
A Big Data Architecture for Automotive Applications:
PSA Group Deployment Experience

Amir HAROUN
RDD,

PSA Group
Bessoncourt, France

Email: amir.haroun@mpsa.com

Ahmed MOSTEFAOUI
FEMTO-ST Institute/CNRS

Bourgognes-Franche-Comte University
Montbéliard, France

Email: ahmed.mostefaoui@univ-fcomte.fr

François DESSABLES
DDCE,

PSA Group
Bessoncourt, France

Email: francois.dessables@mpsa.com

Abstract—Vehicles have become moving sensor platforms
collecting huge volumes of data from their various embedded
sensors. This data has a great value for automotive manufac-
turers and vehicles owners. Indeed, connected vehicles data can
be used in a large broad of automotive services ranging from
safety services to well-being services (e.g. fatigue detection).
However, vehicle fleets send big volumes of data that traditional
computing and storage approaches are not able to manage
efficiently. In this paper, we present the experience of the
PSA Group1 on leveraging big data in automotive context. We
describe in depth the big data architecture deployed within the
PSA Group and the underlaying technologies/products used in
each component.

Keywords-Big Data; Reference Architecture; Connected Ve-
hicles;

I. INTRODUCTION

Recent years have witnessed a great advance in connected
mobile devices including connected vehicles. Connected Ve-
hicles (CVs) are able to remotely connect and communicate
with their surroundings. This connectivity is not limited to
other vehicles (Vehicle-To-Vehicle communication (V2V)),
CVs can also communicate with an infrastructure (Vehicle-
To-Infrastructure (V2I) and Infrastructure-To-Vehicle (I2V))
or with other devices (V2X) such as mobile phones. CVs
send a large range of data collected from the various sensors
deployed on its components. Today, PSA Group vehicles
are sending more than 170 information (e.g., the Vehicle
Identification Number (VIN), Rounds Per Minutes (RPM),
GPS coordinates, etc). This wide range of data can be of a
great value to automotive manufacturers and vehicles own-
ers. Indeed, leveraging CV’s data can improve the driver’s
safety, vehicle services and the mobility experience.

However, CV fleets send huge volumes of data2 that are
difficult to handle using traditional approaches [?]. Process-
ing and analyzing this huge volumes of data is considered
as a big data challenge. Big data is a term used to describe
huge data sets that are difficult to handle efficiently using

1PSA Group is the second-largest automobile manufacturer in Europe
with about 3 million sold vehicles in 2015.

2By 2020, the estimated number of PSA Group’s connected cars is about
5 millions.

traditional processing and storage approaches due to their
complexity (refer to Section II for detailed description).

The automotive ecosystem is based on sharing data to
obtain remote services. In addition to the valuable benefit for
automotive manufacturers such as predictive and preventive
analysis, CVs data can be used in large range of customer
services such as [?] safety, mobility management, vehicle
management, entertainment, autonomous driving, etc. All
the generated data, which can be of an enormous volume,
is usually send to the infrastructure in order to be processed
and stored for future analysis.

All these intrinsic data characteristics have motivated the
design and the development of novel frameworks that are
able to process, store and exchange data with clients in-
cluding third party applications, fleet managers and partners
as shown in Figure 1. We note an additional important
issue that has to be taken into account when managing
vehicles data is the driver’s privacy protection by enabling
and setting security and privacy policies to access and share
this sensitive data.

Hence, the expected framework has to consider the fol-
lowing requirements:

• Scalability: The proposed architecture must be highly
scalable and maintain a good performance to deal with
the increasing number of connected vehicles.

• Robustness: The proposed architecture must be robust
and fault tolerant, if any thing happens in any level,
service recovery must be immediate, fully transparent,
and without any data loss.

• Real-time processing: Must be able to support data
processing in both online and batch mode to cover all
the services that require real-time processing or histori-
cal offline processing. The online processing processes
fresh data as it arrives from vehicles in real-time or near
real-time. The off-line or batch processing is dedicated
to compute historical data with high latency.

