as next hop. The process of updating neighbors’ status
does not require any additional communication other than the
aggregation packet itself. The credit for this is due to the
broadcast communications of wireless sensor networks [1]
(when a node sends a packet, all its neighbors will hear it
and can receive it).

2) Non-Boundary APL: being non-boundary means that the
APL cannot launch (hold) a rolling-ball (Fig. 4(a)). Actually,
the ball must be empty of nodes to ensure boundary traversal.
In this case, to launch the aggregation process, the APL
initializes a shrunken rolling-ball. This ball is centered at
the APL and its radius is equal to the distance between the
APL and its nearest neighbor (Fig. 4(b)). Setting the ball this
way, ensures that the ball is empty of nodes. Sometimes, the
distance between the APL and its nearest neighbor can be
larger than the optimal radius of the ball (R/2). In such a
case, the ball must be adjusted to its optimal shape (the radius
of the ball must be always ≤ R/2).

After creating the shrunken ball, the APL marks itself as
visited and forwards the aggregation packet to its nearest
neighbor (Fig. 4(c)). Upon receiving the packet, the nearest
neighbor of the APL, checks first the received ball. If the ball is
optimal then it simply continues the aggregation as described
in the previous section. Otherwise, i.e., if the ball is shrunken
then the nearest neighbor of the APL enlarges the ball as
much as possible and then continues the aggregation process
by spinning the ball (shrunken or optimal) and delivering the
packet to the first unvisited neighbor hit by the ball. The same
process is applied by any subsequent traversed node. That is,
each node that receives the aggregation packet, checks the
received ball and acts accordingly.

Fig. 4. Spreading aggregation (case of a non-boundary APL).

B. Notion of linking nodes

The aggregation technique described above performs ef-
ficiently in dense topologies. However, this technique does
not always ensure the aggregation of all data present in the
network. The case in which this aggregation technique fails,
is when a node connecting two or more parts of Ω, marks
itself as visited. For example, in Fig. 5(a), node N3 ensures



the connectivity of two parts of Ω. Removing N3 from Ω and
adding it to Γ (Fig. 5(b)) leads to the disconnectivity of Ω,
and therefore it leads to the impossibility of visiting all nodes
(Ω 6= ∅ and Γ 6= N ) (Fig. 5(c)).

Fig. 5. (a) Node N3 ensures the connectivity of Ω. (b) If node N3 marks
itself as visited (i.e., no longer participates in the aggregation process), Ω will
be partitioned and (c) data aggregation will not be complete.

To prevent this scenario from happening, nodes that ensure
the connectivity of Ω cannot be marked as visited and must
remain involved in the aggregation process. To achieve this
end, in addition to the unvisited and visited statuses, a new
status of nodes has to be introduced, namely the linking nodes.

Definition 5. Linking Node
A node is said to be Linking Node, iff at least two of its one-
hop unvisited/linking neighbors cannot communicate without
its help.

Fig. 6 gives an example of both a linking and a non-linking
nodes. Node N3 in Fig. 6(a) and Fig. 6(b) is a linking node
because its neighbors, N4 and N5 cannot communicate with
N2 without its help. While, node N3 in Fig. 6(c) is not a
linking node because its neighbors (N2, N6, N4, and N5) can
communicate with each other without its help. We underline
that by considering the network model described in Section II,
a node can locally (based only on its one-hop neighborhood
information) decide whether it is a linking node or not.

Fig. 6. Example of linking and non-linking nodes.

In order to ensure the connectivity of Ω, linking nodes are
not removed from this set and must be re-selected again as
next hop. For example, in Fig. 7(b), when node N3 receives
the aggregation packet, it marks itself as linking node and
forwards the packet to the next hop. When node N3 receives
the aggregation packet for the second time (Fig. 7(c)), it marks
itself as visited and forwards the packet.

Fig. 7. (a) Node N3 ensures the connectivity of Ω. (b) N3 marks itself as
linking node and forwards the aggregation packet. (c) Once no longer needed
to ensure the connectivity of Ω, N3 changes its status to visited.

