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ABSTRACT

In this paper, some numerical tools for dispersion analysis of periodic structures are presented, with a focus on
the ability of the methods to deal with dissipative behaviour of the systems. An adaptive phononic crystal based
on the combination of metallic parts and highly dissipative polymeric interface is designed. The system consists
in an infinite periodic bidirectional waveguide. The periodic cylindrical pillars include a layer of shape memory
polymer and Aluminum. The mechanical properties of the polymer depend on both temperature and frequency
and can radically change from glassy to rubbery state, with various combination of high/low stiffness and high/low
dissipation. A fractional derivative Zener model is used for the description of the frequency-dependent behaviour
of the polymer. A 3D finite element model of the cell is developed for the design of the metamaterial. The
”Shifted-Cell Operator” technique consists in a reformulation of the PDE problem by ”shifting” in terms of wave
number the space derivatives appearing in the mechanical behaviour operator inside the cell, while imposing
continuity boundary conditions on the borders of the domain. Damping effects can easily be introduced in the
system and a quadratic eigenvalue problem yields to the dispersion properties of the periodic structure. In order
to validate the design and the adaptive character of the metamaterial, results issued from a full 3D model of a
finite structure embedding an interface composed by a distributed set of the unit cells are presented. Various
driving temperature are used to change the behaviour of the system. After this step, a comparison between the
results obtained using the tunable structure simulation and the experimental results is presented. Two states
are obtained by changing the temperature of the polymeric interface: at 25◦C, the bandgap is visible around a
selected frequency. Above the glass transition, the phononic crystal tends to behave as an homogeneous plate.
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1. INTRODUCTION

A periodic medium is a material or a structural system that exhibits spatial periodicity.1 The study of periodic
structures has a long history in the field of vibrations and acoustics.2 This topic has interested researchers over the
years, and a growing activity on this field is observed on the last years, with the objective of designing structures
exhibiting properties that conventional ones cannot possess.3–5 The methods currently used are most of the time
based on those derived from wave propagation in crystals,6 where almost no dissipation occurs. Reaching the
upper scale for structural dynamics implies that damping effects have to be included in the analyses which are
performed.

2. METAMATERIAL DESIGN

The system consists in an infinite periodic bidirectional waveguide shown in figure 1a. All sollicitations are
considered. It is a 1 mm thick plate with periodic cylindrical pillars. Due to the periodicity, the unit cell is used
and the corresponding first Brillouin zone is described in figure 1b.
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Figure 1. a) Infinite wave guide. b) Real and reciprocal lattices.

In order to design a two-state phononic crystal, a polymeric base is included in the pillar (figure 2). The
base plate is made of isotropic Aluminium 6063-T83 (ν = 0, 33, E = 69 GPa and ρ = 2700 kg/m3). Pillars are
made of combination between a highly dissipative polymer tBA/PEGDMA (νpoly = 0, 37, Epoly, defined in the
following and ρpoly = 1004[kg/m3])7 and Aluminum 6063-T83.
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Figure 2. a) Reference structure, 10 mm height aluminum cylinder. b) Metamaterial with 3 mm height polymeric interface
between base and 7 mm height aluminum cylinder.

The polymer thickness has been chosen in order to open a resonant bandgap under the bragg bandgap
frequency According to the manufacturing process, the maximum thickness obtained after the UV photopoly-
merization is 3 mm. Let assume that the polymer behaviour is like a 1D spring-mass system, the natural
frequency can be defined as

f0 =

√
Kpoly

Malu

2π
(1)

with Kpoly =
EpolyS
hpoly

and Malu = ρaluShalu where S is the cylinder section, hpoly and halu respectively the

polymer thickness and the aluminium thickness. This frequency is around 40 kHz in this case.

