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Abstract

We present a general counting result for the unstable eigenvalues of linear operators of the form
JL in which J and L are skew- and self-adjoint operators, respectively. Assuming that there exists a
self-adjoint operator K such that the operators JL and JK commute, we prove that the number of
unstable eigenvalues of JL is bounded by the number of nonpositive eigenvalues of K. As an appli-
cation, we discuss the transverse stability of one-dimensional periodic traveling waves in the classical
KP-II (Kadomtsev–Petviashvili) equation. We show that these one-dimensional periodic waves are
transversely spectrally stable with respect to general two-dimensional bounded perturbations, in-
cluding periodic and localized perturbations in either the longitudinal or the transverse direction,
and that they are transversely linearly stable with respect to doubly periodic perturbations.

1 Introduction

Linearized operators arising in stability studies for Hamiltonian systems have a typical product struc-
ture JL in which J is a skew-adjoint operator and L a self-adjoint operator. Well-known results show
that, under suitable conditions, the number of unstable eigenvalues (i.e., the eigenvalues with positive
real part) of the operator JL is bounded by the number of nonpositive eigenvalues of the self-adjoint
operator L (e.g., see [6, 13, 17] and the references therein). In particular, if the operator L is positive-
definite this immediately implies that JL has no unstable spectrum. Since typically L is related to the
Hessian operator of an energy functional that is conserved in the time evolution of the Hamiltonian
system, besides spectral stability, one can also conclude on nonlinear, orbital stability. Such results
have been extensively used in the analysis of the stability of nonlinear waves (e.g., see the books [2, 18]).

While these arguments work very well for solitary waves, for periodic waves they allow, so far, to
only understand stability with respect to co-periodic perturbations (i.e., which have the same period
as that of the wave). The main difficulty in the case of periodic waves, is the fact that the number of
negative eigenvalues of the operator L increases when the period of the perturbations is an increasing
multiple of the period of the wave, and that L has negative essential spectrum when the perturbations
are localized. These are serious obstacles in controlling unstable eigenvalues and then proving stability
of periodic waves for arbitrary bounded perturbations.

In this paper we generalize this classical eigenvalue counting result by showing that the operator L
can be replaced by another self-adjoint operator K, provided the operators JL and JK commute. More
precisely, under suitable assumptions, we prove that the number of unstable eigenvalues of the operator
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JL is bounded by the number of nonpositive eigenvalues of the self-adjoint operator K. In applications,
and in particular for periodic waves, when the operator L has too many negative eigenvalues to conclude
on stability, one could then try to construct such an operator K with less negative spectrum.

Very recently, the idea of using a positive definite operator K has been exploited in [7] and [4, 9]
and allowed the authors to show the orbital stability of periodic waves with respect to subharmonic
perturbations (i.e., the period of the perturbations is an integer multiple of the period of the wave)
for the Korteweg-de Vries (KdV) and the cubic nonlinear Schrödinger (NLS) equations, respectively.
In these works, the construction of K was strongly related to the integrability properties of these
equations, and more precisely to the existence of a higher-order conserved quantity whose Hessian
provided the positive definite operator K. In general, finding such an operator K for a nonintegrable
equation is a nontrivial task.

As an application of the general result, we discuss the transverse (spectral and linear) stability of
one-dimensional periodic traveling waves in a model equation derived by Kadomtsev and Petviashvili
in 1970 [16]. Thanks to the scaling properties of this model equation, we may take it in the following
normalized form

(ut + 6uux + uxxx)x + uyy = 0, (1.1)

where the subscripts denote partial derivatives with respect to the spatial variables (x, y) and the
temporal variable t. This equation is referred to as the KP-II equation, where the index II stands for
the version relevant to the case of negative transverse dispersion. The KP-I equation is obtained by
replacing the positive sign in front of the term uyy by a negative sign, and it is relevant to the case of
positive transverse dispersion. Both versions of the KP equation are two-dimensional extensions of the
KdV equation

ut + 6uux + uxxx = 0, (1.2)

that governs one-dimensional nonlinear waves in the longitudinal direction of the x axis. Just like the
KdV equation, the KP-II and KP-I equations arise as particular models in the classical water-wave
problem, in the cases of small and large surface tension, respectively.

The KP equations quickly became very popular due to their integrability properties [26], including
a rich family of exact solutions, a bi-Hamiltonian structure and the recursion operator, a countable set
of conserved quantities and symmetries, as well as the inverse scattering transform techniques. At the
same time, they became popular in the analysis of the stability of nonlinear waves, both relying upon
functional-analytic methods and integrability techniques. As a model equation for surface water waves,
some of the obtained results were extended to the Euler equations describing the full hydrodynamic
problem [5, 12, 29].