C. Linking nodes and looping issue

Cycles are a very common problem in distributed
graphs [11]. Due to its reliance on the local limited knowledge
of nodes, Definition 5 serves well our objective of proposing
a localized aggregation approach. However, this definition
creates a looping issue. Precisely, the problem arises in
the presence of disjoint boundaries (cycles) in the network.
Fig. 8 gives an example in which the aggregation process
loops.

Fig. 8. Example of networks in which the proposed approach loops.

To solve the looping problem, the idea is simple, it consists
of opening the cycles, i.e., ensuring the existence of one
boundary in the whole network. For example, in Fig. 8, there
are two disjoint boundaries: the boundary of the network and
the boundary of the hole. To avoid looping, these two disjoint
boundaries must be connected together (i.e., the boundary
of the hole must be opened). To allow nodes to recognize
the disjoint boundaries, the initial boundary (from which the
aggregation will start), has to be marked. To do so, the APL
issues a control packet that traverses the initial boundary
node by node. Each traversed node marks locally the initial
boundary as explored. Actually, each node stores locally its list
of boundaries. A boundary is defined by a right side, a left side,
and a Boolean indicating if the boundary has been explored.
For example, in Fig. 8(b), node Ni has two boundaries. The
initial boundary defined by Nj and Nk as its respective right
and left sides, has been explored. While, the boundary defined
by Nk and Nj as its respective right and left sides, is a disjoint
boundary that has not been explored yet.

After having marked the initial boundary, the determination
of the disjoint boundaries (cycles) can be done locally by each



node. Simply, if the current traversed node has an unexplored
boundary, then this boundary is a cycle that must be opened.
To do so, we introduce the concept of portal nodes.

Definition 6. Portal Node
A node is said to be Portal Node iff it has an unexplored
boundary.

In the case where the current traversed node is not Portal
(i.e., has no unexplored boundaries), this node just changes its
status (to linking or visited node) and forwards the aggregation
packet. However, in the case where a node is portal, the
following steps have to be executed (to avoid looping):
• The portal node Ni divides its one-hop neighbors into

two sets: the left and right sets.
– Left set (X ⊂ Ω): contains all neighbors located

in the sector defined by the angle ∠Nleft, Ni, Nprev.
Where Nleft is the left side of the unexplored bound-
ary, and Nprev is the previous hop of node Ni. In
Fig. 9, all black nodes belong to the left set X . Note
that Nprev (if it has not been visited), Ni, and Nleft

belong to X .
– Right set (Y ⊂ Ω): is composed of the rest of

neighbors of node Ni including the right side of the
unexplored boundary. In Fig. 9, all gray nodes belong
to Y .

Fig. 9. Left and right sets.

• After creating the left and right sets, the portal node
issues a control packet named BSP (Boundary Scan
Packet), which traverses the unexplored boundary, node
by node. Actually, the BSP packet has a twofold role.
First, it marks the disjoint boundary as explored, and
second, it allows nodes to determine if their local stored
boundaries constitute the same boundary. For instance,
as Fig. 10 shows, the portal node Ni issues a BSP packet
that traverses the boundary of the hole and marks it as
explored. In addition to that, the BSP packet informs
node N2 that the boundary defined by N1 as its right
side and the boundary defined by N3 as its right side,
are actually the same boundary. Being aware of this
fact, when node N2 receives the aggregation packet
later, it will not consider these two boundaries as disjoint.

Fig. 10. Boundary Scan Packet.

• After receiving the BSP back, the portal node (which
belongs to the left set X) deletes virtually its links with
every node of the right set Y . Which means that the portal
node Ni will not consider nodes of Y as its neighbors.
Formally, the set of links that need to be deleted from L
is: D = {L(i,j) or L(j,i) | Nj ∈ Y (Ni)}.

• Once the appropriate links have been removed, the portal
node changes it status to linking or visited node.

• The last step that needs to be executed by the portal
node consists of creating and broadcasting an LCP packet
(Link Cut Packet) to its immediate neighbors. This packet
carries the left and right sets.

