
Improving Blind Steganalysis in Spatial Domain
using a Criterion to Choose the Appropriate
Steganalyzer between CNN and SRM+EC

Jean-Francois Couchot∗, Raphaël Couturier†, Michel Salomon‡
FEMTO-ST Institute, UMR 6174 CNRS - Univ. Bourgogne Franche-Comté (UBFC), Belfort, France

DISC (department of computer science and complex systems) - AND team
Email: {∗jean-francois.couchot,†raphael.couturier,‡michel.salomon}@univ-fcomte.fr

Authors in alphabetical order

Abstract—Conventional state-of-the-art image steganalysis ap-
proaches usually consist of a classifier trained with features
provided by rich image models. As both features extraction and
classification steps are perfectly embodied in the deep learning
architecture called Convolutional Neural Network (CNN), dif-
ferent studies have tried to design a CNN-based steganalyzer.
The network designed by Xu et al. is the first competitive CNN
with the combination Spatial Rich Models (SRM) and Ensemble
Classifier (EC) providing detection performances of the same
order. In this work we propose a criterion to choose either
the CNN or the SRM+EC method for a given input image.
Our approach is studied with three different steganographic
spatial domain algorithms: S-UNIWARD, MiPOD, and HILL,
using the Tensorflow computing platform, and exhibits detection
capabilities better than each method alone. Furthermore, as
SRM+EC and the CNN are both only trained with a single
embedding algorithm, namely MiPOD, the proposed method can
be seen as an approach for blind steganalysis. In blind detection,
error rates are respectively of 16% for S-UNIWARD, 16% for
MiPOD, and 17% for HILL on the BOSSBase with a payload
of 0.4 bpp. For 0.1 bpp, the respective corresponding error rates
are of 39%, 38%, and 41%, and are always better than the ones
provided by SRM+EC.

I. INTRODUCTION

During this past decade many steganographic algorithms
have been proposed to hide a secret message inside a cover
image. Such embedding schemes can operate in the spatial
domain, like for example MiPOD [1], STABYLO [2], S-
UNIWARD [3], HILL [4], WOW [5], or HUGO [6] but also in
the frequency domain as J(PEG) counterpart of S-UNIWARD.
When designing such an algorithm the objective is to provide
an approach that changes the cover image as little as possible.
Indeed, the less the cover is modified, the less likely the
stego image containing the message is to be detected and
thus the more secure the steganographic scheme is. Obviously,
assessing the security of steganographic tools has given rise
to the dual challenge of detecting hidden information, also
called steganalysis. In the case of images, little information is
usually available to perform steganalysis, we only assume that
the image domain is known.

The wide majority of image steganalysis approaches are
two-step. The first stage exhibits useful information on image
content by computing a set of features and the second one

uses them to train a machine learning tool to distinguish
cover images from stego ones. For the first step, different
Rich Models (RM) have been proposed for the spatial domain
(SRM) [7] and the JPEG one [8], while for the second
step the most common choice is Ensemble Classifier (EC)
[9]. This combination RM+EC is used in many state-of-the-
art image steganalysis tools. As an illustration, in [7] stego
images obtained with the steganographic algorithm HUGO
have been detected with errors of 13% and 37%, respectively,
for embedding payloads of 0.4 and 0.1 bpp. These errors
were slightly reduced (12% and 36%) in [10] thanks to an
improved rich model, and a similar model has been applied
in the JPEG domain for stego images obtained with the J-
UNIWARD steganographic scheme.

Deep learning [11], [12] has led to breakthrough improve-
ments in various challenging tasks in computer vision, becom-
ing the state-of-the-art for many of them. A key reason for this
success is the current availability of powerful computing plat-
forms, and more particularly GPU-accelerated ones. Among
the different network architectures belonging to this family
of machine learning methods, Convolutional Neural Networks
(CNN) [13] are very efficient to solve image classification
problems. For example, they achieved the best results on the
MNIST problem that consists in the automatic recognition of
handwritten digits [14], or the CIFAR benchmark problems
[15]. As steganalysis is a similar problem, since the objective
is to classify an input image as either a cover or a stego one, the
design of a CNN-based steganalyzer has received increasing
attention for the past few years.

From an architecture point of view, a CNN is a feedforward
neural network composed of two parts matching exactly the
two steps used in conventional steganalysis. More precisely,
the first part, called the convolutional part, consists of one
or several layers trained to extract feature maps becoming
smaller with the layer depth. The second one is composed of
some fully-connected layers trained simultaneously to perform
the classification task. Hence, a CNN does not only learn
how to classify, but also how to automatically find a set
of features giving a better representation of the input image
thanks to 2D convolution kernels. A feature map is usually

produced by a three-step process: a combination of filtered
maps of the previous layer (or the input image for the first
layer), a nonlinear processing by a neuron, and finally a size
reduction through pooling. Therefore, in the convolutional part
the training aims at optimizing the kernel values and the
neurons biases. More details can be found for example in [13].

The remainder of this paper proceeds as follows. Section II
presents related works. We start by describing state-of-the-
art steganographic schemes in the spatial domain. This is
followed by a survey on previous works done on the use
of convolutional networks for image steganalysis. The next
section first recalls the CNN architecture designed by Xu et
al. [16]. After an experimental study, we focus on why it
sometimes fails to detect some stego images. Section IV is
devoted to our main proposal: a criterion to choose the best
suited method between the CNN and SRM+EC for a given
input image, whose relevance is experimentally assessed. The
paper ends with a section that summarizes the contributions
and outlines suggestions for future research.

II. RELATED WORKS

A. Steganography

To be self-sufficient, this article recalls the key ideas
of the three most secure steganographic tools, namely S-
UNIWARD [3], MiPOD [1], and HILL [4].