• Data sharing: To exploit CV’s data full potential,
commercial partnerships should be considered for de-
ployment. Vehicle owners must be able to grant access
and share their data to partners or third party applica-



Figure 1. PSA Group services

tions and control what information can be accessed for
what partner.

Although many initiatives have been conducted by re-
searchers on leveraging CVs data [?], [?], to the best of
our knowledge there is no big data architecture design for
automotive applications that meets all the requirements.
The idea of this paper came from the fact that this is
a recent domain and there is feedback or guideline for
automotive manufacturers on the topic. The contribution of
this paper is to try standardizing an architecture design by
providing PSA Group’s feedback on leveraging CVs data.
To this end, architecture in automotive context, and general
purpose big data architectures are reviewed. Subsequently, a
detailed description of the PSA Group’s architecture and its
underlaying technologies/products is done.

The rest of the paper is as follows: Section II provides an
overview of big data technologies, Section III presents the
related work, a detailed description of our architecture and
its core components can be found in Section IV. Section V
presents two automotive services deployed on PSA Group’s
platform. Finally, we conclude this paper and highlight the
future work in Section VI.

II. BIG DATA TECHNOLOGIES OVERVIEW

According to Gratner [?] ”Big data is high-volume, high-
velocity and/or high-variety information assets that demand
cost-effective, innovative forms of information processing
that enable enhanced insight, decision making, and process

automation”. Big Data is referred to large and complex
datasets that requires new processing techniques due to their
characteristics as well known as 3V (i.e. volume, velocity,
and variety). However, to define more precisely the Big Data
scope, two more ’Vs’ are added:

• Volume: Stands for the growing size of datasets. In fact,
90% of the data is generated in the two past years.
This issue makes the traditional processing and storage
technologies obsolete in the face of this huge amount
of data.

• Velocity: The problem of velocity is that data is gener-
ated at a high frequency that makes the processing and
storage solution slower than the generation rate.

• Variety: Data is collected from a variety of heteroge-
neous sources with different formats. It can be struc-
tured, semi-structured, or non-structured (sound, image,
video, etc).

• Veracity: Addresses the trustworthiness of data. Data
can be uncertain, incomplete, or inconsistent.

• Value: The value is manifested through the different
usages that can be made (e.g. predictive analysis, CRM,
etc).

Big data challenges include: capture, storage, analysis, shar-
ing, and visualization.

To overcome these Big Data characteristics, new tech-
nologies have emerged. We categorize them in 3 domains:
NoSQL, storage, and processing.

A. NoSQL

The term NoSQL was first used by Carlo Strozzi in
1998 [?] and defined as a derivative of the relational
database system. According to C. Strozzi, NoSQL uses
shell-level tools and stores data in regular UNIX ASCII files.
The late NoSQL defines a class of Database Management
Systems (DBMS) designed for Big Data. There is no
precise definition of NoSQL, however NoSQL databases
have three common characteristics: high scalability, data
replication, and schema-less data model. We explain these
three features bellow.

• Scalability: is achieved by distributing data over clus-
ters of machines to deal with the increasing size of
data.

• Replication: data is replicated on the different machines
of a cluster in order to achieve redundancy.

• Schema-less: Unlike traditional RDBMS that requires
a predefined table schema, in NoSQL databases there
is no schema.

To handle the different characteristics of big data, there are
four families of NoSQL databases [?]: Key-Value, Column-
Oriented, Document-Oriented, and Graph databases.



B. Storage

The most compelling DFS in big data is the Hadoop
implementation of the Google File System namely Hadoop
Distributed File System (HDFS). HDFS is a distributed file
system inspired from the Google File System (GFS) that
runs on commodity hardware. HDFS has a master/slave
architecture, an HDFS cluster consists of one NameNode
(master node that manages the cluster and stores the files
meta-data) and multiple DataNodes (slaves nodes that store
data blocks). A file is split into blocks then these blocks are
spread on the different DataNodes for storage. Although its
scalability and high availability features, HDFS has some
industrial limits.