To finish the cycle break process, upon receiving the LCP
packet, each neighbor of the portal node performs the two
following steps. First, it determines to which set it belongs
(X or Y ). Second, it virtually deletes its links with evey node
of the other set (whenever such links exist). Fig. 11 gives
an example of boundary opening (cycle break). As described
earlier, after receiving the aggregation packet from Nprev, the
portal node Ni executes the steps described above, and finally
broadcasts an LCP packet to its neighbors. After receiving this
packet, each neighbor of Ni, cuts the appropriate links. Once
the cycle has been broken, the aggregation process continues
from the left side of the opened boundary (i.e., Nleft).

Fig. 11. LCP packet (boundary opening).

The main steps of the proposed distributed approach are
summarized in Algorithm 1. We underline that due to the lack
of space, we cannot provide in this paper, the formal proofs
that demonstrate the correctness of the proposed approach.



That is, Spreading Aggregation terminates (free of looping)
and traverses all connected nodes in the network.

IV. PERFORMANCE EVALUATION

In order to evaluate its performance, we have implemented
the proposed serial approach on OMNeT++/Castalia [12] [13]
and conducted several simulation experiments. In addition
to the proposed algorithm, we have implemented a tree-
based approach [3] and another serial approach called Peeling
Algorithm [2]. As its name indicates, the tree-based approach
requires the construction of a tree structure that is rooted at
the sink and covers all sensor nodes. Once the tree has been
created, leaf nodes can start data aggregation by forwarding
their raw data to their corresponding parents. Afterwards, each
intermediate node waits to receive data from all its children,
aggregates it with its own data, and sends the result to its
parent. This operation is repeated until the root. As regards the
Peeling Algorithm, this serial approach is based on boundary
traversal. More precisely, it uses the Curved Stick Boundary
Traversal algorithm [10]. The main drawback of the Peeling
algorithm is that the aggregation must start from a node
that belongs to the external boundary of the network, which
requires a noticeable overhead.
A. Simulation parameters and settings

Simulations were executed in an area of 1000 x 1000 meters
where nodes, including the sink (APL), were randomly de-
ployed. To evaluate the scalabilty of the proposed approach,
we have varied the number of deployed nodes. We started
by 100 nodes, and each time we added (deployed) 50 other
nodes up until 500 nodes. Table I summarizes the simulation
parameters.

Parameter Value(s)
Network area 1000 x 1000 m2

Transmission range of nodes 150 m
Location of the APL (sink node) Random
Number of nodes 100, 150, 200, . . . , 500
Deployment of nodes Uniform
Aggregation packet size 50 Bytes

TABLE I
SIMULATION PARAMETERS

B. Evaluation metrics

To evaluate the performance of the proposed approach
and compare it with the two other approaches, we have
considered the three following metrics:
• 1) Required communications: total number of packets

used to aggregate data (i.e., control and data packets).
• 2) Aggregation time: duration required to aggregate data.

That is, the time between the instant when the sink
launches aggregation and the instant when it receives the
answer.

• 3) Consumed energy: the most important resource in
WSNs is energy. This metric measures the total energy
used by all nodes to aggregate data. To compute the
energy consumed by each node, we have used the energy
consumption model proposed in [14]. In this model, the
radio consumes ETX(k, d) = Eelec ∗ k + εamp ∗ k ∗ d2
to send a k-bit packet a distance d, and it consumes

Algorithm 1 Spreading Aggregation (SA).
1: - Each node creates its list of boundaries (Definition 2).
2: - The APL calls initializeAggregationProcess();
3:
4: void initializeAggregationProcess(){
5: if (APL is boundaryNode){
6: - Set rolling-ball (on any boundary);
7: - Send init packet to mark initialBoundary (using rolling-ball);
8: } else { // APL is not boundaryNode
9: - Set a shrunken rolling-ball;