A suitable model is required for the description of the frequency-dependent behaviour of the polymer. In the
harmonic regime, the Young’s modulus of the polymer is complex, dependent on frequency and temperature,

E∗poly(ω, T ) = E′ + jE′′ = E′ × (1 + j × tan(δ)), (2)

where tan(δ) = E′′/E′ is the loss factor, E′ is the storage modulus and E′′ is the loss modulus. In this work,
a fractional derivative Zener model is used. Moreover this material exhibits a strong temperature dependency
that will be used to obtain the two-state phononic crystal. The expression of the elastic complex modulus is

E∗poly(ω, T ) =
E0poly + E∞poly(jωτ(T ))α

1 + (jωτ(T ))α
, (3)



where E0poly et E∞poly are respectively the static elastic modulus and the high-frequency limit value of the
dynamical modulus, τ is the relaxation time and is the order of fractional derivative. An estimation of the four
parameters E0poly, E∞poly, α and τ are obtained by experimental measurements.8

Three damping configurations are studied, one with low damping at ambient temperature, one with high
dissipation at 90◦C and an intermediate one at 60◦C. At ambient temperature, the polymer is stiff and its loss
factor is almost equal to zero. At 90◦C, the loss factor is over 1.5 on the frequency range (0 to 100kHz), with a
maximum value of 2.5. At 60◦C, the intermediate configuration, damping remains high at low frequencies and
decrease to reach high frequencies. The storage modulus and loss factor are plotted in figure 3a and figure 3b.
The blue line is associated to the ambient temperature, the red one to 60◦C and finally the yellow one to 90◦C.
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Figure 3. a) Storage modulus. b) tBA/PEGDMA loss factor for several temperature, 25◦C, 60◦C and 90◦C respectively
in blue, red and yellow.

3. DYNAMICAL PROPERTIES

3.1 Dispersion analysis

The ”Shifted-Cell Operator” technique consists in reformulating the PDE problem by ”shifting” in terms of wave
number the space derivatives appearing in the mechanical behaviour operator inside the cell, while imposing
continuity boundary conditions on the borders of the domain. The formulation leads to the following eigenvalue
problem9 :

[(K− ω2M) + λi(L− LT )− λ2iH]φri = 0, (4)

where λi = jki is the i − th eigenvalue, φri denotes the right eigenvector associated to λi, M and K are
respectively the standard symmetric definite mass and symmetric semi-definite stiffness matrices, L is a skew-
symmetric matrix and H is a symmetric semi-definite positive matrix. In this formulation, all matrices can
depend on ω. A parametric eigenvalue analysis is then performed where the pulsation ω is fixed as real parameter,
allowing introduction of damping effects. The wavenumbers λi = jki and the associated right eigenvectors φri
are computed by solving the quadratic eigenvalue problem.

For frequency-dependent systems, the estimation of the group velocity is not trivial.10,11 We focus on
homogeneous cases where the frequency dependency is characterized by a Young’s modulus such that E = f(ω)E0

and a constant Poisson’s ratio. Hence K = f(ω)K0, H = f(ω)H0 et L = f(ω)L0. In this case we obtain



Cg = real

(
∂ω

∂ki

)
= real

jφliT [f(ω)(−L0 + LT0 + 2λiH0)]φri

φli
T

[ω2
∂f
∂ω

f(ω) − 2ω]Mφri

 . (5)

The ”Shifted-Cell Operator” technique is used to obtain dispersion curves along the Γ−X direction. Damping
is included in the analyses due to complex polymer Young’s modulus using fractional derivative Zener model.

Figures 4a to 4c show dispersion curves along the Γ − X direction obtained with the ”Shift cell operator”
method. A comparison between the results obtained using the reference structure and the tunable structure is
presented. The two states are obtained by changing the temperature of the polymeric interface: at 25◦C, the
bandgap is visible around the selected frequency (40 kHz) linked to the design of the resonator. Above the glass
transition, the phononic crystal tends to behave as an homogeneous plate.
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Figure 4. Dispersion curves along the Γ − X direction obtained with the ”Shift cell operator” method. a) Reference
structure, all in aluminum. b) Metamaterial at ambient temperature 25◦C. c) Metamaterial at 90◦C et aluminum plate.