For each of these algorithms, a distortion function ρ asso-
ciates to each pixel the cost of modifying it. More formally,
for a given cover X , let ρ(X) be the matrix whose elements
represent the cost of increasing or decreasing by 1 the corre-
sponding pixels. By ranking pixels according to their value in
ρ(X), one can compute the set of pixels whose modification
induces the smallest detectability. For instance the distortion
function ρU of S-UNIWARD is defined by:

ρU (X) =

3∑
k=1

1

|X ?Kk|+ σ
? |Kk|x, (1)

where ? is a convolution mirror-padded product, Yx is the
result of a 180 degrees rotation of Y , Kk, 1 ≤ k ≤ 3 are
Daubechies-8 wavelet kernels in the three directions, and σ is a
stabilizing constant. It should be noticed that the multiplicative
inverse is element-wise applied. An element of ρU (X) is small
if and only if there are large variations of large cover wavelet
coefficients in the three directions.

In MiPOD, the distortion function ρM is obtained thanks to
a probabilistic approach. More precisely, let β be the matrix
defined as the probabilities to increase by 1 the image pixels.
The objective of such a scheme is then to find probabilities
which minimize a deflection coefficient, Σσ−4β2, where σ
is the residual variance matrix of image pixels. Notice that
the product is element-wise applied and the sum concerns
all the elements of the matrix. Thanks to a Wiener filter and
a Lagrangian method, β can be computed. Considering such
pixel probabilities, the distortion cost ρM is defined by:

ρM (X) = ln

(
1

β
− 2

)
. (2)

Again, the multiplicative inverse is applied element-wise.
Finally, the distortion function ρH of the HILL stegano-

graphic scheme is based on combinations of convolution
products. However, contrary to the distortion function ρU of
S-UNIWARD, this one combines a high-pass filter H1 and
two low-pass filters L1 and L2. More precisely, ρH is defined
by:

ρH(X) =
1

|X ?H1| ? L1
? L2, (3)

where

H1 =

 −1 2 −1
2 −4 2
−1 2 −1


and L1 (resp. L2) is a 3× 3 (resp. 5× 5) mean matrix.

In all aforementioned schemes, the distortion function re-
flects the underlying image model. Hence, the distortion
function ρ returns a large value in a easy-defined or smooth
area, whereas in a textured or “chaotic” area, i.e., with no
model, it returns a small value.

B. CNN-based steganalysis

The first attempt at designing a CNN-based steganalyzer for
image steganalysis is due to Tan et al. [17]. Their proposal,
a stacking of convolutional auto-encoders, yielded for HUGO
a detection error more than twice as bad as the one given by
SRM+EC: 31% compared to 14% for a payload of 0.4 bpp.
Despite a low detection efficiency, this work highlighted two
interesting points. First, deep learning, and more particularly
the convolutional neural network architecture, seems to be a
promising concept for image steganalysis. Second, a high-
pass filtering of the input image allows to greatly improve
the detection performance. This latter point is linked to the
kernels used to enhance cover pixel predictors in weighted
stego-image analysis [18] and the linear, and non-linear, high-
pass filters producing quantized image noise residuals used to
build a rich model of the noise component in [19].

The following study by Qian et al. [20], has dealt with
256× 256 input images, and has proposed a CNN consisting
of a convolutional part of 5 layers producing at the end
256 features, which are then processed by a fully-connected
part of two hidden layers and a final output one of two softmax
neurons. The preliminary high-pass filtering is done using a
5 × 5 kernel, called F0, similar to the 5 × 5 kernel predictor
obtained in [19]. As noticed by Fridrich and Kodovský in
[19], this kernel is inspired by a specific embedding algorithm,
namely HUGO, but it worked well for the other steganographic
algorithms they tested. The detection performance of this CNN
was still slightly lower than the state-of-the-art SRM+EC
conventional steganalyzer, but Pibre et al. [21] improved it
thanks to a CNN with a different shape. By reducing the
number of layers, but using larger ones resulting thus in more
feature maps, they were able to reduce the detection error
by more than 16% for S-UNIWARD at 0.4 bpp. They also
emphasized that the high-pass filtering with F0 was mandatory,
since they were not able to train a CNN without it.

In comparison with the work of Pibre et al., the CNN we
designed in [22] being shallow, was quite different and calling
into question some assumptions previously made. On the one
hand, we proposed a convolutional part of two layers: a first
layer reduced to a single 5 × 5 kernel trained to replace F0,
followed by a layer using large kernels (almost as large as the
image size). On the other hand, the resulting set of 256 features
(for an input image of 512×512 pixels) was so discriminating
that the fully-connected network doing the classification task
could be shortened to the two final softmax neurons. This
CNN is able to detect different steganographic algorithms,
working in spatial and frequency domains, almost without any
error for a payload of 0.4 bpp. Unfortunately, our work, as
well as the one of Pibre et al., suffers from a redhibitory
drawback: stego images were always obtained by using the
same embedding key. In fact, this not recommended “same
embedding key” scenario, since embedding several messages
with the same key weakens security, comes from a mistake:
the use of C++ embedding simulators from Binghamton DDE
Lab website. Consequently, when processing stego images
produced with different embedding keys, as expected, the
detection performance drops dramatically, far below the one
of the state-of-the-art SRM+EC approach. Let us notice that
the work by Qian et al., described in the previous paragraph,
might suffer from the same drawback.

More recently, the works [16] and [23] by Xu et al.
have shown that CNN-based steganalysis remains competitive
with conventional steganalysis. In [16] they first proposed
a structural design of CNNs for steganalysis that is neither
large, nor deep, and learns from noise residuals, since they
considered as input image the one issued from high-pass
filtering using the kernel F0. The architecture of such convo-
lutional networks, which is the basis of our work presented
thereafter, will be described in detail in the next section.
The experiments they completed have considered two spatial
content-adaptive steganographic algorithms: S-UNIWARD and
HILL. They have shown that the performance gained by
an ensemble of five CNNs is comparable to the one of
SRM+EC. In fact, they trained 5 CNNs because the dataset
was split into 5 test subsets, and thus an input image class was
predicted by averaging the output probabilities of the CNNs.
As an illustration, for S-UNIWARD they observed detection
accuracies of 57.33% and 80.24% for payloads of 0.1 and
0.4 bpp, whereas the ones of SRM+EC were, respectively, of
59.25% and 79.53%. However, the authors have not applied
their approach to JPEG domain steganographic algorithms and
they pointed out that in the spatial domain more advanced
conventional steganalysis methods, such as [24] or [25], still
outperformed their approach.

