
Noname manuscript No.
(will be inserted by the editor)

Data Fusion in Automotive Applications
Efficient Big Data Stream Computing Approach

Amir HAROUN · Ahmed MOSTEFAOUI · François DESSABLES

Received: date / Accepted: date

Abstract Connected vehicles are capable of collecting,

through their embedded sensors, and transmitting huge

amounts of data at very high frequencies. Leveraging

this data can be valuable for many entities: automo-

bile manufacturer, vehicles owners, third parties, etc.

Indeed, this ”big data” can be used in a large broad

of services ranging from road safety services to after-

market services (e.g., predictive and preventive main-

tenance). Nevertheless, processing and storing big data

raised new scientific and technological challenges that

traditional approaches cannot handle efficiently. In this

paper, we address the issue of online (i.e., near real-

time) data processing of automotive information. More

precisely, we focus on the performance of data fusion to

support several millions of connected vehicles. In order

to face this performance challenge, we propose novel ap-
proaches, based on spatial indexation, to speed-up our

automotive application. To validate the effectiveness of

our proposal, we have implemented and conducted real

experiments on PSA-Group1 big data streaming plat-

form. The experimental results have demonstrated the

Amir HAROUN
PSA GROUP
Bessoncourt, France
E-mail: amir.haroun@mpsa.com

Ahmed MOSTEFAOUI
FEMTO-ST Institute/CNRS
Bourgognes-Franche-Comte University
Belfort, France
E-mail: ahmed.mostefaoui@univ-fcomte.fr

François DESSABLES
PSA GROUP
Bessoncourt, France
E-mail: francois.dessables@mpsa.com

1 PSA Group is the second-largest automobile manufac-
turer in Europe with about 3 million sold vehicles in 2015.

efficiency of our spatial indexing and querying tech-

niques.

Keywords Big Data · Connected Vehicles · Stream

Computing · Data Fusion

1 Introduction

During the last few years, we have witnessed an great

advance in communication technologies that led to the

emergence of new concepts such as Connected Vehi-

cles (CVs). By 2018, all new European cars must be

equipped with communication capabilities to enhance

the driver’s safety2. Based on its On Board Unit (OBU),

each connected vehicle can either communicate with

other vehicles (Vehicle-To-Vehicle (V2V) communica-

tions) or with an infrastructure (Vehicle-To-Infrastructure

(V2I) and Infrastructure-To-Vehicle (I2V) communica-

tions). Each vehicle is able to collect up to 170 informa-

tion through several sensors deployed in all its compo-

nents (i.e., engine, interior, exterior, etc.). The trans-

mitted data, represented as frames, contains a wide

range of information ranging from the Vehicle Identifi-

cation Number (VIN), to the current GPS coordinates

passing by the engine Rounds-Per-Minute (RPM), the

vehicle speed, the external temperature, etc. This cap-

tured data could be of a paramount interest for sev-

eral real applications as road safety, eco-driving, traffic

regulation, environment monitoring, etc. Figure 1 illus-

trates the transmission flow from vehicles to end-users

(e.g, vehicles owners, third-party partners, etc).

In some V2I applications (e.g., extensive Controller

Area Network (CAN) monitoring), we are interested in

2 {http://sites.ieee.org/connected-vehicles/2015/

04/28/ecall-in-all-new-cars-from-april-2018/}

2 Amir HAROUN et al.

Fig. 1 PSA Group’s services

transmitting all the data captured from the CAN bus3.

Connected vehicles are however able to generate a huge

amount of data at a very high frequency. For instance,

if we assume a car delivery of 1Mb per second per CV,

the computing infrastructure has to support a workload

of 5∗106 Mbit/sec4. This gives an amount of 5 Tbps (or

300 Tb per minute!), which has eventually to be stored

for off-line analysis.

Processing and analyzing this big data represent a

challenging research issue. Indeed, in automotive big

data applications, we have to deal with the challenging

triple V : Volume, Velocity, Variety [18] of big data.

– Big Volume refers to data size that continues to in-

crease exponentially. As we saw, when it comes to

millions of CVs, the volume of data will rapidly ex-

plode. This issue makes the traditional storage so-

lutions such as Centralized File Systems (CFS) and

Database Management Systems (DBMS) inefficient

in the face of this big volumes of data.

– Big Velocity stands for the speed of data genera-

tion and processing. Data is generated at high rates

that makes processing techniques slower compared

to the generation rates. However, some automotive

applications require hard constraints of processing

(i.e. (near) real-time response). The challenge of ve-

3 The ISO 11898 standard specifies that the CAN phys-
ical layer allows transmission rates up to 1 Mbit/s for
use within road vehicles. See http://www.iso.org/iso/

catalogue_detail.htm?csnumber=33423
4 PSA GROUP is planning for 2020 to handle data from

nearly 5 millions cars around the country (e.g., France).

locity is to design processing solutions that handles

well the historical data as well as online data.

– Big Variety is related to the heterogeneity data types.

In fact, CVs send various types of data such as time-

based signals, scalar data, images, videos etc. This

challenge must be handled for automotive applica-

tions to exploit the full potential of CVs.