3.2 Finite structure

The main goal of this part is to validate in a finite structure the phenomenon observed on an infinite structure.
A finite element model is presented. This is followed by an experimental validation. The metamaterial (21× 7×
0.1 cm3) includes an interface composed by 7× 7 unit cells (figure 5).

PZT

IN

OUT

Figure 5. Finite structure with an interface composed by 7 × 7 unit cells distributed. Piezoelectric patch (PZT) for
excitation in the bottom left corner.



The three temperatures are studied and the metamaterial is free. A piezoelectric patch with harmonic voltage
(|U | = 100 V ) is incluted in the model in order to be close to the experimental set up and cover all the frequency
range from 0 to 50 kHz. Figure 6 shows numerical frequency responses obtained with the finite elements code.
Squared velocity amplitudes |V z|2 are averaged for the input plate (IN) and the output plate (OUT). Blue and
red curves are numerical frequency response at ambient temperature 25◦C for the input plate (IN) and the
output plate (OUT). Yellow and purple curves at 90◦C. The grey shape represents the bandgap predicted by
the dispersion analyses at ambient temperature.
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Figure 6. Numerical frequency responses. Average squared velocity amplitude |V z|2 for the input plate (IN) and the
output plate (OUT) at ambient temperature 25◦C respectively in blue and red. At 90◦C, respectively in yellow and
purple. The grey shape represents the bandgap predicted by the dispersion analyses at ambient temperature.

At ambient temperature 25◦C, an output attenuation around 40 kHz is observed smaller than the frequency
range predicted by bandgap. This is due to the boundary conditions. After shapes analyses, edge modes
propagates along each edges of the periodic lattice. At 90◦C, after the glass transition, the output attenuation
is not visible anymore.

3.3 Experimental validation

The metamaterial is made of metal and polymer. Polymer parts are realised by laser cutting and metallic part by
classical mechanical processing (figure 7). The metamaterial is assembled in two steps by bonding parts together.
Polymer cylinders are sticked on the support plate. After drying and load process, at ambient temperature during
24 hours, aluminum cylinders are sticked on polymer cylinders. Piezoelectric patch provides harmonic excitation
up to 50 kHz.

Figure 8a illustrates experimental facility composed by :

• the metamaterial with his mounting bracket,

• a thermal chamber,

• a 3D vibrometer,

• a piezoelectric amplifier



Figure 7. Metamaterial after several manufacturing steps.

• and a thermocouple.

The metamaterial is suspended thanks to a mounting bracket to reproduce free boundary condition (figure
8b). The mounting bracket is introduced in a thermal chamber which presents a glass wall required for 3D
vibrometer measurements.

(a) (b)

Figure 8. a) Experimental facility with the main equipment as the metamaterial, the 3D vibrometer and the thermal
chamber; b) A zoom is done on the metamaterial with free boundary conditions.

The white noise generator provides random harmonic voltage (5 V ) between 500Hz and 50kHz, this signal
is amplified 20 times by the piezoelectric amplifier. Temperatures are selected using the thermal chamber and
controlled by the thermocouple. The 3D vibrometer is used to measure the velocity and frequency responses are
calculated with H1 estimator.