In the following work [23], Xu et al. decided to study the
merging of CNNs and ensemble classifier. The background
idea is to train a second level classifier using information pro-
vided by CNNs. Furthermore, they also sligthly modified the
architecture of the original CNN designed in [16], which is de-
noted by ‘SIZE 128’. This new ‘SIZE 256’ CNN architecture,
the number of final features given by the convolutional part,

has one more layer and changed pooling sizes in the previous
ones. In addition to the ensemble method described in the
above paragraph, called PROB, where EC will use the output
of 16 CNNs instead of five, they defined two further ensemble
methods. The first one, called PROB POOL, is supposed to
lower the loss of information induced by the pooling operation.
Indeed, when the stride value is larger than one, some sampling
operations are dropped. For a stride value p > 1, applying
the pooling on a block of p × p pixels gives a single value,
whereas for a stride of 1 the same block would have been
replaced by p × p values. The idea is thus to also consider
independently each remaining p × p − 1 possible sampling,
which means as they used pooling operations with stride of 2
that there are 4 possible samplings in a convolutional layer.
Consequently, a CNN with a single convolution layer would be
applied 4 times on the same input image, giving a prediction
for each possible sampling. For two convolutional layers, the
number of sampling combinations is 42 = 16, and so on. In the
case of the ‘SIZE 256’ CNN architecture, since 16 trainings
are done for each, the final prediction for an image is obtained
by averaging 45 × 16 = 1024 × 16 = 16384 predictions.
The second new ensemble method, called FEA, is simpler:
it uses an architecture merging the convolutional part and the
ensemble classifier. Let us notice that the larger number of both
CNNs and features results in lower bias and variance. From
the experiments done with these 6 ensemble scenarios (two
size and three methods), Xu et al. concluded that it might be
interesting to replace the fully-connected part of the CNN by
EC for image steganalysis. The FEA method was the best one
for ‘SIZE 256’ with a detection error of 18.44%, but, compared
to the 18.97% of PROB without EC, the improvement seems
minor.

Another newly published contribution [26] by Qian et al.
shows that a CNN trained to detect a spatial steganographic
algorithm with a high payload embedding allows to improve
the detection performance for lower payloads. For WOW al-
gorithm, the pre-training with stegos obtained using a payload
of 0.4 bpp led to lower detection errors in comparison with
SRM+EC for 0.1, 0.2, and 0.3 bpp payloads.

Finally, we can notice the latest work [27] by Zeng et
al. dealing with JPEG domain steganalysis. A domain which
has received considerably less attention when designing CNN-
steganalyzers. In this paper, the authors state that compared to
rich models, a CNN cannot efficiently learn to extract noise
residuals, being unable to find similar or better kernels than the
ones used in rich models. Therefore they propose to start by
manually applying to the input image the first two phases of
DCTR [8], namely a convolution followed by Quantization &
Truncation (Q&T). They use 25 residual images, where each
is obtained by using a 5 × 5 DCT basis pattern, and three
Q&T combinations. Then, for each group of residual maps
for a given Q&T combination, a subnetwork corresponding
to a simplified version of the convolutional part proposed
by Xu et al. in [16] is trained to produce a feature vector
of 512 components. To obtain the final prediction, the three
vectors are concatenated and given as input to a three-layer

fully connected network, which is trained together with the
three subnets. Based on the experiments performed on more
or less large databases of images issued from ImageNet, the
authors claim that their proposal outperforms all other existing
steganalysis approaches (no matter whether they are deep
learning or conventional ones).

III. CONVOLUTIONAL NEURAL NETWORKS
FOR IMAGE STEGANALYSIS

This section begins with the description of the CNN archi-
tecture proposed in [16], which is then experimentally studied
in order to analyze what causes it to fail or not succeed to
detect whether an image embeds a secret message.

A. The CNN architecture proposed by Xu et al.

Like almost all the previous research works on CNNs for
image steganalysis in the spatial domain, and as can be seen
in Figure 1(a), Xu et al. proposed an architecture that takes
as input a high-pass filtered (HPF) version of the input image.
Therefore, they used the kernel denoted by F0 in [19], [20],
[21] in order to highlight noise residuals. This filtering is
obviously of great importance, since it provides the input
information to the CNN, and thus must be suited to the
classification task. The relevance of this kernel comes from
its design for rich models. Moreover in their work Pibre et
al. suggest that it is mandatory for CNN-based steganalysis.
Overall, the CNN consists of 5 convolutional layers and a
fully-connected part reduced to two softmax neurons, each
of them giving the probability for an image to belong to
one of the two classes (cover or stego). A classification part
reduced to output neurons means that a linear classification
is able to distinguish covers from stegos using the features
produced by the final convolutional layer. We came to a similar
classification part in our previous work [22], even if in our case
the problem was simpler due to the use of a single embedding
key. In [20], [21] they had several hidden layers, more or less
large (from 128 to 1000 neurons).

