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Abstract—Efficient broadcast in wireless sensor networks can
exploit backbone structures, in relation to connected dominating
sets in graphs. This paper proposes the construction of a back-
bone for broadcast in heterogeneous wireless sensor networks
having minimum energy consumption and a delay bounded
by a predefined constant hmax. For the purpose of the paper,
we assume the sensors composing the network have an energy
belonging to [Wmin;Wmax] such that Wmax = c ∗ Wmin where
c is a predefined constant. To address this problem we propose
two different approaches. For small instances, we propose an
integer linear program that computes an optimal solution for the
problem. Since solving an integer linear program is NP-hard, ob-
taining solutions for large network instances may be impossible in
a reasonable time, thus we propose an approximation algorithm
that computes a solution for the problem in polynomial time and
whose approximation ratio is c ∗ hmax.

I. INTRODUCTION

A wireless sensor network is a set of sensors deployed in
a more or less random manner forming a multi-hop network.
The objective of such networks is to collect information from
the environment, such as temperature, and to route them to a
particular node named sink. A sensor is an embedded system
characterized by an energy constraint due to the fact that they
are battery powered. Often the sensors are placed in hostile
areas difficult to access for a human, therefore saving energy
is a primary problem. Wireless sensor networks are used
in many fields such as aeronautics, automotive and medical
surveillance.

Broadcast in wireless sensor networks is a fundamental
problem that is linked to many applications. As soon as the
base station needs to transmit an information to the whole
network, broadcast is necessary.

The basic strategy called flooding, which consists in trans-
mitting every received messages, consumes a large amount
of energy, a critical resource for a wireless sensor network,
directly influencing the network lifetime. Furthermore, flood-
ing consumes bandwidth, increasing collisions and duplicating
messages. The idea for broadcast protocols is to determine a
subset of nodes, called backbone, that will transmit the mes-
sages, in order to reach all network nodes. A backbone brings
many advantages: it removes unnecessary transmission links,

reduces the communication overhead, reduces the redundancy
and, by decreasing the energy consumption, increases network
lifetime.

The backbone construction depends on the issue to be
solved. In our case, the objective is to optimize two metrics
at the same time: energy and delay. Energy consumption is
strictly related to network lifetime whereas delay is associated
with the network performance. Bounding the delay improves
power consumption and reliability because fewer hops are
needed to reach the targets. This also results in the reduction
of transmission failures because the longer the path between
the source and the destination, the higher the probability of
failure.

In this paper, we propose an Integer Linear Program (ILP)
to construct a minimum energy broadcast backbone with
bounded delay. Since solving an ILP is NP-hard, we propose
an approximation algorithm in order to solve the problem in
polynomial time.

This paper is organized as follows: Section II presents the
related works, Section III gives the definition of the problem
treated in this paper, Section IV provides the definition of
an Integer Linear Program giving an optimal solution for
an energy efficient backbone with bounded delay, Section V
presents an approximation algorithm solving the same prob-
lem, Section VI gives a theoretical study in order to prove the
approximation ratio of the proposed algorithm and section VII
summarizes the conclusions of this work.

II. RELATED WORK

The problem of determining an optimal backbone can be
translated in the graph theory as determining an optimal
Connected Dominating Set (CDS). The construction of a CDS
has been widely studied with different approaches: linear pro-
gramming, genetic algorithms or greedy algorithms. Different
algorithmic models were used to represent a sensor network:
for instance unit disk graphs, disk graphs or more restrictive
graph classes like chordal graphs (definition will be given in
the next section). According to the parameters to be optimized,
several variations of CDS were proposed [1].



We will focus on works that aim at optimizing energy and
delay.

A. Backbone and bounded diameter

A number of works studying the construction of connected
dominating sets with bounded diameter are available. Their
goal is to minimize the diameter of the graph, i.e. the trans-
mission delay in the context of wireless sensor networks.

Buchanan et al [2] introduce the notion of s-club to bound
the distance traveled by the information and consequently
reduce the latency. An s-club is a connected dominating set
whose induced subgraph has a diameter at most s. In their
paper, the authors prove that finding an s-club is a NP-
complete problem.

Schaudt [3] proves that for all k ≥ 1, the problem of
deciding if a graph has a dominating set whose induced
subgraph has a diameter at most k is NP-complete. Therefore
the author decided to concentrate his efforts on a restricted
class of graphs admitting a set with these particular features:
chordal graphs. A graph is said to be chordal if each of its four
or more cycle vertices has a chord, i.e. an edge connecting two
non-adjacent vertices of the cycle. Using that specific class of
graphs, he showed the problem can be solved in O(mn) time
in a graph with n vertices and m edges.