10: - change status of APL to visited;
11: - Send aggregation packet to nearestNeighbor;
12: }
13: }
14:
15: void receiveInit packet(){
16: - Upon receiving init packet, each node marks locally initialBoundary as explored
17: and forwards initPacket to nextHop;
18: - Upon receiving back the init packet, APL marks initialBoundary as explored
19: and calls continueAggregationProcess();
20: }
21:
22: void receiveAggregationPacket(){
23: - Upon overhearing aggregation pkt, each neighbor updates the status of the
24: sourceNode in its local neighborsTable;
25: - Upon receiving aggregation pkt, destinationNode:
26: - updates the status of the sourceNode in its neighborsTable;
27: - aggregates data (if it has been visited for the first time);
28: - calls checkRollingBall();
29: }
30:
31: void checkRollingBall(){
32: if (rollingBall is optimal) { // i.e., rolling-ball radius = R/2.
33: - Call continueAggregationProcess();
34: } else { // rolling-ball is shrunken
35: - Enlarge rolling-ball;
36: if (rollingBall became optimal) {
37: - Call continueAggregationProcess();
38: } else { // rolling-ball is still shrunken
39: - Spin rolling-ball, change status of currentNode
40: and send aggregation packet to nextHop;
41: }
42: }
43: }
44:
45: void continueAggregationProcess(){
46: - Spin rolling-ball;
47: if (nextHop is undefined){ // Aggregation process ends here.
48: - Change status of currentNode to visited;
49: - Send aggregatedData to APL using geographic routing;
50: - return;
51: }
52:
53: if (currentNode is not portalNode){
54: - Change status of currentNode to linking or visited node;
55: - Send aggregationPacket to nextHop;
56: } else { // currentNode is portalNode
57: - Create leftSet and rightSet;
58: - Send BSP (BoundaryScanPacket) inside disjointBoundary to mark it
59: (using rolling-ball);
60: }
61: }
62:
63: void receiveBSP packet(){
64: - Upon receiving BSP packet, each node marks locally disjointBoundary as
65: explored and forwards BSP;
66: - Upon receiving back the BSP packet, portalNode :
67: - Marks locally disjointBoundary as explored;
68: - Cuts links with nodes of rightSet;
69: - Changes its status to linking or visited;
70: - Broadcasts LCP (LinkCutPacket);
71: }
72:
73: void receiveLCP packet(){
74: - Upon receiving LCP packet, each node:
75: - Updates locally the status of portalNode;
76: - Determines to which set it belongs: right or left;
77: - Cuts links with nodes of the other set;
78: - Left side of disjointBoundary continues aggregation by:
79: - aggregation data (if it has been visited for the first time);
80: - calling continueAggregationProcess();
81: }



ERX(k) = Eelec ∗ k to receive this packet. Where
Eelec = 50 nJ/bit is the energy consumed to run the
transmitter/receiver circuitry, and εamp = 100 pJ/bit/m2

is the energy consumed to run the transmitter amplifier.

C. Evaluation results

Fig. 12 depicts the communications required to aggregate
data by SA (proposed approach), PA (Peeling Algorithm), and
the tree-based approach. Fig. 12 depicts also the communica-
tions required to build a Hamiltonian path. Theoretically, a
network composed of n connected nodes, should be traversed
using exactly n − 1 communications (sent packets or hops).
However, realistically not every network contains such Hamil-
tonian path [5]. Since the number of communications required
by SA and PA cannot be expressed using a mathematical
expression, the depicted optimal number of communications
can be used as a reference to measure the effectiveness of
these two serial approaches in terms of communications.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

100 150 200 250 300 350 400 450 500

R
e
q
u
ir
e
d
 c

o
m

m
u
n
ic

a
ti
o
n
s

Number of nodes

PA
SA

Optimal
Tree-based

Fig. 12. Required communications to aggregate data.