Starting with a HPF image of 512× 512 pixels, the convo-
lutional part results in a vector of 128 features, as shown by
the detailed view of Figure 1(b). Each of the four first layers
successively halves the image size by generating feature maps
using an average pooling, while the fifth one replaces each
feature map (32×32 pixels) by a single value obtained through
a global average pooling. From the convolution kernel point
of view, Layers 1 and 2 learn 5×5 kernels, and the remaining
layers 1× 1 ones, the idea being to avoid an overfitting of the
CNN to image content and/or stego noise. Layer 1 has also a
specific function applied onto the outcome of the convolution,
namely the absolute function (ABS), supposed to ensure that
the model takes care of the symmetry in noise residuals
like in rich models [19]. Batch normalization (BN) [28] is
performed in every convolutional layer, because it improves
the training (faster and lower prediction error) by allowing a
stable distribution of non-linearity inputs. A mixing of Tanh
and ReLU non-linear activation offered the best performance.

B. Detection performance evaluation of the CNN

To study and assess the performance of Xu et al. proposal,
which was originally evaluated using a modified version of
Caffe toolbox, the corresponding CNN has been implemented
with the open source software library TensorFlow [29]. The
implementation is available on download from GitHub1. We
had previously used in [22] the computing platform Torch [30],
but TensorFlow seems to make better use of the GPUs. All
the experiments are performed on a NVIDIA Tesla Titan X
GPU, using as cover database the well-known BOSSBase [31]
which consists of 10,000 grayscale images having a size of
512 × 512 pixels. Six stego images are associated to each
cover image. They are obtained by embedding a message
with S-UNIWARD, MiPOD, and HILL algorithms, thanks to
the Matlab scripts downloadable from Binghamton DDE Lab
website, considering two different payload values: 0.1 and
0.4 bpp. During a training execution a CNN is trained on
a set of 5,000 cover-stego pairs and its detection performance
assessed on a the remaining 5,000 pairs. Both training and
testing sets are built by randomly picking pairs of images,
using a different seed for each execution.

Notice that even if we implemented exactly a CNN accord-
ing to the proposal, there is a major difference in comparison
with the original work in the way the final prediction is
obtained. In [16] Xu et al. generated from a training set
five different non-overlapping 4,000/1,000 splits and each of
them is used to train separately a CNN occurrence. The
purpose of the smaller subset of 1,000 pairs is to serve as
a validation set to check when to stop the training process.
The final prediction for a given test image is then obtained by
averaging the five output probabilities. In [23], in addition to a
slightly deeper CNN version, the authors investigated different
ensemble methods with a larger number of CNNs.

Let us explain how the final prediction is computed
with a set of T trained CNNs which are denoted as
CNN1,CNN2, . . . ,CNNT . First of all, each CNNi, 1 ≤ i ≤ T ,
memorizes its L last versions provided by the L last training
epochs obtained all along the program execution. These in-
ternal CNNs are denoted as CNN1

i ,CNN2
i , . . .CNNL

i . Each of
these internal CNNs gives an answer, which is 0 if the tested
image I is declared as cover and 1 otherwise. Finally, the
average of all the values is computed, and a discrete answer
is returned by each CNN depending on whether this average
is greater or equal to 0.5 or not. This is formalized for each i,
1 ≤ i ≤ T , by:

is stego(I,CNNi) ={
0 if

(
1
L

∑L
j=1 is stego(I,CNNj

i)
)
< 0.5,

1 otherwise.
(4)

The aggregation of these results must take into consideration
the fact that an image I we want to classify is used in training

1https://github.com/rcouturier/steganalysis with CNN and SRM.git

(a)

Input image

512x512

softmax

Neurons

5x5

1 kernel

F0 Fully connected

layer

1x(512x512)

8x(256x256)

High−pass filtering with

2 3 4 51

Convolutional layers

16x(128x128)

32x(64x64)
128x(1x1)

64x(32x32)

HPF image

512x512

(b)

128 kern.

1x1x64

5x5x1

8 kernels size 5x5

stride 2 5x5x8

16 kernels size 5x5

stride 2

Average

pooling

Average

pooling

32x32

global

size 5x5

stride 2

Average

pooling64 kern.

1x1x32size 5x5

stride 2

Average

pooling

16x(128x128)

64x(32x32)32x(64x64)

8x(256x256)

Average

pooling
BN Tanh

ReLUBNReLUBNReLUBN
32 kern.

1x1x16

Layer 1 Layer 2

Layer 3 Layer 4 Layer 5

1x(512x512)

TanhBNABS

128x(1x1)

HPF image

512x512

Fig. 1. CNN proposed by Xu et al.: (a) overall architecture and (b) detailed view. of the convolutional part.

step in some CNNi or not. Let us consider the set

TI = {i|1 ≤ i ≤ T and I is used in testing step of CNNi}

and TI be its cardinality. The number TI counts the number
of times I is used as a testing image by some CNNs. The final
answer for image I is then the discrete answer of the average
of all the CNNs that have used I as testing image. This is
formalized by:

is stego CNN(I) ={
0 if

(
1
TI

∑
i∈TI is stego(I,CNNi)

)
< 0.5,

1 otherwise.
(5)

Indeed, as both training and testing sets are built by randomly
picking images, the number of times an image I is in a test
set varies (being at most equal to T).

Furthermore, due to the huge computation cost we have only
trained CNNs using MiPOD dataset and tested them directly
on the S-UNIWARD and HILL datasets. Hence, we can also
assess whether a CNN trained with an embedding scheme is
still competitive for the other ones. We have chosen MiPOD
because it is supposed to have the best security and thus should
be the most difficult to detect, even if MiPOD and HILL are
very close according to [1].

The key training parameters for reproducible experiments
are discussed thereafter. First, a CNN is trained for a maximum

number of training epochs Emax set to 1, 000 and 300, respec-
tively, for embedding payloads of 0.1 and 0.4 bpp, without
any overfitting control with a validation set. To compute
the prediction given by a network CNNi for an image I ,
L = 20 occurrences are used. These values were chosen
after some preliminary runs. Second, the network parameters
are optimized by applying a mini-batch stochastic gradient
descent, a typical choice in deep learning. Batch normalization
is in particular known to make the parameters updates more
stable. In our experiments, we used a mini-batch size of
64 samples, but without ensuring that both cover and stego of
a given pair are in the same batch like Xu et al.. The gradient
descent also uses parameters values which are almost similar
to the original ones: a learning rate initialized to 0.001, but
with no weight decay, and a momentum set to 0.9.