However, big automotive data challenges include other

factors: veracity and value. Data veracity concerns the

provenance and the traceability of data and plays an

important role in automotive applications in order to

guarantee safety and security in connected services. Fi-

nally, value of big automotive data has a mean for a

broad range of automotive services like aftermarket ser-

vices (e.g., predictive and preventive maintenance), en-

tertainment services (e.g., movies), etc. Another impor-

tant issue which has also to be taken into account in big

automotive data applications is the scalability of the

infrastructure. This issue concerns the ability of the in-

frastructure to scale up with the heavy workload which

it is supposed to support.

We illustrate these issues through the following real

application, implemented in PSA GROUP’s big data

infrastructure, about the environmental monitoring. In

fact, many private as well as public companies are in-

terested to use CVs as distributed mobiles sensors to

monitor the environment and getting up-to-date views

of the monitored area. An example of such an applica-

tion is the whole country temperature view, requested

by the French National Meteorological Service [1] for

their meteorological previsions. The objective is to get

an updated map of the country temperature, includ-

ing regions and departments, as precise as possible (see

Figure 2). Hence, each CV sends the captured exterior

temperature, tagged with its current location to the in-

frastructure. The latter is then responsible of correlat-

ing the received data in order to continuously updating

the map. In this application, we focus on temperature,

but any other data could be monitored; e.g., pollution,

fog, rain, frost, etc.

This application has been implemented using the

stream processing engine ibm stream [14]. The latter

is based on the Stream Computing paradigm which ex-

ploits various kinds of parallelism (i.e., task, data and

pipeline). Stream computing paradigm has been used to

efficiently process real time unbounded data streams [9]

as it is the case of our temperature application (see Sec-

tion 3 for a detailed review).

The results of the real experiments we have con-

ducted have however pointed out a poor performance

of the application. In fact, the infrastructure was not

able to handle in real-time more than 1500 simultaneous

CV data streams, whereas its hardware platform is able

Data Fusion in Automotive Applications 3

Fig. 2 ”Temperature” use case.

to largely support this workload. Obviously, the poor

performance comes from the software. As in Stream

computing the processing chain is composed of vari-

ous operators, organized in directed graphs, the over-

all processing time is then defined by the slowest pro-

cessing operator (or component). We have then con-

ducted a deep performance analysis of all components

of our application in order to identify the bottleneck

responsible of this poor performance. Our analysis re-

vealed that the sub-routine is-contained() was the

slowest operator when the workload is heavy. We used

this sub-routine, provided in ibm stream, geospa-

tial toolkit, in order to correlate the temperature

captured by a CV with the data on the map. More pre-

cisely, we used is-contained() to locate a point, rep-

resenting the temperature captured by a CV, within

a polygon, representing the corresponding region (e.g.,

a town). We have then measured the performance of

this sub-routine by varying the complexity of the region

(i.e., number of edges in the polygon). We mainly mea-

sured the required time to determine to which polygon

a point belongs. The results are plotted in Figure 3.

As shown in the figure, more complex the polygon,

higher the processing time. Even though the process-

ing time of one operation is very short (of order of 5

microseconds), the system is nevertheless not able to

handle in real-time all the expected CVs data streams

(of the order of millions) associated with a complex in-

put map; i.e., polygons of regions and departments.

The research issue we are facing is how to speed

up this operation in order to meet the real-time target

application requirements. More formally, the problem

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Ti
m

e
[s

]

Number of edges in the polygon

Fig. 3 Performance of sub-routine is-contained() with re-
gard to the complexity of the polygon (number of its edges)

we are facing is the general one called: Point Location

Problem (PLP), where a point has to be located inside

or outside a given polygon.

In this paper, we study this issue and propose new

approaches, based on the use of novel spatial index-

ing structures, that overcome PLP performance within

stream computing. To the best of our knowledge, this

is the first study addressing query performance of PLP

within stream computing middleware.

The rest of the paper is organized as the follow-

ing: In Section 2, we review the PLP related work. Sec-

tion 3 introduces the concepts behind stream comput-

ing. In Section 4, we present the developed approaches

to speed-up the target application. Section 5 highlights

the experiments we conducted and the obtained results.

Finally, Section 6 concludes this paper and highlights

our future works.

2 Related work

This section presents the Point Location Problem (PLP)

and some state-of-the-art studies that have been used

to overcome it. Given a partition of the space divided

into disjoint regions, PLP aims to determine efficiently

the region where a query point lays (refer to Figure 4

for an illustration). This problem is present in differ-

ent fields: computer vision, image processing, computer

graphics, motion planning and geographic information

systems (GIS).

Input description

– A planar subdivision formed by a set of disjoint re-

gions R= {R1, R2, . . . , Rn}, each region is defined

by its bounding polygon P= {P1, P2, . . . , Pn}, a poly-

gon has m non intersecting line segments (or m ver-

tices).

4 Amir HAROUN et al.

q?

(a) Input (b) Output

Fig. 4 Point Location Problem

– A query point q defined by its two dimensional co-

ordinates.

Problem

Which polygon Pi contains the query point q?

2.1 Point In Polygon

Whereas PLP is the method that returns the contain-

ing polygon among a set of polygons, Point In Polygon

(PIP) is used to check if a point is inside or outside

a given polygon. One of the earliest PIP methods is

the Crossing Test [26], we draw a ray starting from the

query point and going to any direction then we count

how many times this ray traverses the polygon’s edges.