Fig. 12 shows clearly that our proposed approach (SA)
outperforms PA and the tree-based approach, and requires
a number of communications that is very close to the op-
timal number of communications. We mention that for the
three approaches, the required communications include (1) the
communcations used to construct the structure (tree or path),
(2) communications used to diffuse a query through the net-
work, and (3) comunications used to report the aggregated data
to the sink. In the tree-based approach, structure construction,
query dissemination and data aggregation are three separate
tasks. The tree is first constructed. Second, the query is spread
throughout the network, then, finally, data is aggregated by
sensor nodes. On the contrary, in SA and PA, which are both
serial approaches, the three steps are all combined together.
While the path is constructed, query is disseminated and data
is aggregated at the same time. Clearly, this merge signifi-
cantly reduces the amount of sent packets (communications),
enhances data aggregation time and conserves energy. Fig. 13
and Fig. 14 show respectively the time and energy required
to aggregate data by the three considered approaches. Given
the fact that there is a big gap in terms of energy consumption
between the tree-based approach and the two serial approaches

(Fig. 14), we have depicted in Fig. 15, the energy required only
by SA and PA (without considering the tree-based approach).

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

100 150 200 250 300 350 400 450 500

A
g
g
re

g
a
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of nodes

PA
SA

Tree-based

Fig. 13. Time required to aggregate data.

Comparing serial approaches in terms of aggregation time,
we can say that given their sequential nature, the more a serial
approach requires communications, the more it will require
time. As Fig. 13 shows, since SA requires less communi-
cations than PA, it outperforms it in terms of aggregation
time. However, intuitively, this rule (i.e., less communications
implies less time) does not apply to the tree-based approach.
Because, in fact, given its concurrent parallel nature, even
with a large number of communications, tree-based approach
should outperform serial approaches. But, as a matter of fact,
as Fig. 13 shows this is not the case. Actually, SA and PA
perform better than the tree-based approach.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

100 150 200 250 300 350 400 450 500

C
o
n
s
u
m

e
d
 e

n
e
rg

y
 (

J
o
u
le

)

Number of nodes

PA
SA

Tree-based

Fig. 14. Required energy to aggregate data.

In terms of energy, as Fig. 14 demonstrates, serial ap-
proaches also outperform the tree-based approach. For a
wireless sensor node, energy is consumed by the different
tasks the node performs, mainly: wireless communications,
computation (memory and CPU), and sensing. Considering a
simple data aggregation function and a simple sensing opera-
tion, communications take over and become the main source
of energy consumption. In such a scenario, if we consider only
the serial approaches (Fig. 15), we can say that the consumed



energy is related to the number of communications. The more
a serial approach necessitates communications, the more it will
consume energy. Here again, since our approach requires less
communications, it performs better than PA in terms of energy
consevation (Fig. 15).

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

100 150 200 250 300 350 400 450 500

C
o
n
s
u
m

e
d
 e

n
e
rg

y
 (

J
o
u
le

)

Number of nodes

PA
SA

Fig. 15. Required energy to aggregate data (without considering tree-based
approach).

To explain the bad performance of the tree-based approach,
let us consider a network of n nodes. In this approach, if we
assume that each node participates in the query dissemination
phase (i.e., rebroadcasting the received query packet) then n
packets will be sent. Now, as for data aggregation, it is agreed
that each node sends a packet. That is, n other packets need
to be sent, which means that in total 2∗n packets are required
to aggregate data. And this, without taking into account the
retransmissions of the collided packets and without counting
the cost of building or probably fixing the tree. Certainly, the
construction and maintenance of an organizational structure
is a non-straightforward process that costs a non-negligible
overhead. By against, as regards serial approaches, if we
assume the existence of a path that passes exactly once by
each node in a network of n nodes, then only n − 1 packets
will be required to disseminate the query and aggregate data.

In addition to their unsuitability for large-scale deployments
and their poor scalability, tree-based approaches suffer from
several other issues, among them we cite. First, given their
concurrent parallel nature, tree-based approaches witness a lot
of collisions especially in large scale and dense networks.
Collisions waste energy and time because collided packets
need to be re-transmitted. Second, due to (1) collisions, (2)
tree construction, and (3) tree maintenance, tree-based ap-
proaches require a remarkable overhead and consequently they
considerably consume the energy of nodes. Third, tree-based
approaches suffer from the unbalanced energy consumption
problem. This problem occurs because nodes that are close to
the sink are overused to relay the traffic [15]. Finally, a tree is
a set of pre-determined paths. Thereby, tree-based approaches
are very sensitive to links and nodes’ failures. Any failure
necessitates the maintenance of the tree, which could require
a considerable amount of energy and time particularly in dense
large-scale networks.