Stability properties of traveling waves are quite different for the two versions of the KP equation.
While both periodic and solitary waves are transversely unstable in the KP-I equation (e.g., see recent
works [8, 15, 27, 28] and the references therein), it is expected that they are transversely stable in the
KP-II equation [1, 16]. Numerical evidences of these stability properties can be found for instance in
[19, 20]. For the case of solitary waves, the transverse nonlinear stability has been recently proved
for periodic transverse perturbations in [23], and for fully localized perturbations in [22]. In contrast,
there are few analytical results for periodic waves for which, in particular, the question of transverse
nonlinear stability is open.

By using a linearized version of the dressing method from [26], explicit eigenfunctions of the spectral
stability problem associated with the periodic waves of the KP-II equation (1.1) were constructed in [21].
Completeness of the eigenfunctions and generalizations to the case of oblique transverse perturbations
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were elaborated few year later [30]. The results obtained by this method rely on explicit computations
involving Jacobi elliptic functions for the periodic waves and the associated Jost functions, which
are hard to check or confirm. An alternative approach, based on the classical counting result for the
unstable eigenvalues of linear operators of the form JL mentioned above, has been recently discussed in
[11]. It turns out that in the case of the periodic waves of the KP-II equation the self-adjoint operator L
has unbounded spectrum for both below and above. Consequently, this eigenvalue counting only allows
to obtain a partial result, showing spectral stability of small-amplitude periodic waves with respect to
perturbations which are co-periodic in the direction of propagation x, and have long wavelengths in
the transverse direction y.

In the present work, we show that the general counting result in which the operator L is replaced
by a suitably chosen operator K allows us to give a complete proof of transverse spectral stability of
periodic waves for general two-dimensional bounded perturbations. As a consequence, we also show
that these periodic waves are transversely linearly stable with respect to doubly periodic perturbations,
which are subharmonic and have zero mean in the direction of propagation x and have an arbitrary,
but fixed, period in the transverse direction y. The main challenge of our method is the construction
of a self-adjoint operator K such that the operators JL and JK commute and which has a minimum
number of negative eigenvalues. The best situation arises when the operator K is positive, this property
implying directly transverse stability.

One way of finding a self-adjoint operator K satisfying the commutativity property is with the
help of the conserved quantities of the KP-II equation, as this has been done for the KdV and NLS
equations in [4, 7, 9]. The self-adjoint operator L is related to the Hessian operator of the standard
energy functional expanded at the periodic traveling wave. Similarly, the self-adjoint operator K can
be found from the Hessian operator of a higher-order energy functional, as for instance the one used
in the proof of global well-posedness for the KP-I equation [24, 25]. Then the operators JL and JK
commute.

For the KdV and NLS equations, neither L and K are positive operators, but a suitable linear
combination of these operators is positive [4, 7, 9]. We found rather surprising that this is not the
case for the KP-II equation, when K is constructed from a higher-order energy functional. In order to
avoid this obstacle, we start with the operator K obtained for the KdV equation and find an operator
K for the KP-II equation by a direct search from the commutativity relation. Then we show that
a suitable linear combination of L and K is indeed a positive operator. However, this self-adjoint
operator K constructed directly from the commutativity relation does not seem to be related to the
Hessian operator of some higher-order conserved quantity of the KP-II equation. In particular, we
cannot use this construction to also conclude on the nonlinear, orbital stability of these periodic waves,
which remains an open problem.

The paper is organized as follows. We present the general counting result for unstable eigenvalues
in Section 2. In Section 3, we discuss the transverse spectral and linear stability problems for the
periodic waves of the KP-II equation and state the main results. The proofs of these results are given
in Section 4. We conclude with a discussion of the transverse nonlinear stability problem in Section 5.

Acknowledgements. M. Haragus was partially supported by the ANR project BoND (ANR-13-
BS01-0009-01). J. Li was supported by the MSc scholarship at McMaster University. D. Pelinovsky
was supported by the NSERC Discovery grant.
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2 Abstract counting result

Here we present the general counting result for the unstable eigenvalues of an operator JL with J and
L being skew- and self-adjoint operators, respectively.

