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Abstract— This paper proposes a finite difference spatial
discretization scheme that preserve the port-Hamiltonian struc-
ture of 1D and 2D infinite dimensional hyperbolic systems.
This scheme is based on the use of staggered grids for
the discretization of the state and co state variables of the
system. It is shown that, by an appropriate choice of the
boundary port variables, the underlying geometric structure
of the infinite-dimensional system, i.e. its Dirac structure, is
preserved during the discretization step. The consistency of the
spatial discretization scheme is evaluated and its accuracy is
validated with numerical results.

Index Terms— Distributed port-Hamiltonian systems, wave
propagation, staggered grids, finite difference method.

I. INTRODUCTION

Port-Hamiltonian systems (PHS) are particularly well
suited for the modelling and control of (non-linear) mul-
tiphysical systems. They have first been defined in [1],
and later used to describe the behavior of complex open
physical systems through the study of their internal energy
exchanges [2], [3]. The PHS framework has been extended to
systems described by boundary controlled partial differential
equations (PDEs) in [4], [5] and led to powerful results
regarding the analysis [6] and control in infinite dimensions
[7], [8], [9].

PHS express the fundamental internal interconnection
structure of a system, such as Kirchoffs or Newtons laws,
through its geometric structure, defined by a set of struc-
ture matrices in the finite dimensional case and differential
operators in the infinite dimensional case [3].

In order to perform numerical simulations or implement
control schemes for systems governed by PDEs, it is neces-
sary to approximate them by finite-dimensional representa-
tions. In this context, preserving the geometric structure of
the infinite dimensional system is relevant to preserve the
physical properties of the model, such as the conservation of
energy, the dissipation profiles and the physical meaning of
the inputs and outputs (boundary variables). For PDEs which
describe a subsystem of a multiphysical model ([10], [11])
it is even more relevant to preserve the physical properties
of the interconnection variables.
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Different structure preserving discretization schemes have
been proposed in recent years [12], [13], [14], [15]. In
[13], [14] different (mixed) finite elements are used for the
approximation of the infinite dimensional state and co-state
variables in order to preserve the symplectic structure of
the system. This approach has been applied for modeling,
reduction and control in [16], [17], [18]. It has also been
extended to pseudo spectral approximations by the use of
high order polynomial approximations in [15].

A different direction is to incorporate other important
numerical methods in this framework, as for instance the
finite-difference method which presents (along with the finite
volume method) numerous schemes with diverse properties
and advantages (see [19] for a recent review). Particularly,
schemes presenting staggered grids [20], [21], [22] permit
to define different state variables on different grids and thus
account for their different geometric nature. A version of
finite volume discretization on staggered grids for PHS has
recently been proposed in [23] for the 1D case.

This paper shows how the staggered grids finite difference
can be used to discretize infinite-dimensional PHS on 1D
and 2D spatial domains while preserving its intrinsic PH
structure.It is shown that a centered finite difference can
be advantageously used to derive a simple and efficient
simulator for such system. Moreover, the use of staggered
grids permits to directly impose boundary conditions over the
effort variables (e.g speed and pressure in acoustics) which is
not the case with traditional finite difference method (where
the boundary conditions would be on pressure and normal
acceleration in acoustics).

The paper is organized as follows. Section 2 motivates
the use of staggered grids finite difference for the spatial
discretization of the wave equation. Section 3 shows that
this discretization, with an appropriate choice of discretized
port variables, preserves the underlying Dirac structure for
the 1D case and Section 4 extends this proof to the 2D case.

II. STAGGERED GRIDS FINITE DIFFERENCE

We motivate the use of staggered grids by the 1D wave
equation example

∂2x(ξ, t)

∂t2
=
∂2x(ξ, t)

∂ξ2
, ξ ∈ [0, L] (1)

and show how the idea extends naturally to the PH repre-
sentation. The equation can be (semi-)discretized using the
(centered) finite difference approximation at a point ξk:

∂x(ξ, t)

∂ξ

∣∣∣∣
k

≈ xk+0.5(t)− xk−0.5(t)

h
(2)



h is the discretization step and xk±0.5(t) denote the values
of x at ξk±0.5 := ξk±0.5h. To approximate the second order
spatial derivative, this approximation is applied again at the
half-grid points ξk±0.5 which yields