The obtained average detection errors are reported in Ta-
ble I. The first line labelled with ”Caffe [16]” recalls values
given in [16]. The second line gives the average error rates
from T = 12 independent training runs of the TensorFlow
implementation for embedding payload of 0.4 bits per pixel.
The third gives the average error rates for 200 runs with
classical SRM+EC. In this latter context maxSRMd2 [32]
has been used as a feature set. Finally, the last line gives
the results obtained when the training stage is executed
with images modified by MiPOD, whereas the testing stage
is executed with images modified with another embedding
scheme. The classifier is SRM+EC and the feature set is

(a) Cover 1388.pgm and differences with stego. (b) Cover 8873.pgm and differences with stego.

(c) Cover 1911.pgm and differences with stego. (d) Cover 3394.pgm and differences with stego.
Fig. 2. Examples of differences images between cover and corresponding stego when embedding is performed using MiPOD with a payload of 0.4 bpp.

maxSRMd2. Remember that an objective of this study is to
develop a completely blind steganalysis approach. It is not
difficult to understand that the detection error is larger in this
context, since the steganographic scheme used to learn is not
necessarily the one used in the testing phase.

TABLE I
AVERAGE DETECTION ERROR AS A FUNCTION OF CLASSIFIER (ORIGINAL
CAFFE BY XU et al., OUR TENSORFLOW TRAINED ONLY WITH MIPOD

AT 0.1 / 0.4 BPP, AND SRM+EC) AND OF PAYLOAD FOR DIFFERENT
STEGANOGRAPHIC ALGORITHMS.

S-UNIWARD MiPOD HILL
0.1 0.4 0.1 0.4 0.1 0.4

Caffe [16] 42.67 19.76 X X 41.56 20.76
TensorFlow X 20.52 X 19.36 X 20.25
SRM + EC 39.84 18.06 41.18 21.42 42.96 23.31

SRM + EC (blind) 40.57 20.85 41.18 21.42 43.35 23.99

From the values given in this table we can draw sev-
eral conclusions. First, despite the differences highlighted
previously, the TensorFlow implementation produces nearly
the same performance for S-UNIWARD and HILL than the
original Caffe one. Second, we observe that the steganalysis
scheme with maxSRMd2 features results in the best perfor-
mances for S-UNIWARD in case of non-blind steganalysis.
Third, for MiPOD the CNN approach is still competitive with
SRM+EC. Fourth, the CNNs trained by only making use of
the MiPOD dataset can provide a similar detection accuracy
for S-UNIWARD and HILL. Obviously, the lowest detection
error is gained for the embedding scheme which has provided
the training data. Fifth, CNNs outperform SRM+EC in blind
steganalysis context, which means that CNNs allow a better

generalization to different steganographic algorithms. We are
then left to study for which images the CNN proposal by Xu
et al. fails.

C. Characterizing the mis-CNN-classified images

Let us start with some illustrative examples of images
describing the typical behavior of the CNN in the case of
MiPOD with payload 0.4 bpp. Figure 2 presents four case
examples where for each we have the cover image and the
corresponding differences between it and the stego one. As
can be seen from the images showing the differences, we
can distinguish two groups of images according to the pixels
modified by the embedding process. On the one hand, it
clearly appears that for both images shown on the upper
line, 1388.pgm and 8873.pgm, MiPOD modifies mainly pixels
corresponding to edges. On the other hand, for 1911.pgm and
3394.pgm, the changes resulting from embedding are scattered
without obviously highlighting any underlying image edge.
Consequently, since a CNN mainly learns to detect underlying
edges, one can easily guess that the CNN-steganalyzer is able
to detect both cover and stego for 1388.pgm and 8873.pgm,
whereas it fails for the two other images.

We are then left to provide a metric on images which
reflects the difficulty to perform the CNN classification task.
This metric should in particular allow to cluster the images
according to the observations made on Figure 2.

As previously mentioned, the distortion value of a pixel
is large if this one belongs to an easy-modeled area, i.e.,
when very little data are required to reproduce this area. The
Shanonn entropy H(I) = −

∑
i pi log2(pi) is one of the

Fig. 3. Distribution of the BossBase images with respect to entropy.

functions that returns the number of bits which are necessary to
recompute the image, where pi is the normalized histogram of
pixel values of image I . On the BossBase, the entropy ranges
in [0.7, 8] and its distribution is represented in Figure 3.

We must now study whether the image entropy is a relevant
metric. Therefore, for each image I of the BossBase we have
computed its entropy H(I) and performed 200 classification
procedures with SRM+EC (thanks to maxSRMd2) for the em-
bedding algorithm MiPOD at payload 0.4 bpp. The probability
eSRM+EC(I) represents the average testing error for image I
when it is used in the testing set. We have also partitioned the
entropy interval [0.7, 8] into 25 equidistant classes. Figure 4(a)
presents the resulting scatter plot of (H(I), eSRM+EC(I)) pairs
and the curve linking the mean error of each class, whereas the
bar displays its corresponding standard deviation. Similarly,
Figure 4(b) shows the scatter plot, curve, and error bars,
for the CNN. In that case, eCNN(I) is the average testing
error obtained after training 12 independent networks. This
low number explains why, in comparison with the SRM+EC
steganalysis context, the points are less vertically spread. A
first conclusion of these experiments is that the detection error
of SRM+EC seems to be quite independent of the entropy,
whereas the one issued from CNN seems to increase as the
entropy does. However most of the images have an entropy
in [6, 8] (as shown in Figure 3) and it is hard to extract from
Figures 4(a) and 4(b) a specific behavior inside this interval.