If this number is odd then the point is inside the poly-

gon, otherwise the point is outside. Unambiguously, the

worst case computational complexity of this method is

linear in the number of edges.
An improvement of this method was proposed by Mac-

Martin [11], he filters the set of edges saving some cal-

culations. Other methods are proposed to improve this

algorithm (e.g., barycentric, angle summation test, tri-

angle fan, etc) but the MacMartin method stays in the

lead. Table 1 presents a comparison between the most

known PIP methods, a full description of these methods

can be found in [11].

Table 1 Comparison of general algorithms using random
polygons [11]

Number of edges 3 4 10 100 1000

MacMartin 2.9 3.2 5.9 50.6 485

Crossings 3.1 3.4 6.8 60.0 624

edge sort 1.1 1.8 6.5 77.6 787

Triangle Fan 1.2 2.1 7.3 85.4 865

Barycentric 2.1 3.8 13.8 160.7 1665

Angle Summation 56.2 70.4 153.6 1403.8 14693

2.2 PLP approaches

In this part, we describe some state of the art ap-

proaches to overcome the PLP.

2.2.1 Slab decomposition

The slab decomposition of Dobkin and Lipton [20] is

one of the earliest approaches to solve the PLP. A ver-

tical line is drawn through each vertex, this divides the

plane into at most n + 1 vertical slabs, each slab is

defined by the region between two consecutive vertical

lines (where n is the number of vertices) (see Figure 5).

Let Es be the set of all edges in the graph that cross a

slab s. Note that the set Es partitions the slab s into a

set of regions (trapezoids and triangles).

A slab

Fig. 5 Slab decomposition

The PLP is reduced into two simpler problems:

– which slab contains the query point.

– which region of the slab contains the query point.

Both of these two sub-problems can be answered by a

binary search. First, a binary search on the x coordi-

nate of the vertical line is performed in order to finding

the slab that contains the query point. Then, a second

binary search is done on the y coordinates of the edges

crossing the slab to find the region of the slab contain-

ing the query point.

2.2.2 Triangulation refinement

The basic idea of triangulation refinement [17] is to

build a tree hierarchy (i.e. directed acyclic graph) of

triangles. As its name suggests, each level of the hier-

archy must be a triangulation, it’s however not always

the case. So the first step is to transform the initial

Data Fusion in Automotive Applications 5

set of polygons into a set of triangles, there are sev-

eral algorithms to do this [7, 25]. The data structure

is then built starting from the triangulated subdivision

S1, we remove some vertices to simplify the data struc-

ture then we re-triangulate the subdivision to get a less

complex level S2 and iterate until obtaining the root

triangle Sh.

The query is performed iteratively starting from the tri-

angle of the level Sh that contains the query point. In

each iteration, we try to find triangle of the level Si− 1

that contains the query point. Each triangle of the level

Si has pointers for the triangles it intersects of the level

Si−1. We iterate until reaching a leaf from the level S1.

Point location method is described in Algorithm 1

Algorithm 1: Triangulation

Input: A sequence of triangulations: S1, S2, . . . , Sh

organized as a tree hierarchy,
A query point q

1 if q is not included in the root triangle Sh then
2 return null

3 else
4 current← root;
5 while current has descendants do
6 for i← each descendant of current do
7 if q is included in descendent i then
8 current← i;
9 break;

10 return current

2.2.3 Trapezoidal decomposition

The trapezoidal decomposition [29] is obtained by draw-

ing a vertical line from each vertex that stops when hit-

ting an edge (see Figure 6). This way, we obtain only

a subset of the slabs compared to the slabs decomposi-

tion. The PLP query is however answered by building

a trapezoidal hierarchy resembling that of the former

method (i.e. Triangulation refinement). Starting from

the bounding box as a root rectangle, we add edges one

at a time from the trapezoidal decomposition to create

a trapezoidal data structure.

The methods described in this section have not been

used directly in our implementations due to fact that

they are exact methods that keep the precision of poly-

gons and hence they do complex operations. In auto-

motive applications and more precisely in stream pro-

cessing, computations must however be very quick (i.e.,

near real-time). Moreover, in real applications, the de-

sired precision variates, some applications require more

or less precision than others. Nevertheless, the inferred

Fig. 6 Trapezoidal decomposition

knowledge has been considered in the proposition of

adapted approaches for automotive context.

3 Stream Computing Paradigm

Big data applications pose new challenges that tradi-

tional processing and storage solutions are not able to

sustain [16], especially in term of scalability [12]. Many

solutions have been studied and proposed to respond

to big data challenges, among them Hadoop framework

[3]. In fact, due to its distributed nature, Hadoop fits

well to some big data requirements, but not to all.

In particular, because its processing component (i.e.

MapReduce) operates in batch mode [30], Hadoop is

not able to respond efficiently to the automotive re-

quirements (i.e., online processing, low latency queries,

etc).

Stream processing5 has been introduced as a new

programming model for efficient and parallel processing

of continuous data streams [13], with hard constraints

(i.e., real-time or near real-time computing).

To understand the concept of stream processing and

distinguish it from the classical form of processing, here

are the main stream computing’s characteristics:

– Each and every data item is processed as it arrives

(i.e. online).

– Events are time-based, every record is typically times-

tamped on creation.

– Operations are done in a data flow design (see Fig-

ure 7).

– Every operation is done on one data element (or a

small window of recent data).