• HDFS is not POSIX-compliant. In order to use the
data stored within HDFS, you must use the HDFS shell
or Hadoop APIs, this makes the daily operations very
difficult:

– HDFS does not support the current working direc-
tory and hence the full path must be specified at
each operation.

– To compare two files, you have to copy them from
HDFS to local then use the UNIX diff command:
diff <(hdfs dfs -cat /path/to/file1) <(hdfs dfs

-cat /path/to/file2)

• HDFS is designed for large files rather than small files.
• Data stored on HDFS is immutable (read-only). To

modify it, it is necessary to move the file out of HDFS,
modify it and then move it back into HDFS.

• The NameNode machine is a single point of failure
(SPOF) for an HDFS cluster. If the NameNode machine
fails, the service will be lost and manual intervention
is necessary [?].

General Parallel File System (GPFS) [?] is a fully POSIX,
kernel level Distributed File System (DFS). It has no single
point of failure, it overcomes the HDFS NameNode failure
by distributing both data and meta-data across the disks of
cluster also called Network Shared Disks (NSDs). GPFS
maintain the configuration information in a dedicated node
called GPFS cluster configuration server, the failure of the
cluster configuration server results in the failure of GPFS
administration commands.

C. Parallel processing

The late big data high-level processing frameworks de-
mocratized the parallel processing by providing a high level
abstraction of resources of the cluster. Based on latency
requirements, two types of processing can be distinguished:
high latency processing and low latency processing.

1) Batch processing: Batch processing is the general
form of processing. It’s designed for complex treatments
on historical data such as analytics. It is generally more
concerned with throughput than latency of individual com-
ponents of the computation.

Map Reduce [?] is one of the most adopted frameworks
in the field of batch processing, it’s composed of two
separate but dependent set of tasks that a MapReduce job
will perform (refer to Figure 2). The first tasks are the
mappers, they split the data into chunks and process them in
parallel to generate key-value pairs (tuples). The second set
of tasks are reducers, they take the output of the map tasks
as input and combine this pairs to get a smaller set of tuples.
Whereas traditional parallelism approaches bring data to the
computation, MapReduce does completely the opposite by
bringing computation to the data ”Moving computation is
cheaper than moving data” [?].
MapReduce is an efficient solution for one-pass computation
but when it comes to multi-pass computation (i.e., executing
multiple Map Reduce jobs in sequence), Map Reduce is
inefficient due to the high latency of disk operations (i.e.
read and write).

Figure 2. A MapReduce Job

While MapReduce is not designed for multi-pass com-
putation (e.g., iterative machine learning), Spark is defined
as streaming’s batch processing (even though Spark has a
streaming library). Spark claims to be 100x faster than Map
Reduce in memory and 10x faster on disk [?]. Moreover,
Spark offers flexibility of development’s languages: Scala,
Java, Python, R.
Spark implements Resilient Distributed Dataset (RDD) [?],
to provide a distributed memory abstraction. RDD represents
an immutable, partitioned collection of elements that can be
operated on in parallel. Data can be loaded also as Data
Frames (DF), they have a similar conception to a table
in relational databases. Unlike RDD, DF provides a rich
information about the stored data, Spark uses this extra-
information to improve performance.

2) Stream processing: In contrast to batch processing,
stream computing is a new programming paradigm designed
for distributed and parallel processing of unbounded data
streams (not to confuse with real-time processing that re-
quires a response within a certain period of time).
To understand better the stream processing, we describe
some of its main characteristics:



• Each and every data item is processed as it arrives (i.e.
online).

• Events are time-based, every record is typically times-
tamped on creation.

• Operations are done in a data flow design.
• Every operation is done on one data element (or a small

window of recent data).
• An operation computes something relatively simple.
• Each computation needs to complete in (near) real-time

to avoid congestions.
The hard constraint of stream computing is that all the

operators must have a processing rate bellow (or at least
equal to) the input rate to guarantee that the input data will
be processed as it comes. For instace, if the data’s generation
frequency is 100.000 event/s and there is just one operator
that processed 90.000 event/s, this will cause congestion that
can go up to the source.