∂2x(ξ, t)

∂t2

∣∣∣∣
k

≈ xk+1(t)− 2xk(t) + xk−1(t)

h2
(3)

defined at every point ξk.
To construct finite difference schemes that preserve struc-

tural properties (first of all, conservativeness), it is more
convenient to consider the first order representation of the
wave equation, with the approximations of the first order
spatial derivative on the shifted (half) grids as sketched
before, see [20], [21]. This point of view fits naturally to the
port-Hamiltonian formulation [5] of (1). This formulation
is based on the use of the energy variables x1(ξ, t) =
∂x(ξ,t)
∂ξ , x2(ξ, t) = ∂x(ξ,t)

∂t , as state variables in order to
rewrite (1) as a first order equation:(

ẋ1
ẋ2

)
︸ ︷︷ ︸
f

=

(
0 ∂

∂ξ
∂
∂ξ

0

)
︸ ︷︷ ︸

J

(
x1
x2

)
︸ ︷︷ ︸
e

(4)

with H(x1, x2) =
1
2

∫ L
0

(
x21 + x22

)
dξ, and the definition of

the boundary port variables f∂ , e∂ from the evaluation of the
effort variables (co-state variables) e = (e1, e2)

T at ξ = 0
and ξ = L :(

f∂ e∂
)T

=
(
e1(0) −e2(L) e2(0) e1(L)

)T (5)

such that :
dH

dt
= fT∂ e∂ (6)

A geometrical interpretation of (4) and (5) is that the
vector of flow variables f and the vector of effort variables
e defined in (4) and their extensions to the boundary (5) lie
in a Dirac structure D [18], i.e. (f, f∂ , e, e∂) ∈ D defined as
follows.

Definition 1: The Dirac structure D is a subspace of F×E
(where F = L2([0, L],R2)× R2 is the flow space and E =
H1([0, L],R2)×R2 the effort space1) such as D = D⊥ with
respect to a canonical product 〈.|.〉 defined such that :

〈(f1, f1
∂ , e

1, e1∂)|(f2, f2
∂ , e

2, e2∂)〉 =〈f2, e1〉L2 + 〈f1, e2〉L2

− 〈f2
∂ , e

1
∂〉 − 〈f1

∂ , e
2
∂〉

with (f2, f2∂ , e
2, e2∂) ∈ F ×E, 〈., .〉L2 and 〈., .〉 respectively

the canonical products on L2([0, L],R2) and R2, and where:

D⊥ = {b ∈ F × E|〈b|b′〉 = 0,∀b′ ∈ D}.
All possible parameterizations of the boundary port variables
(5) can be found in [5]. Approximating, as in the introductory
example,

∂e2(ξ, t)

∂ξ

∣∣∣∣
k

≈ e2(ξk+0.5, t)− e2(ξk−0.5, t)

h

∂e1(ξ, t)

∂ξ

∣∣∣∣
k+0.5

≈ e1(ξk+1, t)− e1(ξk, t)

h

(7)

1H1([0, L],R2) denotes the Sobolev space of differentiable functions on
the interval [0, L].

corresponds to using different staggered grids for both types
of energy and co-energy variables. The aim of the next
sections is to make explicit in the 1D and 2D cases the
use of such staggered grids to derive a discretized model
that keeps a port-Hamiltonian structure i.e. such that the
discretized version of (6) is satisfied.

III. 1D CASE

Consider the general class of port-Hamiltonian systems
defined by (4) where

(
e1 e2

)T
= Lξ

(
x1 x2

)T
with Lξ

a coercive matrix valued function from L2([0, L],R2) to
L2([0, L],R2) (see [6] for more details). The total energy
becomes :

H =
1

2

∫ L

0

(
x1 x2

)
Lξ
(
x1
x2

)
dξ (8)

A. Discretization scheme

Defining h a spatial step, the state of this system is
discretized over the grids described in Fig. 1 and boundary
conditions are given by the effort imposed on boundary
points numbered 0 and n+ 1.

e e

Fig. 1. 1D staggered discretization grids for x1
d and x2

d

In the discretized setting, the continuous (in space) state
variables are replaced by the finite-dimensional vector xd =(
x1d x2d