Since the aforementioned steganographic schemes have
their own distortion function ρ, we have then studied whether
another metric can be deduced from it. In the same con-
text as the one above, on the one hand, Figures 5(a), Fig-
ures 5(c), and Figures 5(e) display the scatter plots, the curve,
and error bars for (ρU (I), eSRM+EC(I)), (ρH(I), eSRM+EC(I)),
(ρM (I), eSRM+EC(I)) respectively. On the other hand, Fig-
ures 5(b), Figures 5(d), and Figures 5(f) display the scat-
ter plots, the curve, and error bars for (ρU (I), eCNN(I)),
(ρH(I), eCNN(I)), (ρM (I), eCNN(I)) respectively.

(a) Detection error w.r.t image entropy for SRM+EC.

(b) Detection error w.r.t image entropy for the CNN by Xu et al.

Fig. 4. Relation between testing errors and image entropy for embedding
with MiPOD 0.4 bpp.

The scalar ρU (I) is the mean of all the matrices ρU (X)
presented in equation (1), where U means S-UNIWARD. The
scalar ρM (I) has a similar definition for MiPOD. Finally
ρH(I) is not directly the mean of all the matrices ρH(X)
of HILL. Due to its definition (Eq. (3)), some extremely
large values may indeed result from an extremely small
denominator. This would lead to a meaningless mean value.
To avoid this behavior, extremely large values are excluded
from the mean computation.

By focusing on Figures 5(a), 5(c), and 5(e), it can be
first deduced that the detection error of SRM+EC is quite
independent of the value of ρ. Secondly, considering Fig-
ures 5(b) and 5(d), we can deduce that the CNN testing
error continuously decreases with respect to ρU (I) and with
ρH(I). This behavior is not observed in Figure 5(f). The good
correlation between the prediction accuracy of the CNN for
a given image I and the value of ρ(I) can be observed in
the two former cases but not in the last one. The functions
ρU and ρH are thus an indicator of the CNN accuracy. For

(a) Detection error w.r.t image ρU value for SRM+EC. (b) Detection error w.r.t image ρU value for the CNN by Xu et al.

(c) Detection error w.r.t image ρH value for SRM+EC. (d) Detection error w.r.t image ρH value for the CNN by Xu et al.

(e) Detection error w.r.t image ρM value for SRM+EC. (f) Detection error w.r.t image ρM value for the CNN by Xu et al.

Fig. 5. Relation between testing errors and distortion function mean.

Fig. 6. Average error of CNN and SRM+EC for MiPOD 0.4 bpp w.r.t ρU .

instance, in Figure 2, for the misclassified images we obtain
ρU (1911) = 2.1 and ρU (3394) = 3.06; on the other hand
for the well detected images we get ρU (1388) = 7.05 and
ρU (8874) = 7.39. Thus ρU and ρH enable to cluster the
images in two groups which are in accordance with those
noticed at the beginning of the section.

IV. TAKING THE BEST FROM CNN AND SRM+EC
PREDICTIONS TO IMPROVE DETECTION PERFORMANCE

A. Choosing the best method for a given input image

We have shown in the previous section that the lower the
distortion function mean ρU of an input image is, the more
difficult it will be for the CNN to correctly detect whether the
image is a cover or a stego. Conversely, SRM+EC gives rather
regular detection errors, without showing too much sensitivity
to ρU , being robust against the image structure. A look at
Figures 5(a) and 5(b) shows that we can take advantage from
these different behaviors to improve the detection performance
on the BossBase.

In fact, SRM+EC and the CNN can be combined due to
complementary purposes. This appears clearly by superimpos-
ing the curves of both figures. As can be seen in Figure 6,
from the largest ρU value up to the point where both curves
intersect the CNN is the most competitive, whereas after,
towards the lowest ρU value, it is SRM+EC which is the most
accurate. Formally, this can be expressed as follows for an
input image I , once ρU (I) is computed:{

if ρU (I) < ρ∩U use SRM+EC prediction,
otherwise use CNN prediction

(6)

where ρ∩U is the value corresponding to the intersection.
For Figure 6, which deals with the embedding algorithm
MiPOD using a payload of 0.4 bpp, we have obtained for
the intersection ρ∩U = 6.6. Let us emphasize that the same
approach can be applied to both S-UNIWARD and HILL
steganographic algorithms, leading to different values for ρ∩U .

Fig. 7. Distribution of the BossBase images with respect to ρU

Overall, the feature set generated by a spatial rich model is
so large and diverse that it is able to give predictions yielding
almost the same level of accuracy, regardless of the pixels
modified by the embedding process. Moreover, the computing
of the features is precisely defined. Conversely, the CNN
learns to extract a set of features to fulfill its classification
task according to the data given during the training step.
Therefore, it will be well-suited to process images having the
same kind of embedding than the main trend in the training
set. In other words, images having low ρU values are so
underrepresented in the BossBase that they have a limited
influence during the training process. This raises the question
of whether the BossBase might be extended to include a larger
number of similar images and thus flatten the distribution
shown in Figure 7. However, one might wonder if this would
effectively improve the CNN detection performance or rather
lead to a smoothing of the errors. Furthermore, we have seen
that the embedding can be done in quite a different way
according to ρU that the training of a single CNN giving
relevant predictions might be far more difficult.

B. Detection performance evaluation of the proposal

Tables II and III present in their last column the av-
erage detection error obtained using our approach for the
three steganographic algorithms and payloads of 0.4 bpp and
0.1 bpp, respectively. In each table the first column gives the
performance of SRM+EC computed on images I such that
ρU < ρ∩U , this last value is shown in the second column, while
the third column shows the results gained from CNN for the
remaining images. We can observe that for each embedding
algorithm the proposal improves the detection performance.
For an embedding payload of 0.4 bpp, S-UNIWARD has the
lowest error rate with 14.82%, whereas for MiPOD and HILL
we have values slightly below 17%. The lines labelled as non
blind correspond to situations where SRM+EC was trained
with the same algorithm than the one used to perform the
embedding process. Conversely, the lines denoted as blind

mean that SRM+EC was trained with MiPOD and then used
to detect S-UNIWARD or HILL. This also explains why for
both blind and non blind situations the CNN gives the same
error when both cases use the same value for ρ∩U . For the
lower payload of 0.1 bpp, using T = 9 independent runs, the
improvements provided by our method are also clearly visible,
whatever the context of the detection, whether it is blind or not.