Li et al [4] deal with the construction of a bounded
diameter connected dominating set whose size is minimized.
The authors propose an algorithm with constant approximation
factor in the case of unit disk graphs and a time complexity
of O(n2) in a graph with n vertices.

Kim et al [5] build connected dominating sets in unit disk
graphs considering the following metrics: size, diameter and
average hop distance. The authors propose two centralized
algorithms and a distributed version for the second one. The
main idea of those algorithms is to build a tree using the depth
first search while seeking a maximal independent set. Finally,
they connect the retained nodes in the maximal independent
set.

Akbari Torkestani [6] underlines the fact that when the
degree constraint decreases, the backbone delay increases.
As a result, he treats the problem of the construction of
a connected dominating set with minimum weight and an
optimal degree in order to obtain an energy efficient backbone
whose delay is bounded. For this purpose, the author develops
a heuristic based on learning automata.

Krumme et al [7] present a work dealing with the construc-
tion of multicast trees with minimum eccentricity. The authors
propose a polynomial time algorithm that exploits geometry
properties to construct a multicast tree that allows connecting
a set of sources nodes to a set of sink nodes while minimizing
the hop distance between this two groups.

B. Backbone and energy

There are some works treating the construction of a back-
bone for routing like [8] and [9]. In both contributions, the
network is represented by an undirected graph where all the
nodes have the same transmission range. The authors try

to construct a load-balanced backbone by minimizing the
maximum degree of the dominating nodes.

The paper [10] proposes a self-stabilizing algorithm al-
lowing to build a connected dominating set with minimal
energy for the routing. To achieve this objective, the authors
propose a solution based on topology control. Their algorithm
reduces the transmission range of the nodes while ensuring
the connectivity of the network which allows them to reduce
the energy consumption.

Li et al [11] treat the construction of a broadcast tree that
minimizes the total energy cost. They prove that this problem
is NP-hard and propose two heuristics and one approximation
algorithm. The authors model the network by a directed graph
where each node has its own transmission power.

C. Comparison with our work

The above-mentioned works deal with the construction of a
backbone whose energy is minimized and/or delay is limited.
Most of them treat either one or the other metric and often
build a backbone for routing. Only [6] focuses on both the
energetic cost and delay.

Our goal is to optimize both energy consumption and delay
in the case of a broadcast. We choose to model a heterogeneous
wireless sensor network as a directed disk graph as this
model is more generic than unit disk graphs. In particular,
this model allows taking into account the asymmetrical links.
In addition, to solve the problem, we will use a different
method: linear programming for small program instances and
an approximation algorithm in the other cases.

To build an efficient energy backbone whose delay is
limited, we will use the same metric employed in [7]: the
eccentricity. The difference with what we propose is that we
concentrate our efforts in a more general case using directed
graphs and we seek to optimize energy at the same time.

III. PROBLEM DEFINITION

A heterogeneous wireless sensor network is represented by
a graph G = (V,E), where V = {0, . . . , n− 1} is the set of
n vertices that corresponds to wireless nodes and E ⊂ V ∗ V
is the set of edges that represents the wireless connections
between nodes, i.e. a directed edge (i, j) models the fact
that j is in the communication range of i. We define the
neighborhood of i to be N+(i) = {j, (i, j) ∈ E}. We denote
the node 0 as the base station of the wireless sensor network.
V ∗ is equal to V without the base station. The eccentricity
of node 0, noted ε(0), is the longest of the shortest paths to
every other node in terms of hop distance.

To define connectivity, we use the disk graph model (DG)
[12]. More precisely, if ri is the transmission range of node
i, and dij is the euclidian distance between node i and node
j then j is a neighbour of i if dij ≤ ri. This model takes
into account the heterogeneity of a wireless sensor network by
assigning different transmission ranges to the various nodes.

We note by Wi the energy spent by node i to send data
to all the nodes in his neighborhood. There is no constraint



on how to calculate the energy consumption (e.g.: First order
radio model [13]).