Following a standard terminology, for a linear operator A, we denote by σs(A), σc(A), and σu(A),
the subsets of the spectrum σ(A) of A lying in the open left-half complex plane, on the imaginary axis,
and in the open right-half complex plane, respectively. More precisely, we denote

σs(A) = {λ ∈ σ(A) ; Reλ < 0},
σc(A) = {λ ∈ σ(A) ; Reλ = 0},
σu(A) = {λ ∈ σ(A) ; Reλ > 0},

and refer to these sets as the stable, central, and unstable spectra of A, respectively. Further, we denote
by ns(A), nc(A), and nu(A), the dimension of the spectral subspaces associated to σs(A), σc(A),
and σu(A), respectively, if these exist. Recall that in the case of a finite spectral subset consisting
only of isolated eigenvalues with finite algebraic multiplicities, the corresponding spectral subspace is
finite-dimensional, and its dimension is given by the number of eigenvalues counted with algebraic
multiplicities.

Hypothesis 2.1 Consider a Hilbert space H equipped with a scalar product 〈·, ·〉. Assume that J , L,
and K are closed linear operators acting in H with the following properties.

(i) J is a skew-adjoint operator (J∗ = −J) with bounded inverse.

(ii) L and K are self-adjoint operators (L∗ = L and K∗ = K) such that the operators JL and JK
commute, i.e., the operators (JL)(JK) and (JK)(JL) have the same domain D ⊂ H, and

(JL)(JK)u = (JK)(JL)u, ∀ u ∈ D. (2.1)

(iii) The nonpositive spectrum σs(K) ∪ σc(K) of the self-adjoint operator K consists, at most, of a
finite number of isolated eigenvalues with finite multiplicities.

(iv) The unstable spectrum σu(JL) of the operator JL consists, at most, of isolated eigenvalues with
finite algebraic multiplicities, and the generalized eigenvectors associated to these eigenvalues
belong to the domain of the operator JK.

A well-known property of the spectrum of the operator JL is that it is symmetric with respect to
the imaginary axis because J and L are skew- and self-adjoint operators, respectively (e.g., see [13,
Proposition 2.5]). In particular, eigenvalues of JL lying outside the imaginary axis arise in pairs of
eigenvalues (λ,−λ) with the same algebraic multiplicity, so that we have a one-to-one correspondence
between the spectral subsets σs(JL) and σu(JL).

Remark 2.2 (i) The invertibility of the operator J implies that we can replace the equality (2.1) by
the equivalent equality

(LJK)u = (KJL)u, ∀ u ∈ D.
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(ii) In the case of differential operators, as the ones which will be considered in the next section, the
second part of the Hypothesis 2.1 (iv) can be easily checked using the property that generalized
eigenvectors of differential equations are often smooth functions. Alternatively, we can replace this
hypothesis by slightly stronger hypotheses on the domain of the operator JK, as for instance that
the domain of the operator (JL)n is included in the domain of JK, for some positive integer n.
Clearly, this property implies that the generalized eigenvectors of JL belong to the domain of JK.

The key step in the proof of our main result is the following property which holds for isolated
eigenvalues of the operator JL under the assumptions (i) and (ii) of Hypothesis 2.1, only.

Lemma 2.3 Under the assumptions (i) and (ii) of Hypothesis 2.1, if λ and σ are isolated eigenvalues
of JL with finite algebraic multiplicities and if

(i) λ+ σ 6= 0,

(ii) the spectral subspaces Eλ and Eσ associated to the the eigenvalues λ and σ, respectively, are
contained in the domain of the operator JK,

then
〈Ku, v〉 = 0, ∀ u ∈ Eλ, v ∈ Eσ. (2.2)

Proof. The eigenvalues λ and σ are isolated and have finite multiplicities, so that there exist finite
bases of the associated spectral spaces Eλ and Eσ, which consist of chains of generalized eigenvectors
{u1, . . . , un} and {v1, . . . , vm}, respectively, satisfying

JLui = λui + ui−1, u0 = 0, i = 1, . . . , n,

JLvj = σvj + vj−1, v0 = 0, j = 1, . . . ,m.

It is sufficient to prove (2.2) for u = ui, v = vj, i = 1, . . . , n, j = 1, . . . ,m. We will proceed by induction
upon i and j.

Using successively the fact that ui belong to the domain of JK, the commutativity of JL and JK,
and the invertibility of J we obtain

JLui = λui + ui−1 ⇒ JKJLui = λJKui + JKui−1

⇒ JLJKui = λJKui + JKui−1

⇒ LJKui = λKui +Kui−1.

The last equality implies that

λ〈Kui, vj〉 = 〈LJKui, vj〉 − 〈Kui−1, vj〉,

and since L and K are self-adjoint operators and J is a skew-adjoint operator, we also have the equality

σ〈Kui, vj〉 = 〈Kui, JLvj〉 − 〈Kui, vj−1〉 = −〈LJKui, vj〉 − 〈Kui, vj−1〉.