)T ∈ R2n with x1d =
(
x11 .. x1n

)T
, x2d =(

x21 .. x2n
)T

, where the x
{1,2}
k (k ∈ {1..n}) are the

approximation of the state x{1,2} respectively evaluated at
ξ = {(k−1)h, (k−0.5)h}. e20 and e1n+1 denote the boundary
effort variables. A discrete Hamiltonian which approximates
the original energy such that hHd ≈ H can be defined :

Hd =
1

2
xTd Ldxd :=

1

2

n∑
i=1

(
x1i x2i

)
Lξi

(
x1i
x2i

)
, (9)

where Ld ∈ R2n×2n is a block diagonal matrix, composed
of Lξ, evaluated at the corresponding grid points. Defining
the vector of discrete efforts as the gradient of the discrete
energy,

ed =

(
∂Hd
∂xd

)T
= Ldxd, (10)

one obtains, as the efforts on the k-th grid points,(
e1k
e2k

)
= Lξk

(
x1k
x2k

)
, (11)

with the elements of Lξ evaluated at the corresponding grid
points. Taking into account that(

x1k
x2k

)
≈
(

x1(ξk)
x2(ξk+0.5)

)
and

(
e1k
e2k

)
≈
(

e1(ξk)
e2(ξk+0.5)

)
, (12)

we obtain – by central approximation of the spatial derivative
– the numerical scheme(

f1
k

f2
k

)
= − 1

h

(
e2k − e2k−1

e2k+1 − e2k

)
(13)



where fd =
(
f1d f2d

)T
=
(
f11 ... f1n f21 ... f2n

)T
is the approximation of ∂xd

∂t (evaluated on the same spatial
points) i.e.

f1
d =

1

h


−1
1 −1

. . .
. . .
1 −1


︸ ︷︷ ︸

D

e2d +
1

h


1
0
...
0

 e20

f2
d =

1

h


1 −1

. . .
. . .
1 −1

1


︸ ︷︷ ︸

−DT

e1d +
1

h


0
...
0
−1

 e1n+1

(14)

This permits to express the vector of the discretized flow
variables fd :

fd =

(
0 D

−(D)T 0

)
︸ ︷︷ ︸

Jd

ed +
1

h


1 0
0 0
...

...
0 −1


︸ ︷︷ ︸

gd1

(
e20
e1n+1

)
(15)

where Jd is skew-symmetric.
Proposition 2: The staggered-grid finite difference spatial

discretization of (4) defines a Dirac structure which approx-
imates the original Dirac structure, with explicit representa-
tion given by {

fd = Jded + gde
∂
d

f∂d = gTd ed
(16)

with gd = gd1U
−1 where U is any invertible transformation

and Jd, gd1 are defined in (15).
Proof: The discretized system defines a Dirac structure

if its structure respects an energy balance product :

〈(ed, e∂d)|(fd, f∂d )〉 = 〈ed, fd〉 − 〈e∂d , f∂d 〉 = 0 (17)

〈(ed,e∂d)|(fd, f∂d )〉 = eTd fd − (e∂d)T f∂d

=eTd

[
Jded + gd1

(
e20
e1n+1

)]
− (e∂d)T f∂d

=eTd gd1

(
e20
e1n+1

)
− (e∂d)T f∂d =

1

h

(
e11e

2
0 − e2ne1n+1

)
− (e∂d)T f∂d

The Dirac structure is thus defined with respect to the
product 〈|〉 for any e∂d ,f∂d that respect (e∂d)

T f∂d =
1
h

(
e11e

2
0 − e2ne1n+1

)
, which is equivalent to :

e∂d = U

(
e20
e1n+1

)
and f∂d = U−1

(
1
h
e11

− 1
h
e2n

)
(18)

for any invertible transformation U . The discretized system
is then fd = Jded + gde

∂
d , f

∂
d = gTd ed

Remark 3: Choosing the grid such that another effort
variable is defined on a boundary permits to define another
causality on this boundary and thus different boundary
conditions. The proof can easily be extended to cases where
any combination of effort variables is defined on the points
at the boundaries even if the resulting D matrices may be
non-square. As an illustration, the example for the 2D case
in the following section has a different causality.
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Fig. 2. Eigenvalues of Jd compared to exact values.