– An operation computes something relatively simple.

– Each computation needs to complete in (near) real-

time to avoid congestions.

5 The terms processing and computing are interchangeable
in the rest of the paper.

6 Amir HAROUN et al.

Streaming applications can be modeled through a

Directed Graph (DG) in which vertices are streams (i.e.,

conceptually an infinite sequence of data items) and

edges are operators (see Figure 7).

Fig. 7 A streaming application

There are three categories of operators:

– Source operators: sources of the input data streams.

They are connected to an external source of data so

they transform the external data into data streams

to send them via their output ports. Example: op-

erators reading from a message queue, a broker, a

data base, etc.

– Transformation operators: carrying out the compu-

tation, they transforms input data streams to out-

put data streams. Example: aggregation, transfor-

mation, correlation, etc.

– Sink operators: usually placed at the end of the

streaming application. Example: operators writing

to a message queue, a file system, etc.

In order to process unbounded data streams efficiently,

stream computing uses various kinds of parallelisms

(i.e. task, data, and pipeline parallelism) [9].

Streaming applications are published as jobs on a

Stream Runtime Environment (SRE) also called instance.

SREs can be deployed on one or multiple hosts. Hence,

the stream computing scales horizontally by adding more

nodes to the SRE. A job is an application instance run-

ning on a SRE, it executes a set of Processing Elements

(PEs)6. In stream applications, the overall processing

time is defined by the slowest processing part. In other

words, slowing a component in the processing graph

involves slowing down the whole application.

4 Proposed approaches

The ineffectiveness of the first implemented approach,

called Exhaustive approach, is due primarily to the fact

6 A processing element is a thread executing executes a set
of operators instances.

that all the polygons are tested until the correct poly-

gon is found (hence the name). Then, the correspond-

ing temperature is added to the target region. This ap-

proach has been shown to be ineffective since it is not

able to support the (near) real-time processing require-

ment (see its experimental evaluation in Section 5).

Two main facts contribute in the poor performance

issues of exhaustive approach:

(a) The high complexity of the target polygons as con-

firmed in Figure 3. Indeed, more complex the poly-

gons, higher the processing time.

(b) The large set of polygons to test. In fact, all the

polygons are candidates and are hence tested, which

consumes more processing time.

In this section, we present three approaches that

alleviate the weakness of the exhaustive approach.

4.1 Two Steps Approach

In this approach, in order to improve the exhaustive

method, we focus on reducing the large number of poly-

gons. In order to reduce the set of tested polygon, we

studied the approach called two steps approach [22].

The basic idea behind this approach is to filter the ini-

tial set of polygons, keeping only few potential candi-

dates. This filtering is performed on approximations of

the input polygons in order to speed-up the process.

Once a smaller subset of polygons has been identified,

in a second step, only retained polygons are tested in

depth. Figure 8 illustrates the two steps approach.

Fig. 8 Approximation-based query processing.

As shown in the description of the approach, it op-

erates in two steps:

– Filtering: This step is based on a simple fact, if a

query point q is not contained in a simpler form Ai

that covers a polygon Pi, then it will be never con-

tained in the polygon Pi. By doing so, a large subset

of unnecessary candidates can be avoided and hence

saving processing time. The filtering must be quick

Data Fusion in Automotive Applications 7

(a) Bounding Box (b) Convex hull

(c) 5-corner (d) ellipse

Fig. 9 Various conservative approximations.

and efficient to maintain good overall performance.

This first step aims to simplify and approximate

the initial shape of the polygon to get a less com-

plex objects with fewer verticies. The fundamen-

tal condition of the simplification is that its result

should be simple and contain completely the ini-

tial shape. Several approximation techniques (illus-

trated in Figure 9) exist in the literature (e.g. mini-

mal bounding box[23], minimal bounding circle, con-

vex hull[24], 4-corner, 5-corner, ellipse, etc.). A com-

parison of these methods could be found in [5]. The

quality of an approximation is defined by the ratio

of the area of the initial spatial object to the area

of the approximation. The closer the ratio to 1, the

better the quality of approximation. The latter is

very important because it will define the quality of

filtering.
A first exhaustive search (i.e. filtering) is done on the

polygon’s approximations then the full test on the

original polygon is performed. If the query point is

not contained in the polygon’s approximation, there

is no need to test on the full polygon. (refer to Sec-

tion 5 for the practical results).

– Refinement: In this second step, only a reduced

subset of polygons is selected for the refinement,

which consists in tests on the candidates original

polygons.

Algorithm 2 presents the two steps approach.