These results are also somewhat surprising, since one should
remember that they are obtained by training only CNNs using
images embedding hidden messages with MiPOD. Further-
more, this means that even if each steganographic algorithm
has its own distortion function to define which pixels it
will modify to embed a message, there is certainly a high
redundancy among the modifications made by S-UNIWARD,
HILL, and MiPOD on the same cover image.

TABLE II
AVERAGE DETECTION ERROR ACCORDING TO ρ∩U FOR DIFFERENT

STEGANOGRAPHIC ALGORITHMS WITH EMBEDDING PAYLOAD OF 0.4 BPP.

SRM+EC ρ∩U CNN CNN + SRM+EC
S-UNIWARD 20.01 7.1 8.25 14.82non blind
S-UNIWARD 22.05 6.9 9.5 15.87blind

MiPOD 23.89 6.6 9.26 15.65non blind
HILL 24.51 6.6 9.78 16.22non blind
HILL 25.41 6.6 9.78 16.61blind

TABLE III
AVERAGE DETECTION ERROR ACCORDING TO ρ∩U FOR DIFFERENT

STEGANOGRAPHIC ALGORITHMS WITH EMBEDDING PAYLOAD OF 0.1 BPP.

SRM+EC ρ∩U CNN CNN + SRM+EC
S-UNIWARD 40.08 9.2 23.36 38.06non blind
S-UNIWARD 41 9.2 23.36 38.88blind

MiPOD 42.13 8 25.84 37.82non blind
HILL 43.48 8.9 21.88 40.24non blind
HILL 44.30 8.3 27.72 40.64blind

A closer look on the performances of each steganalyzer
on the subset of images it has to classify according to ρ∩U
explains why our proposal is relevant. Indeed, in comparison
with the performances shown in Table I we can remark that the
SRM+EC error rate is slightly worse than on the whole dataset.
Thus, we take advantage from the low error rate of the CNN
at a price of a slightly worse misclassification by SRM+EC.
Another point to notice is the evolution in opposite directions
of ρ∩U and payload values, which means that, as expected,
the scatterness of the modified pixels increases and thus is
more difficult to detect with the current CNN architecture.
Nevertheless, our approach allows us to build a competitive
blind steganalyzer, which gives lower detection errors than
CNN based only or SRM+EC based only approaches.

V. CONCLUSION AND FUTURE WORK

Over the past two years the design of deep learning based
approaches for image steganalysis in spatial domain, using
more particularly convolutional neural networks, has received
an increasing attention due to their impressive successes on
many classification tasks. Earlier works were not able to reach
the detection performance of the conventional steganalysis
approaches using rich models. Nonetheless they showed that
such deep neural networks are relevant for the design of
steganalyzers. Recently, Xu et al. have introduced a CNN
architecture, which, to the best of our knowledge, is the most
competitive one compared to rich models with ensemble clas-
sifier. In this paper, rather than designing a further new CNN
architecture, we have investigated when this CNN architecture
fails in order to propose a method allowing to improve the
detection performance on the BossBase for different spatial
steganography algorithms.

Thanks to a TensorFlow implementation of the CNN, giving
nearly the same detection performance than the original Caffe
one for S-UNIWARD and HILL, we have found a metric
strongly correlated with the CNN classification performance.
This metric consists in the mean of all the elements in the
cost matrix provided by the distortion function ρ of the
considered steganographic algorithm for a given input image.
We have shown that the lower this latter value ρU for S-
UNIWARD is, the more the CNN fails to correctly detect if
the image is a cover or a stego. Fortunately, the CNN and
SRM+EC detection errors evolve in different ways according
to the metric function, where rich models offer lower error
rates when it decreases. By computing the intersection of the
corresponding curves we are then able to define a reliable
criterion allowing to decide, for an input image, when to use
the CNN or SRM+EC to obtain the most accurate predic-
tion. The experiments done considering the steganographic
algorithms S-UNIWARD, HILL, and MiPOD, have validated
the proposed criterion, since it has always led to improved
detection performances, regardless of the embedding payload
value. Let us also emphasize another contribution of this work
which is to have designed a steganalyzer insensitive to the
embedding process (blind detection). Even if the considered
CNN is trained with a specific steganographic algorithm,
MiPOD in our case, other embedding methods can be detected
with a similar accuracy. We also observed that the SRM+EC
is quite efficient in blind situations.

Our future work will focus on two aspects. First, it might
be interesting to subdivide the BossBase in disjoint subsets
according to the average distortion function value and to train
several CNNs on them. However, to be able to train a CNN
for low ρU values, the database should be expanded in order
to include more images corresponding to this case of study.
Second, CNNs dealing with spatial domain steganalysis work
on a single high-pass filtered version of the input image, but
since this filtering mainly highlights edges it does not give a
relevant information to the CNN when the embedding is not
edge-based. Therefore, we plan to replace the single filter by a

filter bank, an approach which in the case of the JPEG domain
steganalysis seems to be successful according to [27].

VI. ACKNOWLEDGMENTS

This article is partially funded by the Labex ACTION
program (ANR-11-LABX-01-01 contract) and the Franche-
Comté regional council. We would like to thank NVIDIA for
hardware donation under CUDA Research Center 2014 and
the Mésocentre de calcul de Franche-Comté for the use of the
GPUs.

REFERENCES

[1] V. Sedighi, R. Cogranne, and J. Fridrich, “Content-adaptive steganog-
raphy by minimizing statistical detectability,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 2, pp. 221–234, Feb
2016.