V. CONCLUSION

Compared with tree-based aggregation, serial aggregation
has shown its effectiveness and outperformance in terms of
time and energy, however, due to the path-construction com-
plexity, serial approaches are not optimal and can be further
enhanced. To achieve this end, we proposed in this paper
a serial approach called Spreading Aggregation (SA). The
efficiency of this approach comes from its localized nature, i.e.,
its reliance on the one-hop neighborhood information of each
node. The obtained simulation results confirm the efficiency
of the proposed approach in terms of time and energy, and
confirm also that the proposed approach ensures aggregation
completeness. Nevertheless, the proposed approach needs to
be proven. That is: (1) it visits all connected nodes in the
network, and (2) it terminates and does not loop indefinitely.
Actually, we have already proven these two points, but due to
the lack of space, we cannot present the proof of correctness
in this paper.

REFERENCES

[1] A. Boukerche, Algorithms and Protocols for Wireless Sensor Networks,
ser. Wiley Series on Parallel and Distributed Computing. John Wiley
& Sons, 2008.

[2] A. Mostefaoui, A. Boukerche, M. A. Merzoug, and M. Melkemi, “A
scalable approach for serial data fusion in wireless sensor networks,”
Computer Networks, vol. 79, pp. 103–119, 2015.

[3] R. Rajagopalan and P. K. Varshney, “Data aggregation techniques in
sensor networks: A survey,” IEEE Comm. Surveys & Tutorials, vol. 8,
pp. 48–63, 2006.

[4] M. Li, Y. Wang, and Y. Wang, “Complexity of data collection, aggre-
gation, and selection for wireless sensor networks,” IEEE Transactions
on Computers, vol. 60, no. 3, pp. 386–399, 2011.

[5] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE Journal on Selected Areas in Commu-
nications, vol. 23, no. 4, pp. 798–808, 2005.

[6] A. Boukerche, H. Oliveira, E. F. Nakamura, and A. A. F. Loureiro,
“Localization systems for wireless sensor networks,” IEEE Wireless
Communications, vol. 14, no. 6, pp. 6–12, 2007.

[7] A. Boukerche, X. Fei, and R. B. Araujo, “An optimal coverage-
preserving scheme for wireless sensor networks based on local informa-
tion exchange,” Computer Communications, vol. 30, no. 14, pp. 2708–
2720, 2007.

[8] A. Boukerche and X. Fei, “A coverage-preserving scheme for wireless
sensor network with irregular sensing range,” Ad hoc networks, vol. 5,
no. 8, pp. 1303–1316, 2007.

[9] W.-J. Liu and K.-T. Feng, “Greedy routing with anti-void traversal for
wireless sensor networks,” IEEE Transactions on Mobile Computing,
vol. 8, no. 7, pp. 910–922, 2009.

[10] A. Mostefaoui, M. Melkemi, and A. Boukerche, “Localized routing ap-
proach to bypass holes in wireless sensor networks,” IEEE transactions
on computers, vol. 63, no. 12, pp. 3053–3065, 2014.

[11] A. Boukerche and C. Tropper, “A distributed graph algorithm for the
detection of local cycles and knots,” IEEE Transactions on Parallel and
Distributed Systems, vol. 9, no. 8, pp. 748–757, 1998.

[12] “OMNeT++ : Simulation Environment,” http://www.omnetpp.org/.
[13] “Castalia : Wireless Sensor Network Simulator,”

http://castalia.research.nicta.com.au/index.php/en/.
[14] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An

application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on Wireless Communications, vol. 1, no. 4,
pp. 660–670, 2002.

[15] A.-F. Liu, P.-H. Zhang, and Z.-G. Chen, “Theoretical analysis of the
lifetime and energy hole in cluster based wireless sensor networks,”
Journal of Parallel and Distributed Computing, vol. 71, no. 10, pp.
1327–1355, 2011.