4.2 Decomposition Approach

Whereas in the two step approach we focus on reduc-

ing the large number of candidates, in this approach, we

treat the problem of complexity of polygons. The key

idea behind this approach, more precisely a family of

Algorithm 2: The two steps method

Input: A finite set P= {P1, P2, . . . , Pn} of polygons,
A query point q

Output: The polygon that contains the query point q
/* Offline computation, */

1 for i← 1 to n do
2 Ai ← approximate(Pi);

/* Online Computations */

/* Filtering */

3 Candidates← ∅
4 for j ← 1 to n do
5 if PIP(Aj , q) then
6 Candidates← Candidates ∪ j

/* Refinement */

7 for k ← 1 to size(Candidates) do
8 if PIP(PCandidates[k],q) then
9 return PCandidates[k]

10 return null

approaches, is to reduce the complexity of the consid-

ered polygons by decomposing them to small and less

complex objects. In other words, constructing a spa-

tial indexing structure on which the considered poly-

gons are mapped. In a second step, this spatial index-

ing structure is used to decide which polygon contains

the query point. Of course, the objective is to speed-up

this operation. To this end, the space is first divided

to produce a structure (e.g. Grid [27], R-Tree [10], X-

Tree [4], Quadtrees [6]). Within this paper, we used a

Quadtree structure [28] because of its relative imple-

mentation simplicity and its coherence with spatial in-

dexation. The Quadtree is a tree data structure where

every node has exactly four children. To create a spa-

tial Quadtree, we start with the entire space as a single

partition, then it is recursively divided into four equal

cells until a stop condition is validated. The stop condi-

tion, which depends of the required target application

precision, can lead to the creation of balanced Quadtree

or unbalanced Quadtree.

4.2.1 Balanced Quadtree

A balanced Quadtree is a tree where all the leaves are at

the same level. Hence, all cells have the same area size.

Obviously, lower the cell’s size, better the precision. So,

cells can well capture the mapped polygons (see Exam-

ple of Figure 10), but at the expense of a large index-

ing Quadtree. Oppositely, largest cells lead to a reduced

indexing Quadtree, which however can lack precision;

i.e., one cell can contain several polygons. Consequently,

there is a need for a trade-off between the size of the

indexing structure and the processing time. Whilst bal-

anced Quadtree presents the advantage to be simple to

8 Amir HAROUN et al.

(a) Balanced decomposi-
tion

R

1 2 3 4

1 2 3 4

1 2 3 4

(b) Quadtree

Fig. 10 A balanced Quadtree with four levels

implement, it does not however well capture the com-

plexity of the considered map, as it is the case of our

considered temperature use case. Indeed, all the poly-

gons, representing regions or departments, are not of

the same shape complexity. For instance, areas located

on regions or department boundaries are more complex

and consequently need more indexing cells than areas

located in the middle. To capture this difference, the

Quadtree needs to be expended in some region more

than in others, leading to unbalanced Quadtree.

4.2.2 Unbalanced Quadtree

q

(a) Unbalanced decomposi-
tion

R

1 2 3 4

1 2 3 4

1 2 3 4

(b) Explored nodes

Fig. 11 Unbalanced decomposition

The main problem with the balanced Quadtree is

that all the leaves have the same level of detail (i.e. they

are on the same level of the Quadtree). However, in real

applications, we want variable precision depending on

the position of the Quadtree cell compared to the poly-

gon’s boundary. The unbalanced Quadtree is an im-

provement of the balanced Quadtree. It handles better

precision and hence improves the processing time. But

it still requires, as for the balanced Quadtree, a trade-

off between the precision and the processing time. In

fact, higher the precision, longer the processing time

and vice versa.

For instance, using an unbalanced quadtree (in Fig-

ure 11), we explored only three levels in order to find

the leaf containing the query point. If we use a balanced

quadree, we would have to explore all the levels in order

to find the leaf containing the query point.

4.3 GeoHash Approach

Based on the GeoHash geocoding system [21], we used a

grid decomposition in order to create a spatial indexing

structure. The result is a hierarchical spatial data struc-

ture that subdivides space into grid shapes (see Figure

13). Similarly as in the previous approach, the polygons

are mapped on this grid and the GeoHash coding is used

after to locate a point on the corresponding polygon.

Geohashes offer properties like arbitrary precision and

the possibility of gradually removing characters from

the end of the code to reduce its size (and gradually

lose precision). GeoHash is very light, it is composed

of two main steps: binary code generation and base 32

encoding. First, it uses recursively series of divisions to

generate a binary code, Figure 12 illustrates the first

step of binary code generation. Then, it uses a base 32

Fig. 12 Binary coding of GeoHash

map to encode the binary result in a alpha-numerical

string format. For instance, to get a 4 characters length

GeoHash from the coordinates (48.870321, 2.305931),

only 20 binary operations are needed:

Binary code : 11010 00000 01001 11100

Decimal code: 26 0 9 28

GeoHash: u09w.

Unlike the previous decomposition method where we

store the whole data structure (i.e. the Quadtree), the

only stored data in this method is the cell’s GeoHash as

a unique key and the corresponding region or depart-

ment as the value.

GeoHash is used mainly as a Universal Unique Iden-

tifier (UUID) to represent coordinates or as GeoTags.

Data Fusion in Automotive Applications 9

Fig. 13 Geohash

Table 2 Error margin for a GeoHash length

Length Lat. bits Error(km) Long. bits Error(km)

1 2 ±2487.1 3 ±2504.7

2 5 ±310.9 5 ±626.1

3 7 ±77.7 8 ±78.2

4 10 ±9.7 10 ±19.5

5 12 ±2.4 13 ±2.4

6 15 ±0.3 15 ±0.61

7 17 ±0.076 18 ±0.076

8 20 ±0.009 20 ±0.019

9 22 ±0.002 23 ±0.002

10 25 ±0.0005 25 ±0.0005

We have however used some interesting GeoHash prop-

erties in order to index the grid:

– Depending on the desired string’s length, the gener-

ated GeoHash has a margin error in longitude and

latitude (refer to table 2). So in fact, GeoHash pro-

duces a rectangle rather than a point. The grid’s

cells (i.e rectangles) will be indexed using this prop-
erty.

encode(latitude, longitude, length): is the function

that produces the hash string.

decode(string): is the function that restores GPS

coordinates from the hash string.

decode(encode(x, y, length)) = (x′, y′),

where: (x′, y′) is the center of the rectangle that con-

tains every (x, y) such as:

x ∈ [x′ − Lonerr, x
′ + Lonerr]

and y ∈ [y′ − Laterr, y
′ + Laterr]

– GeoHash loses in precision by removing characters

from the end of the hash string. So depending on

the desired grid’s cells size, we can variate (increase

or decrease) the GeoHash length.