B. Numerical results

We consider the discretization of the system (4) along with
the boundary conditions e2(0) = 0 and e1(L) = 0 (which
corresponds to e∂d = 0). In acoustics, the physical meaning of
e1 is the particular speed and the physical meaning of e3 is
the pressure. The theoretical eigenfrequencies of the system
are derived from the analytical resolution of the PDE leading
for this set of boundary conditions to fk = c0

2
k
L with k ∈ N

where c0 is the velocity of the wave. Fig. 2 shows the
imaginary parts of the first eigenvalues of the Jd matrix for
L = 1, discretized with different spatial steps, compared
with the theoretical eigenfrequencies. Since Jd is skew-
symmetric, the eigenvalues are exactly on the imaginary axis,
which guarantees energy conservation. Fig. 3 shows the Bode
gain plot of the discretized system with input e20 and output
e2n. A cut-off can be observed, for a frequency increasing
with the number of discretization points for an increasing
roll-off. Such diagram permits to evaluate numerically if the
number of points in the discretization is enough to study a the
system behavior up to a certain frequency. This is particularly
interesting in the case of an acoustic duct where we can take
the cutoff frequency of the discrete system higher than the
frequency above which the 1D approximation does not hold
[24].

IV. 2D CASE

In this section, we consider the 2D-wave equation defined
for {ξ1, ξ2} ∈ [0, L1] × [0, L2]. The aim is to provide a
finite dimensional model suitable for simulation and control
design purposes using distributed boundary actuation (not
developed in this paper). The presentation of such case of
study and the associated port Hamiltonian formulation are
given in [11]. The model results inf1f2

f3

 =

 0 0 ∂
∂ξ1

0 0 ∂
∂ξ2

∂
∂ξ1

∂
∂ξ2

0


︸ ︷︷ ︸

J

e1e2
e3


(19)
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Fig. 4. 2D Discretised grid

with boundary port variables(
f∂
e∂

)
= (−e3(L1, ξ2) e3(0, ξ2) − e3(ξ1, L2) e3(ξ1, 0)

e1(L1, L2) e1(0, ξ2) e2(ξ1, R) e2(ξ1, 0))T
(20)

The total energy of this system is :

H =
1

2

∫ L1

0

∫ L2

0

(x1 x2 x3
)
Lξ1,ξ2

x1x2
x3

 dξ2dξ1

(21)
where e = Lξ1,ξ2

(
x1 x2 x3

)T
with Lξ1,ξ2 a coercive

operator, and its time derivative satisfiesdHdt = fT∂ e∂ .

A. Discretization scheme

Defining h1 (resp. h2) the spacial step along ξ1 (resp.
ξ2), the state of the system is discretized over the grids
described in Fig.4 and boundary conditions are given by
effort imposed on boundary points numbered (0, k2) and
(m, k2) for conditions on e1 and (k1, 0) and (k1, n) for
conditions on e2 (with k2 ∈ {1..n} and k1 ∈ {1..m}).
In the discretesed setting, the continuous state variables are

replaced by finite-dimensional vectors :
x1d =

(
x11,1 x11,2 . . . x1m−1,n

)T ∈ R(m−1)n

x2d =
(
x21,1 x21,2 . . . x2m,n−1

)T ∈ Rm(n−1)

x3d =
(
x31,1 x31,2 . . . x3m,n

)T ∈ Rmn

xd =
(
(x1d)

T (x2d)
T (x3d)

T
)T ∈ R3mn−(m+n)

(22)

The boundary effort variables are denoted :
e1d∂ =

(
e10,1 e10,2 . . . e10,n e1m,1 e1m,2 .. e1m,n

)T
e2d∂ =

(
e21,0 e21,n e22,0 e22,n . . . e2m,0 e2m,n

)T
e3d∂ = {}
e∂d =

(
(e1d∂)T (e2d∂)T (e3d∂)T

)T
(23)

The discrete Hamiltonian such as h1h2Hd ≈ H can be
expressed in terms of the discretized states xd as (to simplify
the notation in the second line of the following equation,
consider null the states with index out of their definition set,
e.g. x1m,n = 0):