A dominating set of graph G is a subset D of V such that
every vertex not in D is in the neighborhood of a vertex in D.
The nodes belonging to D are named dominators or dominat-
ing nodes and the nodes belonging to V \D are the dominated
nodes or dominatees. A dominating set D of graph G is a
connected dominating set (CDS) if D induces a connected
subgraph of G. So computing a connected dominating set in
a graph is equivalent to computing a backbone in a wireless
sensor network. The aim is to reduce the energy consumption
so we assign a weight to each node i which is the energy
Wi necessary to send a message to its neighborhood. The
objective is to choose a subset of V respecting the dominance
and connectivity properties and such that the sum of the
selected nodes’ weights is minimized. This problem is known
as Minimum Weighted Connected Dominating Set (MWCDS).

In our case, we want, in addition, to bound the delay during
the broadcast. As the delay is proportional to the number of
hops, we compute a CDS with minimum weight and where the
hop distance from the base station is bounded by a constant
hmax. Note that hmax must be at least ε(0) in order to reach
the node with the longest path from the base station. We call
this problem Minimum Weighted Connected Dominating Set
with Bounded Hop Distance (MWCDS-BHD).

IV. INTEGER LINEAR PROGRAMMING
FORMULATION

In this section, we introduce a mixed integer linear program
modeling the MWCDS-BHD problem. The program builds a
backbone tree with minimum weight whose height is bounded
by hmax − 1.

The formulation requires the following decision variables.
First, xi, i ∈ V is a binary variable which indicates if the node
i belongs to the backbone (xi = 1) or not (xi = 0). Then,
in order to ensure that the set is connected, we construct a
directed tree that is rooted in node 0, the base station. The
nodes, belonging to the directed tree obtained by the ILP and
that are not a leaf, represent the backbone nodes. Decision
variable yi,j , (i, j) ∈ E tells whether edge (i, j) is in the
directed tree formed by the backbone nodes. In other words,
if yi,j = 1, then nodes i and j are in the backbone and node i is
the father of node j in the directed tree. Finally, the decision
variables ui, i ∈ V guarantee that there is no cycle in the
backbone.

The objective function of the integer linear program aims to
minimize the total energy cost W of the constructed backbone.
Mathematically, this is written as follows: W =

∑
i∈V xiWi.

The constraints are defined as follows:

∀i ∈ V ∗,
∑

{j|i∈N+(j)}

xj ≥ 1 (1)

∀i ∈ V ∗,
∑

{j|i∈N+(j)}

yj,i = xi (2)

∀(i, j) ∈ E, xi + xj − 2yi,j ≥ 0 (3)

∀(i, j) ∈ E, (n+ 1)yi,j + ui − uj + (n− 1)yj,i ≤ n (4)
∀i ∈ V, ui ≤ hmax (5)∑

i∈V
xi −

∑
(i,j)∈E

yi,j = 1 (6)

x0 = 1 (7)
u0 = 1 (8)

Equation 1 ensures dominance: each node must either
belong to the backbone or be adjacent to a node belonging
to the backbone. Equation 2 specifies that only the backbone
nodes have exactly one father in the tree. The other nodes have
no father. Equation 3 asserts that when an edge belongs to the
backbone, then both its ends are part of the backbone too.

Equation 4 is inspired by [14] where it is used to prevent
cycles in the traveling salesman problem. This equation is
also used in [15] for the same purpose on a spanning tree.
It allocates a strictly positive number ui for each node in the
backbone that represents its distance (plus one) from the base
station in the tree. If nodes i and j are in the backbone and
yi,j = 1, then it ensures that uj = ui+1. If one of the nodes i
or j is not in the backbone, the difference between ui and uj
is undefined (bounded by the maximum possible difference).

Equation 5 ensures that the distance in terms of hop number
is bounded by hmax. The variable ui represents the depth
of node i in the backbone tree. So bounding the depth of
each node in the backbone ensures that the height of the
tree is bounded too. Equation 6 stipulates that the number of
backbone nodes is equal to the number of backbone edges plus
one (property of trees). The last two equations (7 and 8) give
the values for the base station. This integer linear program can
be used to find optimal solutions. Unfortunately, the time taken
to solve the problem can be quite long, even for moderated
size networks due to the NP-hard nature of the problem.

V. APPROXIMATION ALGORITHM

In this section, an approximation algorithm calculating an
MWCDS-BHD is proposed. The algorithm aims to calculate
an energy efficient backbone and ensures that all paths are
smaller than hmax.