– Any two points belonging to the same cell will have

the same GeoHash. We will use this property for

the online query, if the query point has the same

GeoHash as a grid’s cell index, then it is contained

in this cell.

For the grid structure, we have also the choice between

a uniform grid and a non uniform grid.

4.3.1 Uniform grid

A uniform grid is a grid where all its cells have the

same size. If we want a precision corresponding to 10

characters (refer to Table 2), all the grid cell will have

a GeoHash length of 10 characters. To find if a query

point is contained in one of the grid’s cells, we generate

a GeoHash of 10 characters for the query point. If the

query point has the same GeoHash as one of the grid’s

cells, then it is contained in that cell.

4.3.2 Non uniform grid

A non uniform grid is a grid where the cells have not

the same size (i.e. a grid with a variable precision),

and hence they have not the same GeoHash length. To

transform a uniform grid into a non uniform grid, we

have just to fuse the cells of a polygon into a meta-cell

if the polygon contains all the sub-cells of the meta-cell.

For instance, if a polygon Pi contains all the sub-cells of

the meta-cell u (u0, u1, . . . , uz), we can fuse them and

replace them with a single cell u. This will improve the

memory requirement (because we will store less cells)

but it will add more complexity to the query. Since the

grid cells have not a fixed GeoHash length, we must

variate the GeoHash length of the query point and see

if it exists in the grid indexes, see the example bellow.

Example

We illustrate our proposed approach through the fol-

lowing example: assuming a CV is located in (48.87,

2.3059). The first step is to generate the GeoHash of

this CV’s location with the desired precision. If we use

a uniform grid, it is known that all the cells have the

same GeoHash length. However, if we use a non uni-

form grid, we have to generate a GeoHash of with the

maximum precision (e.g., a precision corresponding to

10 characters length, see Table 2)

encode(48.870321, 2.305931, 10) = u09wh2x4k0.

The second step is to find to which cell corresponds this

GeoHash. Using a uniform grid, this step is straight

forward, all the cells have the same GeoHash length so

we have just to check if a cell with this index exists. In

the other hand, the non uniform grid’s cells have not

the same GeoHash length, so we will start by checking if

the 10 characters length GeoHash (u09wh2x4k0) exists

in the grid index. If it does not exist, we will reduce the

10 Amir HAROUN et al.

precision to 9 characters length (u09wh2x4k) and so on

until we find the corresponding cell. In our example, we

found that the 5 characters length index (u09wh) exists

and its corresponding department is Île-de-France (see

Figure 14).

Fig. 14 A 5 characters length Geohash of the GPS co-
ordintes (48.870321, 2.305931).

5 Experimental Evaluation

To evaluate the effectiveness of the studied approaches,

we have implemented them within an instance of the

stream processing engine IBM Streams v3.2.1 de-

ployed on a test node consisting of 64 vCPU with a

frequency of 2.4 Ghz and 40 GB of RAM. For our tests

on the temperature use case, we re-injected stored CVs

data in order to have a real coordinates distribution.

We used the map of France available at the Open-

StreetMap [2] as Keyhole Markup Language (KML) [8]

files. This map contains 96 metropolitan departments,

represented as polygons with a mean complexity of 480

vertices per polygon. To check if a polygon contains a

query point, we used the Point In Polygon (PIP) func-

tion isContained() [15] implemented in the geospa-

tial toolkit 1.1.1. This function takes two geometric

objects (polygon, line, point) as an input and returns

whether an object contains the other. In our case, it

takes a polygon and a point and returns whether the

polygon contains the point or not.

To measure the performance of each of the stud-

ied approaches, we constructed the following scenarios:

each CV is sending one frame per second. The number

of CVs is gradually increased (i.e., increasing the data

rate) and we measured the corresponding processing

time of the stream platform. The number of concur-

rent CV that the method can handle is defined by the

number of processed event within one second (because

a vehicle send generally one frame per second). In order

to meet the real time requirement, the whole processing

time has to remain under one second, otherwise conges-

tion in the stream chain occurs.

5.1 Exhaustive Approach

As expected, the Exhaustive approach presents the poor

performance among all the studied approaches. In fact,

as highlighted in Figure 15, the rate of concurrent CVs

has not exceeded 21 CVs, where the processing time re-

mains under 1 second. Beyond, the real-time constraint

is no more ensured. This clearly shows the poor perfor-

mance of this approach and motivate the need for more

effective approaches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30

Ti
m

e
[s

]

Number of queries

Fig. 15 Exhaustive search

5.2 Two Steps Approach

Within this approach, we have chosen the bounding box

as an approximation for the filtering phase. The lat-

ter is known to be rough and inaccurate but profits

from simplicity among other approximation methods

[5]. to have the better ratio simplicity/quality among

the other approximations. To evaluate the effectiveness

of the filtering operation, we applied bounding box on

the set of the French polygons and counted the num-

ber of candidates after the filtering operation. We recall

that the number of polygons in input is 96, the results

are showed in Table 3.