Hd =
1

2
xTd Ldxd

:=
1

2
Σnj=1Σmi=i

(
x1i,j x2i,j x3i,j

)
Lξ1,i,ξ2,j

x1i,jx2i,j
x3i,j

 (24)

where Ld ∈ R(3mn−(m+n))×(3mn−(m+n)) is a block di-
agonal matrix, composed of Lξ1,ξ2 , evaluated at the corre-
sponding grid points. Defining the vector of discrete efforts

as the gradient of the discrete energy, ed =
(
∂Hd

∂Xd

)T
=

LdXd one obtains, as the efforts on the (i, j)-indexed grid

point,

e1i,je2i,j
e3i,j

 = Lξ1,i,ξ2,j

x1i,jx2i,j
x3i,j

 , with the elements of

Lξ1,ξ2 evaluated at the corresponding grid points. Taking into
account thatx1i,jx2i,j

x3i,j

 ≈
x1(ξ1i+0.5, ξ

2
j )

x2(ξ1i , ξ
2
j+0.5)

x3(ξ1i , ξ
2
j )

 ,

e1i,je2i,j
e3i,j

 ≈
e1(ξ1i+0.5, ξ

2
j )

e2(ξ1i , ξ
2
j+0.5)

e3(ξ1i , ξ
2
j )


(25)

we obtain - by central approximation of the spatial derivative
- the numerical scheme

f1
i,j = − 1

h1
(e3i+1,j − e3i,j)

f2
i,j = − 1

h2
(e3i,j+1 − e3i,j)

f3
i,j = − 1

h1
(e1i,j − e1i−1,j)−

1

h2
(e2i,j − e2i,j−1)

(26)

where fd =
(
f1
d f2

d f3
d

)T
=(

f1
1,1 ... f1

m−1,n f2
1,1 ... f2

m,n−1 f3
1,1 ... f3

m,n

)T
is the approximation of ∂xd

∂t (evaluated on the same spatial
points than x). This leads to :

f1
d = − 1

h1


−1 1

. . .
. . .

. . .
. . .

−1 1


︸ ︷︷ ︸

D1

e3d (27)



where D1 ∈ Rn(m−1)×mn,

f2
d = − 1

h2

α . . .
α


︸ ︷︷ ︸

D2

e3d (28)

where D2 ∈ Rm(n−1)×mn andwith α ∈ R(n−1)×n such that:

α =

−1 1
. . .

. . .
−1 1

 (29)

f3d = f3d1 + fd23 with :

f3
d1 = −(D1)T e1d +

1

h1


In 0

0
...

... 0
0 −In


︸ ︷︷ ︸

g1

e1d∂ (30)

where Im is the identity matrix of size m and the 0 are zero
matrices of appropriate size, g1 ∈ Rmn×2n

f3
d2 = −(D2)T e2d +

1

h2

β . . .
β


︸ ︷︷ ︸

g2

e2d∂ (31)

where g2 ∈ Rmn×2m and with β ∈ Rn×2 such that:

β =

(
1 0 . . . 0
0 . . . 0 −1

)T
This permits to express the discrete flow fd :

fd =

 0 0 D1

0 0 D2

−DT
1 −DT

2 0


︸ ︷︷ ︸

Jd

ed +

(
0 0
g1 g2

)
︸ ︷︷ ︸

gd1

e1d∂e2d∂
e3d∂


(32)

Where Jd is skew-symmetric.
Proposition 4: A staggered-grid finite difference spatial

discretization of the 2D system (19)-(21) defines a Dirac
structure which approximates the original Dirac structure,
with explicit representation given by

fd = Jded + gde
∂
d , f

∂
d = gTd ed (33)

with gd = gd1U
−1 where U is any invertible transformation.

Proof: To define a Dirac structure, the system has to
respect the energy balance product (17).