A. Principle

Given a weighted directed graph, the algorithm computes,
at first, both arborescences: A1 and A2. A1 is obtained by
a shortest path algorithm where the weight is a unit value
for each node. Thus, paths in A1 minimize the number of
hops from the base station to any node. A2 is constructed
by a shortest path algorithm where the weight is the energy
consumption Wi of each node. To take into account the energy
consumed by each node, we have tagged each outcoming edge
of a node by its weight Wi. Paths in A2 minimize the energy
consumed to reach the destination node.

The principle of the algorithm is to choose one node k
and then to consider P1(k) and P2(k), respectively the path
between the base station and node k in the arborescence A1

and A2. As hmax is at least greater than ε(0), the length of
P1(k) is less than or equal to hmax. Since P2(k) is the path



minimizing the energy cost, to connect k to the base station
we look at first to path P2(k) and if its length is less than
or equal to hmax, we keep it. Otherwise, we choose P1(k).
This ensures that every path is less than or equal to hmax.
Therefore, the question arises as to what is the energy cost
that is added when the chosen path is P1 instead of P2. This
is discussed in the section V-C.

To describe the algorithm, we introduce the definition of
several sets of nodes. The set B is the set of nodes which
are currently part of the backbone. The set U is the set of
remaining nodes i.e. the nodes that are untreated yet. Initially,
U is equal to V . D is the set of dominated nodes. At the
beginning of each iteration, the following equation will be
true: V = B ∪D ∪ U .

B. Bounded Backbone Algorithm (BB)

In this section, we will explain in detail the process of the
proposed approximation algorithm described in Algorithm 1.
As can be seen, at the beginning, the algorithm initializes the
sets B, U and D. The main idea is to select iteratively a
node k that is not reached by the broadcast yet. BB chooses
the most distant node not covered yet in A1 i.e. the distance
is considered in terms of the number of hops. Once the
appropriate node has been selected, the next step is to choose
a path for reaching it between the paths P1(k) and P2(k) as
described before. Afterward, the nodes belonging to the chosen
path are added to the backbone and removed from the set U .
Furthermore, the set of dominated nodes is updated.

At the end of each iteration, the energetic cost of nodes
added to B is set to zero (setting to zero phase) and, then,
since the shortest paths change following this update, the A2

arborescence is computed again.
The processing explained above is repeated until the set U

is empty. The solution is given by the set B constructed by
this process.

Setting to zero the energy of the nodes added to the back-
bone allows us to choose paths containing nodes belonging
to the backbone. Indeed, since they already belong to the
backbone, they will not increase the cost of the backbone.
To better explain, consider the example of figure 1.

In this figure, we assume hmax = 5. The backbone of fig-
ure 1a represents the backbone obtained without the setting to
zero phase. It is obtained as follows. At the first iteration, BB
chooses to treat node h. The chosen path is P = (a, e, f, g, h).
Therefore, nodes a, e, f and g are added to the set B, and
they are removed from U . Nodes h, c and b are added to D.

At the second iteration, the node to be processed is d. The
path selected is P = (a, b, c, d). Nodes b and c are added to the
backbone set B and are removed from U . Finally, d is added
to D. The algorithm terminates since the set U is empty. At
the end, the backbone consists in nodes a, b, c, e, f , and g.
Its energetic cost is 10.

The backbone represented in figure 1b is less expensive in
terms of energy. Indeed, the backbone consists of nodes a,
c, e, f , and g and has an energetic cost of 8. At the second
iteration, the zeroing of the energy of the backbone nodes

(a) (b)

Fig. 1. Explanation of the zeroing of energy by BB. Backbone obtained
without zeroing (on the left) and backbone obtained by setting to zero the
energies (on the right)

allows us to consider the path P = (a, e, f, g, c, d) and to
select it because its energy cost is inferior to the energy of
P = (a, b, c, d). Indeed, Wa = We = Wf = Wg = 0. With
this method, we obtain the backbone in figure 1b. Therefore,
by setting energy costs to zero, BB selects the paths that will
minimize the energy cost of the backbone.

Algorithm 1 Bounded Backbone algorithm
Input: Graph G (WSN), Maximum hop distance hmax, En-

ergy Wmax and Wmin

Output: Backbone B
B ← ∅
U ← V
D ← ∅
while U 6= ∅ do

k ← the most distant node in A1 not covered yet
if L(P2(k)) ≤ hmax then

P ← P2(k)
else

P ← P1(k)
end if
B ← B ∪ {x|x ∈ P ∧ x 6= k}
U ← U \ {x|x ∈ P}
D ← D ∪

⋃
(x∈P )∧(x 6=k)N

+(x)
for x such that x ∈ P ∧ x 6= k do

//setting to zero phase
Wx ← 0

end for
Compute A2

end while
return B

The time complexity of the Bounded Backbone algorithm
depends on the algorithm chosen for the calculation of A1 and
A2: in our case, it is Dijkstra’s algorithm. The Dijkstra’s algo-
rithm is used in the main loop to recompute A2. Consequently,
the time complexity of BB is O(|V | ∗ (|V | ∗ log |V |+ |E|))
which is polynomial.