To achieve these results, stream computing exposes nat-
urally various levels of parallelism (i.e. pipeline, task, and
data parallelism). Streaming applications are programs that
process continuous data streams, they are composed of a set
of operators instances interconnected with stream connec-
tions. A streaming application can me modeled as a directed
graph where vertices are data streams (i.e. continuous series
of tuples, generated by an operator) and edges are operators
instances (see Figure 3). There are three types of operators:

• Source operators: sources of the input data streams.
They are connected to an external source of data so
they transform the external data into data streams to
send them via their output ports.

• Transformation operators: carrying out the computa-
tion, they transforms input data streams to output data
streams by applying some operations (e.g., aggregation,
correlation, etc).

• Sink operators: having only input ports, they are usually
placed at the end of the streaming application.

Figure 3. A streaming application

Streaming applications are executed as jobs on Stream
Runtime Environment (SRE) known also as instance. An
instance can be deployed on a single processing node or
multiple processing nodes, see Figure 4. A job is a running
application on a SRE, it executes itself a set Processing
Elements (PEs) executing each a set of operator instances.
Given that jobs can be executed on multiple hosts, PEs
within a job communicate using Inter-Process Communi-
cation (IPC). Samza [?] uses apache Kafka as IPC, IBM

Streams [?] uses TCP as a IPC, etc.

Host nHost 1 Host 2 ...

Instance 1Job1

PE1

PE2

PE3

PE4 PE5
...

Figure 4. A Stream runtime environment (instance)

III. RELATED WORK

One of the earliest papers that introduced the topic of
data sharing in telematics is presented in [?]. S. Duri et
al. have defined some telematic services and policies to
share and access CVs data. They have proposed a flexible
privacy policy engine that allows data owners to specify
access policies to their personal data, this minimize the
interaction with the driver. Their privacy model does not
only determines who can access data, but also for what
purpose, under what constraints, for how long the data can
be kept, and even to whom this data can be distributed.
This framework gives a good idea of the constraints and use
cases of sharing personal data it’s however not used in our
architecture due to its complexity and poor performance.

M. Johanson et al. presented the Big Automotive Data
framework (BAuD) [?]. It is a framework designed for
capture and online analysis of CV’s data that covers some
automotive needs (i.e. extensive CAN bus monitoring, re-
mote diagnostic read-out, vehicles state of health).
The core components of the BAuD framework are:

• A telematic service platform,
• A cloud-based back-end infrastructure,
• A Task Manager,
• A Data Broker,
• An analytics service architecture,
• A web-based user interface front-end.

Data is sent from the telematic service platform as Measure-
ment Data Format (MDF), then it’s stored on a distributed
file system. This data is then analyzed using the analytic
framework based on an analytics task definition. A web
based user interface is used to interact with the framework.
Although this framework meets well to some automotive
needs, it does cover all the automotive requirements such as
real-time analysis, data sharing, etc.

Another general purpose big data architecture is the
Lambda Architecture (LA) [?] proposed by N. Marz. LA is
a generic scalable big data architecture design that handles
massive volumes of real-time and historical data. It computes
similar analytics twice: the high-latency historical processing
and low-latency processing on recent data. Hence, LA is
composed of three main layers: speed layer, batch layer and



new
 data

batch view

batch view
master dataset

real-time view real-time view

query

query

batch layer

speed layer

serving layer

...

...

Figure 5. The Lambda Architecture [?]

serving layer (see Figure 5). The new data is dispatched
to the two processing layers (i.e. batch and speed layer).
The batch layer has two main functions: storing the master
data-set as immutable, append-only set of raw data and pre-
computing the batch views. The serving layer indexes the
data stored on the batch layer so it can be queried. The speed
layer compensates the high latency of the batch layer by
computing low latency speed view. Merging results from the
batch and the speed views allows answering any query. The
LA takes advantages from the precise historical processing
in the batch layer without losing the low latency information
provided by the speed layer. However, its very difficult to
keep the processing treatments perfectly synchronized on
two complex and different frameworks (i.e speed and batch)
[?], any modification in one layer must be reported in the
other layer otherwise it causes problems in merging the two
results. Indeed, speed and batch layers adopt completely
different approaches of processing: the batch layer processes
the data in rest and the speed layer processes the data in
motion.