Table 3 Filtering quality of bounding box

of candidates 0 1 2 3 4 5

% 1.3 40.9 45.9 11.2 0.6 0.0

Data Fusion in Automotive Applications 11

As showed in Table 3, the filtering part using the

bounding box shown its efficiency. In the worst case,

we get a set of 4 candidates out of 96 initial polygons.

In 40.9% of cases, the filtering outputs 1 candidate. In

45.9% of cases the filtering outputs 2 candidates, etc.

The PIP component is then composed of two operators:

filtering and refinement, connected in pipeline fashion

as shown in Figure 16. We recall that the overall pro-

cessing time of this component is determined by the

slower operator.

Filter

Approximate
Refine

Polygons

Query Point

Online computation

Fig. 16 The two steps streaming application

In Figure 17 we plot the performance of these two

operators with regard to the rate of CVs (i.e., number

of processed events). Even we remark a noticeable in-

crease in the performance in comparison to the exhaus-

tive approach, it remains however under the expected

performance for automotive applications. In fact, the

number of concurrent CVs per second does not exceed

600, which very far from the expected millions of CVs.

Even the platform can support replicated components

(i.e., increasing the number of this component and per-

forming parallel processing associated with load balanc-

ing techniques), we considered, from practical point of

view, that this approach is still mis-performing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600

Ti
m

e
[s

]

Number of queries

Filtering
Refinement

Fig. 17 The two-steps method

5.3 Decomposition Approach

We tested the two variants of this approach: the one

using a balanced Quadtree and the other using an un-

balanced Quadtree. The results are plotted in Figure

18.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 100 200 300 400 500 600 700 800

Ti
m

e
[s

]

Number of queries

Balanced Quadtree
Unbalanced Quadtree

Fig. 18 Decomposition method

As expected, the unbalanced version improves over

the balanced one within our target temperature appli-

cation. We have to note one surprising result: the per-

formance of the balanced version was poor compared

to the two steps method. In fact, the number of sup-

ported concurrent CVs has no more exceeded 500. The

reason is due to the fact that the depth of the index-

ing structure was important in order to cope with the

complexity of the considered polygons within our tar-

get application. This increases automatically the ”ex-

ploration” time within PIP function.

On the other hand, the performance of the unbal-

anced version is better than the previous approach (i.e.,

Two Steps Approach). However the improvement is not

noticeable: from 600 to 750 concurrent CVs. Here again,

the performance is still under what is expected within

automotive applications.

5.4 GeoHash

Geohash

Indexation
Matching

Polygons

Query Point

Online computation

Fig. 19 The streaming application of GeoHash

12 Amir HAROUN et al.

In the GeoHash implementation, there are three main

operations (see Figure 19).

– Indexation: A custom operator that creates the grid

and maps the polygons into it.

– Geohash: Generates the GeoHash from the longi-

tude, latitude coordinates of the query point.

– Matching: Matches the generated GeoHash with the

corresponding polygon by verifying if the query point’s

GeoHash exist in the hash table.

To evaluate the effectiveness of this method, we mea-

sured the online operations (i.e. geohash and matching

operations). These two operations are interconnected

in pipeline mode and hence the overall time is the time

of the slowest operation. To measure the performance

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12

Ti
m

e
[s

]

Geohash length

Fig. 20 Geohash computation for 1 million coordinates

of the first operation (i.e. Geohash computation), we

variate the length of GeoHash and evaluate the impact

by measuring the time to compute the GeoHash of 1

million coordinates, the results are plotted in Figure

20. As the Figure shows, GeoHash computation is de-

pendent of the GeoHash length. Indeed, more precise is

the GeoHash, higher the computation time. However, it

stays acceptable, it takes 904 ms to generate a 7 char-

acters length Geohash for 1 million coordinates. For au-

tomotive applications, a 7 characters length GeoHash

is precise enough to determine the department (refer to

Table 2).

We tested the two variants of the grid structure (i.e.

uniform and non uniform grid) and we measured the

time of matching the GeoHash with its polygon’s cell,

the results are plotted in Figure 21. We note that using

the uniform grid, the key length does not affect the per-

formance, a 1 character length key or a 12 characters

length key will take the same time (about 232 ms for 1

million queries). However, it takes 5.62 s using the non

uniform grid, this can be justified by the fact that we

does not know beforehand the length of the containing

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

Ti
m

e
[s

]

Geohash length

Uniform grid
Non uniform grid

Fig. 21 Matching operation for 1 million coordinates

cell’s index and hence we have to variate the length of

the GeoHash.

6 Conclusion

Within this paper, we described in depth the problem

of data fusion for automotive applications. We illustrate

the problem of data fusion through a real use case of

environment monitoring (i.e., temperature monitoring).