C. Theoretical study

Lemma 1: The set B constructed by BB is a CDS.
Proof: B is a CDS if, and only if, B is a dominating set

and the graph induced by B is connected. By construction, B
is a connected set. Indeed, the set B is constructed by iterative
addition of paths all connected to the sink.

To prove that B is dominant we will proceed by absurd.
Suppose B is not dominant. This means that:

∃v ∈ V \B, ∀u ∈ B, (u, v) /∈ E

There are two possible cases: either v is in D or v is in U .
• Case v ∈ D. By construction of set D, we know that:

∃d ∈ B such that v ∈ N+(d)

thus (d, v) ∈ E. This is in contradiction with our
hypothesis.

• Case v ∈ U . Since v ∈ U then U 6= ∅. This is impossible
because in this case the stopping condition of the loop is
not respected.

So B is dominant. Therefore B is a CDS.
Lemma 2: In the set B, the distance in terms of hop number

between the base station and any other node of the graph is
at most hmax.

Proof: Let u be a node in V . There are two possibilities:
• u is one of the nodes k selected by BB. To link u to

the base station, BB selects either path P1(u) or P2(u).
If P1(u) is chosen then we have: L(P1(u)) ≤ ε(0). By
assumption, ε(0) ≤ hmax so L(P1(u)) ≤ hmax. If the
chosen path is P2(u), then we know that L(P2(u)) ≤
hmax otherwise it would not be chosen.

• u is not one of the nodes k selected by BB. Then there
are two possibilities :

– u is an internal node of the path of a node k selected
by BB. Suppose that u is a node internal to the path
of ki. We know that L(P (ki)) ≤ hmax, consequently
L(P (u)) ≤ L(P (ki)) ≤ hmax.

– u is a leaf from the resulting tree that has not been
selected by the algorithm for processing. Since it was
not chosen by the algorithm as a node to be pro-
cessed, we can deduce that all the nodes necessary
to connect it to the base station are already present in
the backbone. Furthermore, u is in N+({x|x ∈ B}).
As demonstrated previously, for any node k selected
by BB, L(P (k)) ≤ hmax so any node x ∈ B has a
hop distance to the base station of at most hmax−1.
Suppose that y is the father of u. Then the hop
distance of u is equal to the hop distance of y plus
one. Finally, y is at hmax hops from the base station.

VI. THEORETICAL STUDY OF BB

In this part, we present a theoretical study to determine the
energy loss when the chosen path is P1 instead of P2. For
Theorem 3, we consider the case when there are two possible
energies for nodes: Wmin and Wmax, with Wmax = c ∗Wmin.

Then we prove the approximation ratio of the BB algorithm
by considering that the nodes can have an energy belonging
to [Wmin;Wmax = c ∗Wmin].

The first theorem we want to prove is the following:
Theorem 3: The path P chosen by the algorithm has a

bounded cost: w(P ) ≤ c ∗ w(P2).
For this purpose, we will at first, study the structure of the

P1 path compared to the P2 path.
1) Structure of the path P1 with respect to P2: We assume

that P2 consists of u nodes with energy Wmin and v nodes
whose energy is Wmax. And P1 consists of u − ∆u nodes
whose energy is Wmin and v + ∆v nodes of Wmax energy.

As P1 is the shortest hop path, we have:

u−∆u+ v + ∆v ≤ u+ v

So we can infer:
∆v ≤ ∆u (9)

Knowing that P2 minimizes the energy, we deduce the
following:

(u−∆u) ∗Wmin + (v+ ∆v) ∗Wmax ≥ u ∗Wmin + v ∗Wmax

Thus, we obtain:

∆u ≤
(
Wmax

Wmin

)
∆v (10)

Four cases can occur:
1) ∆u < 0 and ∆v ≥ 0. Impossible because of equation 9

(∆u would be positive).
2) ∆u ≥ 0 and ∆v ≤ 0. Impossible because of equation 10

(∆u would be negative).
3) ∆u < 0 and ∆v ≤ 0. Then we have −∆v ≤
−
(

Wmin

Wmax

)
∆u < −∆u. This is a contradiction with 9.