IV. PSA GROUP’S BIG DATA ARCHITECTURE

In this section, we describe our big data reference ar-
chitecture for automotive application, its main components
and the technologies/products that can be used in each part.
Inspired from the LA, we propose an architecture based on
its three layers (i.e., speed, batch, and serving layer). We
have however separated the high latency applications in the
batch layer from those requiring low latency in the speed
layer, this removes the need of maintaining the speed layer
and the batch layer synchronized.

The first step to leverage CV’s data is to capture and
send this data, this is done using Telematic Service Units
(TSUs). The key role of TSUs is to capture data streams
from the vehicle and send them to the infrastructure via
wireless mobile data communication. TSUs are installed on
the vehicles and connected generally to the Controller Area
Network (CAN) [?] bus 3.

3The ISO 11898 standard specifies that the CAN physical layer allows
transmission rates up to 1 Mbit/s for use within road vehicles. See
http://www.iso.org/iso/catalogue detail.htm?csnumber=63648

PSA Group uses several types of TSUs (e.g. Autonomous
Telematic Boxes (ATB), approved aftermarket boxes, etc).
Each of these units has special applications, some units
are designed for extensive monitoring so they send a large
range of data at a very high frequency while other units
are designed for fleet management, etc. There are some
after-market TSUs that provide other features such as GPS
location for vehicles that are not equipped with this feature,
so they enhance the CV’s data with additional information.

In addition to the TSUs, we can use the V2X commu-
nication (using Bluetooth) to send the vehicle’s data to a
smart-phone then to the infrastructure. Data is sent in binary
coded format using the various communication protocols
(e.g.,HTTP, MQTT, AMQP, etc).

In order to simplify our architecture, we present the
components into functional layers.

• Device and service management layer.
• Frontend layer that receives the data and decode it,
• Message Queue (MQ) layer that provides a resilient

data feed for the rest of the components,
• Speed layer that processes the data in (near) real-time,
• Batch layer that stores and processes the data in batch

mode,
• Serving layer, to index and expose the data for query-

ing.

Figure 6. PSA Group’s reference architecture

A. Device and service management layer

We centralized all management functions (e.g., devices,
partners, services, etc) into a single component to act as
a reference information. This layer consists of a database
containing all information and web interfaces to interact with
this database. Vehicle owners, administrators, and partners
have access into their interface. This information is crucial
for automotive applications. In fact, the type of processing
and transformation applied on CVs data is based on this
reference information.

B. Frontend layer

Depending on the communication protocol used by TSUs,
data have to be ingested and decoded before it can be used,
this is done in the frontend layer.



For instance, TSUs using HTTP/HTTPS as communication
protocol, the frontend layer is an HTTP web server that
hosts web applications. The web applications receive the
HTTP incoming flow, decode it, and transform it into MQ
messages to finally transfer it to the MQ layer.

C. MQ layer

To provide a resilient data feed for processing layers
(speed layer and batch layer), we use a MQ layer. MQ
is a message-oriented middleware that acts as a producer-
consumer queue to provide an asynchronous and secured
communication. The sender and the receiver does not in-
teract directly, meanwhile messages are kept in memory or
stored on disc (for persistence) until the receiver retrieves
them. This ensures a resilient data feed that covers the
temporary unavailability of the sender or the receiver.

D. Speed layer

The speed layer is the most important component in the
architecture, it is responsible of the online processing, the
continuous data flows with hard constraints (i.e., real-time
or near real-time computing). In order to fulfill these con-
straints, we use the stream computing paradigm (described
in Section II). This layer is also responsible of preparing
the raw data for storage on the batch layer for further
analysis. Due to the fact that CV’s data is personnal, the
French control authority for the protection of personal data
(CNIL) imposes laws for the protection of this private data.In
fact, CV’s sensitive data (e.g., VIN, location, speed, etc)
can’t be stored as it arrives. Hence, data is anonymized,
filtered, aggregated, corresponding to customers preferences.
To do so, every customer has a contract in which all his
preferences are listed such as anonymization, partners that
can access to his data, the shared data, etc. This contract
is accessed via web and can be modified any time, these
modification must be taken into account in the speed layer.
For instance, the speed information cannot be shared as it
comes, and an aggregation on a group of vehicles or an
average on a window of time must be done before sharing
it. The stream computing’s functional architecture consists of
micro-services [?], where each micro-service is a streaming
application that has a particular function and communicates
with other micro-services (see Figure 7).
The main micro-services are:

• Acquisition: connected to the MQ layer and retrieves
fresh data as it arrives.

• Dispatcher: receives CVs data (from acquisitions) and
referential data (from the device and service manage-
ment layer), role preparation, anonymization, matching
with contracts, etc

• Services: micro-services that are provided to vehicle
owners and third-party partners.

• Storage: all the previous micro-services have access to
the storage micro-service, it is responsible of storing
data on the DFS.

Figure 7. The functional architecture of speed layer

E. Batch layer

The batch layer of our architecture has two main func-
tions: batch processing and storage). This layers does not
have however the hard real time processing constraints
of the speed layer, hence it adopts a completely different
framework. Typically, the batch layer can be implemented
using the open-source Hadoop framework [?]. Inspired from
the Google’s MapReduce [?] and Google File System [?],
Hadoop offers similar components (i.e. Hadoop MapReduce
and Hadoop Distributed File System (HDFS) for processing
and storage respectively).

Distributed File System: GPFS

GPFS Hadoop Connector

Hadoop FS APIs

MapReduce APIs

Big R

Processing

Storage

Figure 8. The batch layer

1) Storage: In the original LA, the storage component
is responsible of storing the master dataset as immutable,
append-only set of raw data. In automotive context, there
are however privacy constraints that prevent storing raw data.
Hence, data has to first pre-processed4 before be stored as
immutable, append only data. To store the huge volumes of

4Pre-processing is done in the speed layer and includes anonymization,
filtering, aggregation, etc.



data generated by CV fleets, a DFS must be used. The DFS is
responsible of managing large volumes of data effectively in
large clusters. It ensures scalability by its distributed nature
(i.e. it scales by adding more machines to the cluster), it
ensures also high availability through data stripping and
replication among the different nodes of the cluster.
To overcome the HDFS limitations, we used the DFS GPFS.
Since GPFS is a non Hadoop standard component, another
layer called GPFS Hadoop connector must be add on top of
GPFS (see Figure 8). It acts as an adaptor between Hadoop’s
other components and GPFS, so it allows Hadoop to access
data from a GPFS file system as if it is on HDFS.

2) Processing: While the speed layer processes the new
data as it arrives, this layer is responsible of processing
historical data with high-latency jobs. In our deployment
we used the Map Reduce as a distributed programming
model in combination with BigR. BigR uses the classic
R language to perform data analysis on big data without
writing complex Map Reduce jobs. For instance, the Eco-
driving service (refer to Section V) consists of a daily job
that generates a classification model from the historical data.

There are several enterprise distributions based on the
Hadoop framework (e.g. IBM BigInsights, MapR, Cloud-
era, HortonWorks, etc) that propose other features such
as administration tools, deployment facilities, etc. In our
framework, the batch layer is implemented using the IBM
BigInsights distribution of Hadoop.

F. Serving layer

To leverage CVs data, processed data from the batch layer
and the speed layer must be indexed and served to external
users. In this layer, we define access policies, who (Business-
To-Business (B2B), Business-To-Customer (B2C), etc) can
access to what resource (geographical data, environmental
data, etc). We used two different types of NoSQL databases
[?] to index the processed data, Apache HBase for a real-
time random read-write and BigSQL for a batch queries.
Apache HBase [?] is a distributed, versioned, column ori-
ented NoSQL database modeled after the Google’s BigTable
[?]. The HBase database is used for storing and querying the
(near) real-time views of the speed layer.
BigSQL [?] is a SQL engine to access data stored on
Hadoop. BigSQL provides a full ANSI SQL: this means
that data is queried via the standard SQL language regardless
of where it is stored on Hadoop (e.g. HDFS, HBase, etc).
It has the capability to use the MapReduce parallelism for
the big ad-hoc queries. A single query can execute multiple
MapReduce jobs.