[2] J. Couchot, R. Couturier, and C. Guyeux, “STABYLO: steganography
with adaptive, bbs, and binary embedding at low cost,” Annales des
Télécommunications, vol. 70, no. 9-10, pp. 441–449, 2015. [Online].
Available: http://dx.doi.org/10.1007/s12243-015-0466-7

[3] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion function
for steganography in an arbitrary domain,” EURASIP Journal on
Information Security, vol. 2014, no. 1, 2014. [Online]. Available:
http://dx.doi.org/10.1186/1687-417X-2014-1

[4] B. Li, M. Wang, J. Huang, and X. Li, “A new cost function for spatial
image steganography,” in 2014 IEEE International Conference on Image
Processing (ICIP). IEEE, 2014, pp. 4206–4210.

[5] V. Holub and J. J. Fridrich, “Designing steganographic distortion using
directional filters.” in WIFS. IEEE, 2012, pp. 234–239.

[6] T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image models
to perform highly undetectable steganography,” in Information Hiding
- 12th International Conference, IH 2010, Calgary, AB, Canada,
June 28-30, 2010, Revised Selected Papers, ser. Lecture Notes in
Computer Science, R. Böhme, P. W. L. Fong, and R. Safavi-Naini,
Eds., vol. 6387. Springer, 2010, pp. 161–177. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-16435-4

[7] J. Fridrich and J. Kodovský, “Multivariate gaussian model for designing
additive distortion for steganography,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, May
2013, pp. 2949–2953.

[8] V. Holub and J. J. Fridrich, “Low-complexity features for JPEG
steganalysis using undecimated DCT,” IEEE Trans. Information
Forensics and Security, vol. 10, no. 2, pp. 219–228, 2015. [Online].
Available: http://dx.doi.org/10.1109/TIFS.2014.2364918

[9] J. Kodovský, J. J. Fridrich, and V. Holub, “Ensemble classifiers
for steganalysis of digital media,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 2, pp. 432–444, 2012. [Online].
Available: http://dx.doi.org/10.1109/TIFS.2011.2175919

[10] V. Holub and J. J. Fridrich, “Random projections of residuals for
digital image steganalysis,” IEEE Trans. Information Forensics and
Security, vol. 8, no. 12, pp. 1996–2006, 2013. [Online]. Available:
http://dx.doi.org/10.1109/TIFS.2013.2286682

[11] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[14] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13), 2013, pp.
1058–1066.

[15] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” ArXiv
e-prints, Nov. 2015.

[16] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural design of convolutional
neural networks for steganalysis,” IEEE Signal Processing Letters,
vol. 23, no. 5, pp. 708–712, 2016.

[17] S. Tan and B. Li, “Stacked convolutional auto-encoders for steganalysis
of digital images,” in Asia-Pacific Signal and Information Processing
Association, 2014 Annual Summit and Conference (APSIPA). IEEE,
2014, pp. 1–4.

[18] A. D. Ker and R. Böhme, “Revisiting weighted stego-image steganaly-
sis,” in Electronic Imaging 2008. International Society for Optics and
Photonics, 2008, pp. 681 905–681 905.

[19] J. J. Fridrich and J. Kodovský, “Rich models for steganalysis of
digital images,” IEEE Trans. Information Forensics and Security,
vol. 7, no. 3, pp. 868–882, 2012. [Online]. Available: http:
//dx.doi.org/10.1109/TIFS.2012.2190402

[20] Y. Qian, J. Dong, W. Wang, and T. Tan, “Deep learning for steganalysis
via convolutional neural networks,” in IS&T/SPIE Electronic Imaging.
International Society for Optics and Photonics, 2015, pp. 94 090J–
94 090J.

[21] L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont, “Deep learning is a
good steganalysis tool when embedding key is reused for different im-
ages, even if there is a cover source-mismatch,” in Media Watermarking,
Security, and Forensics, EI: Electronic Imaging, 2016.

[22] J.-F. Couchot, R. Couturier, C. Guyeux, and M. Salomon, “Steganalysis
via a Convolutional Neural Network using Large Convolution Filters for
Embedding Process with Same Stego Key,” ArXiv e-prints, May 2016.

[23] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Ensemble of cnns for steganalysis:
An empirical study,” in ACM Workshop on Information Hiding and
Multimedia Security, 2016.

[24] W. Tang, H. Li, W. Luo, and J. Huang, “Adaptive steganalysis based on
embedding probabilities of pixels,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 4, pp. 734–745, 2016.

[25] T. Denemark, J. Fridrich, and P. Comesaña-Alfaro, “Improving selection-
channel-aware steganalysis features,” Electronic Imaging, vol. 2016,
no. 8, pp. 1–8, 2016.

[26] Y. Qian, J. Dong, W. Wang, and T. Tan, “Learning and transferring repre-
sentations for image steganalysis using convolutional neural network,”
in 2016 IEEE International Conference on Image Processing (ICIP),
Sept 2016, pp. 2752–2756.

[27] J. Zeng, S. Tan, B. Li, and J. Huang, “Large-scale JPEG steganalysis
using hybrid deep-learning framework,” ArXiv e-prints, Nov. 2016.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems,” ArXiv e-
prints, Mar. 2016.

[30] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, no.
EPFL-CONF-192376, 2011.

[31] P. Bas, T. Filler, and T. Pevný, ”Break Our Steganographic System”:
The Ins and Outs of Organizing BOSS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 59–70.

[32] T. Denemark, V. Sedighi, V. Holub, R. Cogranne, and J. J.
Fridrich, “Selection-channel-aware rich model for steganalysis of
digital images,” in 2014 IEEE International Workshop on Information
Forensics and Security, WIFS 2014, Atlanta, GA, USA, December
3-5, 2014. IEEE, 2014, pp. 48–53. [Online]. Available: http:
//dx.doi.org/10.1109/WIFS.2014.7084302