4) ∆u ≥ 0 and ∆v ≥ 0. This case is the only possible and
so we deduce the following equation:

0 ≤ ∆v ≤ ∆u ≤
(
Wmax

Wmin

)
∆v (11)

2) Proof of theorem 3: With the results obtained previously,
we can complete the proof of theorem 3.

Proof: The energy cost of the P1 path can be written as
follows:

w(P1) = (u−∆u) ∗ (Wmin) + (v + ∆v) ∗ (Wmax)

= u ∗Wmin −∆u ∗Wmin + v ∗Wmax + ∆v ∗Wmax

Following Equation 11, we know that ∆v ≤ ∆u. So we
obtain:

w(P1) ≤ u ∗Wmin −∆u ∗Wmin + v ∗Wmax + ∆u ∗Wmax

Replacing Wmax by c ∗Wmin, we obtain:

w(P1) = u ∗Wmin −∆u ∗Wmin + v ∗ c ∗Wmin

+ ∆u ∗ c ∗Wmin

= Wmin ∗ (u−∆u+ v ∗ c+ ∆u ∗ c)
= Wmin ∗ (u+ v ∗ c+ ∆u ∗ (c− 1))



Since u−∆u ≥ 0, we can upper bound ∆u by u:

w(P1) ≤Wmin ∗ (u+ v ∗ c+ u ∗ (c− 1))

= Wmin ∗ (u+ v ∗ c− u+ u ∗ c)
= Wmin ∗ (v ∗ c+ u ∗ c)

As Wmax = c ∗Wmin, we get:

w(P1) = v ∗ (Wmax) + u ∗ (c ∗Wmin)

≤ c ∗ (v ∗Wmax + u ∗Wmin)

= c ∗ w(P2)

Thus we can conclude that: w(P1) ≤ c ∗ w(P2). As the path
P is equal to either P1 or P2, we can deduce that its energetic
cost is equal to either w(P1) or w(P2). So w(P ) ≤ c∗w(P2).

Theorem 4: The backbone obtained by BB has an approx-
imation ratio of c ∗ hmax.

Proof: Suppose that L∗ is the set of leaves in the optimal
tree. We assign to each node l∗ of L∗ the nodes composing
the path between l∗ and the base station starting with the most
distant node each time we are processing a new set. If a node
belongs to several paths, we assign it to the first node k in
which it appears. This process constructs the set S∗(l∗).

Then, we assign to each node a charge such that the sum
of the charges of the set l∗ gives his optimal total energy
denoted by w∗(S∗(l∗)). Thanks to the way of constructing
these sets, the sum of the charge of all the nodes of the sets
constructed gives the cost of the optimal tree. To calculate
the approximation ratio what we need to do is to calculate
the charge that each node in a constructed set can take in
the tree constructed by BB. Then, as before, by summing all
the charges of all the sets, we will get the cost of the tree
constructed by BB. We denote w(S∗(l∗)) the cost of the set
S∗(l∗) obtain by adding the charge that nodes in S∗(l∗) can
take in the tree constructed by BB.

We know that the biggest charge a node can take is Wmax:

∀i ∈ V, ei ≤Wmax

Moreover, by construction, the number of nodes in a path
is at most hmax. Therefore, we can deduce that the cost of
w(S∗(l∗)) is at most:

w(S∗(l∗)) ≤Wmax ∗ hmax

Hence, the ratio between the energy W of our algorithm and
the optimal energy W ∗ is:

W

W∗
=

∑
l∗∈L∗ w(S∗(l∗))∑
l∗∈L∗ w∗(S∗(l∗))

≤ |L
∗| ∗ (Wmax ∗ hmax)

|L∗| ∗Wmin

≤ c ∗ hmax

In conclusion, the algorithm has an approximation ratio of
c ∗ hmax.

VII. CONCLUSION

In this paper, we focused on the problem of building an
energy efficient backbone with a bounded delay for a heteroge-
neous wireless sensor network. To solve this problem, initially,
a linear program has been proposed. However, given the
complexity of the program and therefore the time needed to get
a result on large networks, an approximation algorithm with
polynomial time complexity has been proposed. A theoretical
study has been done proving the correctness of the algorithm
as well as its approximation ratio which is equivalent to
c ∗ hmax.
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