In order to speed-up the process of data fusion, several

approaches have been explored. Each of the proposed

methods has been implemented and validated using the

stream computing engine (i.e. IBM Streams). However,

the first methods have not been efficient # which re-

sulted in congestions within the stream computing plat-

form. The last method based on GeoHash indexation,

due to its simplicity, optimized drastically the query

time compared to the other methods (i.e., exhaustive,

two Steps, and decomposition using Quadtree). For fu-

ture work, we will be implementing and evaluating the

GeoHash approach within other services, more precisely

in Car-to-Car over the cloud architectures [19]. In these

services, we are interested to send information (e.g.,

alerts, advertising, etc) to vehicles based on its geo-

location.

References

1. Météo france. URL http://www.meteofrance.com

2. Openstreetmap. URL http://export.

openstreetmap.fr/contours-administratifs/

3. Apache: Hadoop. URL https://hadoop.apache.

org/. Version 2.6.3

4. Berchtold, S., Keim, D.A., Kriegel, H.P.: The x-

tree: An index structure for high-dimensional data.

In: Proceedings of the 22th International Confer-

ence on Very Large Data Bases, VLDB ’96, pp. 28–

Data Fusion in Automotive Applications 13

39. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA (1996)

5. Brinkhoff, T., Kriegel, H.P., Schneider, R.: Com-

parison of approximations of complex objects used

for approximation-based query processing in spatial

database systems. In: Data Engineering, 1993. Pro-

ceedings. Ninth International Conference on, pp.

40–49 (1993)

6. Finkel, R.A., Bentley, J.L.: Quad trees a data struc-

ture for retrieval on composite keys. Acta Informat-

ica 4(1), 1–9

7. Fournier, A., Montuno, D.Y.: Triangulating simple

polygons and equivalent problems. ACM Trans.

Graph. 3(2), 153–174 (1984)

8. GOOGLE: Keyhole markup language. URL

https://developers.google.com/kml/

9. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploit-

ing coarse-grained task, data, and pipeline paral-

lelism in stream programs. SIGARCH Comput.

Archit. News 34(5), 151–162 (2006)

10. Guttman, A.: R-trees: A dynamic index structure

for spatial searching. SIGMOD Rec. 14(2), 47–57

(1984)

11. Haines, E.: Graphics gems iv. chap. Point in Poly-

gon Strategies, pp. 24–46. Academic Press Profes-

sional, Inc., San Diego, CA, USA (1994)

12. Hill, M.D.: Scalable Shared Memory Multipro-

cessors, chap. What is Scalability?, pp. 89–96.

Springer US, Boston, MA (1992)

13. Hirzel, M., Soulé, R., Schneider, S., Gedik, B.,

Grimm, R.: A catalog of stream processing opti-

mizations. ACM Comput. Surv. 46(4), 46:1–46:34

(2014)

14. IBM: Ibm streams: Capture and analyze data

in motion. URL http://www-03.ibm.com/

software/products/en/ibm-streams

15. IBM: iscontained. URL http://www-01.ibm.com/

support/knowledgecenter/SSCRJU_3.2.1/

16. Isaacson, C.: Understanding Big Data Scalability:

Big Data Scalability Series, 1st edn. Prentice Hall

(2014)

17. Kirkpatrick, D.G.: Optimal search in planar subdi-

visions. SIAM J. Comput. 12(1), 28–35 (1983)

18. Labrinidis, A., Jagadish, H.: Challenges and oppor-

tunities with big data. Proceedings of the VLDB

Endowment 5(12), 2032–2033 (2012)

19. Lee, E., Lee, E.K., Gerla, M., Oh, S.Y.: Vehicular

cloud networking: architecture and design princi-

ples. IEEE Communications Magazine 52(2), 148–

155 (2014). DOI 10.1109/MCOM.2014.6736756

20. Lipton, R.J., Dobkin, D.P.: Complexity measures

and hierarchies for the evaluation of integers and

polynomials. Theor. Comput. Sci. 3(3), 349–357

(1976)

21. Niemeyer, G.: Geohash. URL http://geohash.

org/

22. Orenstein, J.A.: Redundancy in spatial databases.

SIGMOD Rec. 18(2), 295–305 (1989)

23. O’Rourke, J.: Finding minimal enclosing boxes. In-

ternational Journal of Computer & Information

Sciences 14(3), 183–199

24. Preparata, F.P., Hong, S.J.: Convex hulls of finite

sets of points in two and three dimensions. Com-

mun. ACM 20(2), 87–93 (1977)

25. Preparata, F.P., Shamos, M.I.: Computational Ge-

ometry - An Introduction. Texts and Monographs

in Computer Science. Springer (1985)

26. Rosenfeld, A.: A converse to the jordan curve the-

orem for digital curves. Information and Control

29(3), 292 – 293 (1975)

27. Sahr, K., White, D., Kimerling, A.J.: Geodesic dis-

crete global grid systems. Cartography and Geo-

graphic Information Science 30(2), 121–134 (2003)

28. Samet, H., Rosenfeld, A., Shaffer, C.A., Web-

ber, R.E.: A geographic information system using

quadtrees. Pattern Recognition 17(6), 647 – 656

(1984)

29. Seidel, R.: A simple and fast incremental random-

ized algorithm for computing trapezoidal decom-

positions and for triangulating polygons. Comput.

Geom. 1, 51–64 (1991)

30. Shahrivari, S.: Beyond batch processing: To-

wards real-time and streaming big data. CoRR

abs/1403.3375 (2014)