We Exposed CVs data on the web using Application
Programming Interfaces (APIs) [?] as RESTful [?](i.e.,
systems conform to the constraints of REST) web services
on top of the NoSQL databases (refer to Figure 9). APIs
provide a controlled access to a specific set of data (referred
as resource). Each resource is identified by a unique Uniform

HBase

BigSQL

QueriesQueries

Get, Post, ... 

SQL

HBase 
API

Web Server

Figure 9. The Serving Layer

Resource Identifier (URI); e.g. Maintenance, Ecodriving,
Crash, Safety, Environment, etc.

In our deployment, third-party clients (e.g. mobile appli-
cations) can also access CVs data. To grant referenced third-
party clients access to personal CV data without exposing the
user’s credentials, we used the Open Authorization (OAuth)
protocol. OAuth provides a delegated access to a resource
on behalf of the resource owner, this is done by providing
access tokens to third-party clients with the approval of
the resource owner. The token allows third-party clients to
access protected resources on the resource server. A simple
example of the flow is presented in Figure 10, for the sake
of simplification the authentication and resource servers are
represented as a single component.

Resource owner

1. I want to use

2. Authenticate

5.Authorization 
code

3. Grant access?

Resource and 
authentication server

Mobile application

6. Token 
request

7. Token
4. Access granted

Figure 10. The Open Authentication

To manage APIs, there are dedicated frameworks called
API management tools. They provide a full life cycle gov-
ernance of APIs, from creation, publication, securing and
monitoring.



In our implementation, we used IBM API Connect 5 for API
management and Swagger specifications 6 for API creation.
An Open Source solution is WSO2 API Manager 7.

V. DEPLOYMENT EXAMPLES

In this section, we will describe two services in production
deployed on PSA Group’s platform.

A. Temperature

The temperature service [?] is requested by the French
National Meteorological Service [?] for their meteorological
previsions, it aims to provide a real time overview of
the whole country temperature. The objective is to get an
updated map of the country temperature, including regions
and departments, as precise as possible (see Figure 11).
Hence, each CV sends the captured exterior temperature,
tagged with its current location to the infrastructure. The
latter is then responsible of correlating the received data in
order to continuously updating the map.

Figure 11. The temperature service

B. Eco-coaching

This service analyses the driving style and correlates it
with the environment and other people’s drivings in order
give a note and advises to improve the driving. This service
is composed of two operations: a batch job that generates
a model based on the historical data and a streaming
application that uses the model (generated by the batch
job) to evaluate the driving style (refer to Figure 12). This
combination of a batch job and a streaming job grantees
an accurate evaluation thanks to the historical processing
and an online result with the streaming application. This
service does not only reduce the CO2 emissions and fuel

5http://www-03.ibm.com/software/products/en/api-connect
6http://swagger.io/
7http://wso2.com/api-management/

Figure 12. The eco-coaching service

consumption [?], it can also extend the life cycle of the
vehicle parts by having an optimized usage of the vehicle.

VI. CONCLUSION

This paper presents an overview of big data architecture
deployed within PSA Group for automotive applications.
This architecture has primarily been designed to respond
to specific automotive applications requirements. First, a
description of applications and challenges of leveraging CVs
data has been done. Then all parts and components are de-
scribed by highlighting the Subsequently, PSA Group’s big
data architecture is deeply reviewed by technologies/prod-
ucts chosen in each part. However, this architecture is uni-
directional, and for some needs such as vehicle management,
we want also to send informations to the vehicle itself.
Currently, we are working on a car to car architecture ovec
the cloud [?] using MQTT [?]. Typically, CVs will publish
their data and subscribe to topics, this will simplify the inter-
action between the infrastructure and the vehicles. Another
improvement would be use Apache Spark for processing and
analytics to improve the performance of batch processing.