Figure 9a presents numerical and experimental frequency responses at ambient temperature 25◦C. Curves
need to be compared by pair (yellow-blue and purple-red). Yellow and blue curves corresponds, respectively, to
experimental and numerical average squared velocity amplitude |V z|2 for the input plate (IN). Purple and red
curves corresponds, respectively, to experimental and numerical average squared velocity amplitude |V z|2 for the
output plate (OUT). In the bandgap region, attenuation predicted by numerical simulation is around 100dB,
which corresponds to a ratio between output and input squared velocity amplitude equal to 105. Numerical
amplitudes are considerably lower than experimental amplitudes taking into account experimental environment.
Experimental facilities do not lead us to reach the same measurement dynamic. The noise level estimation is
done and the green curve shows the noise generated by the surrounding equipments (acquisition chain, room
fan). In any case, it is impossible to measure vibrating levels below this limit. The general trends (yellow-blue
and purple-red) are similar except in areas where the measurement is close to ambient noise.
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Figure 9. a) Numerical and experimental frequency responses at ambient temperature 25◦C. Experimental average squared
velocity amplitude |V z|2 for the input plate (IN) and the output plate (OUT) respectively in blue and red. Numerical
ones respectively in yellow and purple. The green curve shows the noise measurement. The grey shape represents the
bandgap predicted by the dispersion analyses at ambient temperature. b) Numerical and experimental transfer function
IN/OUT at ambient temperature respectively in blue and red. Red areas show when velocity are in the same order of
magnitude as noise.

The figure 9a is fully informed, an other representation is proposed. Transfer functions IN/OUT are presented
in the figure9b. The transfer is defined, with experimental and numerical data, as follows:

H = 20× log10
(

Σout(|V z|2/U2)

Σin(|V z|2/U2)

)
, (6)

where Σout(|V z|2/U2) and Σin(|V z|2/U2) are, respectively, the average squared velocity amplitude |V z|2 for
the input plate (IN) and the output plate (OUT).

Red areas show when velocity are in the same order of magnitude as noise. Overall results except in areas
where the measurement is close to ambient noise. Our numerical model is pretty representative, however the
bandgap is not clearly observed in the experiments.

Figure 10 presents numerical and experimental frequency responses at 90◦C. Curves need to be compared
by pair (yellow-blue and purple-red). Yellow and blue curves corresponds, respectively, to experimental and
numerical average squared velocity amplitude |V z|2 for the input plate (IN). Purple and red curves corresponds,
respectively, to experimental and numerical average squared velocity amplitude |V z|2 for the output plate (OUT).
A good coherence is observed between the numerical and experimental results.

The effect related to the periodicity is no longer observed at this temperature. The aluminum pillars are
completely decoupled from the plate and the polymer still plays a damping role. Frequency response functions
are smoothed at this temperature.
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Figure 10. Numerical and experimental frequency responses at 90◦C. Experimental average squared velocity amplitude
|V z|2 for the input plate (IN) and the output plate (OUT) respectively in blue and red. Numerical ones respectively
in yellow and purple. The smooth grey shape represents the bandgap predicted by the dispersion analyse at ambient
temperature.

3.4 Conclusion

In this article, numerical tools for the dispersion analysis in periodic damped structures are used, with a focus
on the ability of the ”Shift cell operator” method to deal with the dissipative behaviour of the system. An
adaptive metamaterial mixing aluminum with a highly dissipative polymer interface is designed. The mechanical
properties of the polymer depend on the frequency and the temperature, they change radically at the glass
transition. The viscoelastic behavior of tBA/PEGDMA is approximated by a fractional Zener model. A 3D
finite element model of the metamaterial elementary cell is designed for dispersion analysis using the ”Shift
cell operator” method. In order to validate the design and adaptability of the metamaterial, a complete 3D
model integrating an interface composed of a distributed set of unit cells is presented. Different operating
temperatures are studied. After this step, a comparison between the simulation results of the tunable structure
and the experimental results is presented. Two states are obtained by changing the temperature of the polymer
interface to ambient temperature, the bandgap predicted by the dispersion diagram is visible around the selected
frequency. After the glass transition temperature, the metamaterial tends to behave like a homogeneous plate.
A remark may be made on the experimental measurements. Indeed, the experimental facilities are well suitable
for the resonance measurement, the amplitude is maximum, the signal-noise ratio is large. In our case, bang
gaps are interesting where the vibration level is very low, approaching zero displacement, and therefore confuses
with the measurement noise.
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