〈(ed, e∂d)|(fd, f∂d )〉 = eTd fd − (e∂d)T f∂d

=eTd

Jded + gd1

e1d∂e2d∂
e3d∂

− (e∂d)T f∂d

=eTd gd1

e1d∂e2d∂
e3d∂

− (e∂d)T f∂d

=Σmi=1
1

h1

(
e2i,0e

3
i,1 − e2i,ne3i,n

)
+

Σnj=1
1

h2

(
e10,je

3
1,j − e1m,je3m,j

)
− (e∂d)T f∂d

(34)

The Dirac structure is defined with respect to 〈|〉 for any
e∂d ,f∂d that respect :

(e∂d)T f∂d = Σmi=1

e2i,0e
3
i,1 − e2i,ne3i,n
h1

+ Σnj=1

e10,je
3
1,j − e1m,je3m,j

h2
(35)

Let consider: f∂d1 =(
1
h1
e31,1

1
h1
e31,2 ... 1

h1
e31,n −

1
h1
e3m,1 −

1
h1
e3m,2 ... − 1

h1
e3m,n

1
h2
e31,1 −

1
h2
e31,n

1
h2
e32,1 −

1
h2
e32,n ... 1

h2
e3m,1 −

1
h2
e3m,n

)T

(36)

(35) is equivalent to e∂d = Ue∂d1 and f∂d = U−1f∂d1 for
any invertible transformation U . Define gd = gd1U

−1, the
discretized system is then derived as:

fd = Jded + gde
∂
d , f

∂
d = gTd ed (37)

Remark 5: Choosing the grid such that another effort
variable is defined on a boundary permits to define another
causality on this boundary and thus other boundary condi-
tions. The proof is extended straightforwardly to cases where
any combination of effort variables can be defined on the
points at the boundaries. It is the case in the 1D example in
the previous section where the causality is not the same.

B. Consistency

Each spatial derivative operator is approximated by a
centred scheme such that ∂ei(ξj)

∂ξj
=

ei(ξj+1)−ei(ξj−1)
2hj

+ ε

with i ∈ {1, 2, 3} and j ∈ {1, 2} and where ε is the local
consistency error in space. A Taylor series expansion of
ei(ξj+1) and ei(ξj−1) shows that ε = O(h2j ). Furthermore,
the definition of the effort e∂d variables outside of the grid
permits to define the differential operators on the boundaries
without loss of consistency order. The local consistency error
in space is thus of order 2.

C. Numerical results

We consider the discretization of the PH system (19) along
with the boundary conditions e1(0, ξ2) = 0, e1(L1, ξ2) = 0,
e2(ξ1, 0) = 0 and e2(ξ1, L2) = 0 (which correspond to
e∂d = 0). In acoustics, e1 and e2 are the components of
the particular speed and e3 the pressure. The theoretical
eigenfrequencies of the system are derived from the analyt-
ical resolution of the PDE leading for this set of boundary

conditions to fk1k2 = c0
2

√(
k1
L1

)2
+
(
k2
L2

)2
with {k1, k2} ∈

N 2 Fig. 5 shows the imaginary parts of the first eigenvalues
of the Jd matrix for L1 = 1 and L2 = 0.8, discretized
with different spatial steps on each axis, compared with the
theoretical eigenfrequencies. Since Jd is skew-symmetric,
the eigenvalues are exactly on the imaginary axis, which
guarantees energy conservation. Figure 6 shows the Bode
gain plot of the discretized system with input e10,int(n/2) and
output e3m,int(n/2) (with int(n/2) the integer part of n/2).
A cut-off can be observed, for a frequency increasing with
the number of discretization points for an increasing roll-off.
Such diagram permits to evaluate numerically if the number
of points in the discretization is enough to study a the system
behavior up to a certain frequency.
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V. CONCLUSION

In this paper a structure preserving spatial discretization
scheme based on staggered grids and finite difference has
been proposed for port-Hamiltonian systems (PHS) defined
on 1D and 2D spatial domains. It has been shown how to
define the discretized state and co-state variables and their
extension to the boundary such that the PHS structure is
preserved. This leads to a consistent balance equation on the
discretized energy. A strong advantage of this approach is the
preservation of the physical interpretation of the boundary
port variables, which can be used for the interconnection
of the hyperbolic system with its environment through its
boundaries. The same is true when considering boundary
control. Another important feature of the proposed method is
its simplicity, inherited from the underlying finite-difference
scheme. Future work will deal with the full discretization,
i.e., in space and time, and its extension for control design.
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