Adding these two equalities we obtain

(λ+ σ)〈Kui, vj〉 = −〈Kui−1, vj〉 − 〈Kui, vj−1〉. (2.3)
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The first step of the induction argument is trivial,

〈Ku0, vj〉 = 〈Kui, v0〉 = 0, ∀ i = 1, . . . , n, j = 1, . . . ,m,

since u0 = v0 = 0, and we then conclude using the equality (2.3) and the hypothesis λ+ σ 6= 0.

The following result which holds for the unstable eigenvalues of JL is an immediate consequence
of Lemma 2.3.

Corollary 2.4 Under the assumptions of Hypothesis 2.1, if u belongs to the spectral subspace Eu

associated to the unstable spectrum σu(JL) of JL, then

〈Ku, u〉 = 0.

We can now state the abstract counting result as follows.

Theorem 1 Under the assumptions in Hypothesis 2.1 the following properties hold.

(i) The number nu(JL) of unstable eigenvalues of the operator JL (counted with algebraic multi-
plicities) and the number nsc(K) = ns(K) + nc(K) of nonpositive eigenvalues of the self-adjoint
operator K (counted with multiplicities) satisfy

nu(JL) 6 nsc(K).

(ii) If, in addition, the kernel of the operator K is contained in the kernel of the operator JL, then

nu(JL) 6 ns(K). (2.4)

Proof. (i) According to Hypothesis 2.1 (iii), the spectral subset σsc = σs(K) ∪ σc(K) of the self-
adjoint operator K is a finite set, and we can consider the corresponding spectral decomposition of the
Hilbert space H,

H = Fsc ⊕ Fu, σ(K
∣∣
Fsc

) = σsc(K), σ(K
∣∣
Fu

) = σu(K). (2.5)

We denote by Psc the unique spectral projection onto Fsc. In particular,

dim(Fsc) = ns(K) + nc(K) = nsc(K),

and
〈Ku, u〉 > 0, ∀ u ∈ Fu \ {0}. (2.6)

Similarly, according to Hypothesis 2.1 (iv), we consider the spectral subspace Eu associated to the
unstable spectrum σu(JL) of JL, for which we have that dim(Eu) = nu(JL).

We claim that the restriction to Eu of the spectral projection Psc is an injective operator Psc

∣∣
Eu

:
Eu → Fsc. Indeed, assume that Pscu = 0, for some u ∈ Eu. Then u ∈ Fu and 〈Ku, u〉 > 0, if u 6= 0, by
(2.6). On the other hand, according to Corollary 2.4, 〈Ku, u〉 = 0, since u ∈ Eu. Consequently, u = 0
which proves the claim. Since Fsc is a finite-dimensional space, by Hypothesis 2.1 (iii), the injectivity
of Psc

∣∣
Eu

implies that
dim(Eu) = nu(JL) 6 dim(Fsc) = nsc(K),
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and proves the first part of the theorem.

(ii) In the arguments above, we now replace the spectral decomposition (2.5) of H by

H = Fs ⊕ Fcu, σ(K
∣∣
Fs

) = σs(K), σ(K
∣∣
Fcu

) = σcu(K),

and work with the spectral projection Ps onto Fs, instead of Psc. In this case, the restriction Ps

∣∣
Eu

:
Eu → Fs is injective. Indeed, assume that Psu = 0, for some u ∈ Eu. Then u ∈ Fcu and by Corollary 2.4
we have that 〈Ku, u〉 = 0. Together with the inequality (2.6) this implies that u belongs to the kernel
Fc of K, and hence to the kernel of JL, by hypothesis. We conclude that u = 0, which proves the
injectivity of Ps

∣∣
Eu

. This latter property implies the inequality (2.4) and completes the proof of the
theorem.

The following corollary is a particular case of Theorem 1 for nonnegative operators K.

Corollary 2.5 Under the assumptions of Hypothesis 2.1, further assume that K is a nonnegative
operator. Then nu(JL) 6 nc(K). If in addition the kernel of K is contained in the kernel of JL, then
nu(JL) = 0, and the spectrum of JL is purely imaginary.

Remark 2.6 The particular case of Theorem 1 with K = L recovers the classical counting result
showing that nu(JL) 6 ns(L). More refined versions of this result are available in the literature
in which, under different additional assumptions, the inequality is replaced by an equality (e.g., see
[6, 13, 17]). The difference ns(L) − nu(JL) is shown to be given by the number of purely imaginary
eigenvalues of JL which have a negative Krein signature. We expect that such results can be extended to
the present setting by introducing for the purely imaginary eigenvalues of JL a Krein signature relative
to the operator K.

3 Transverse stability of periodic waves in the KP-II equation

As an application of the general result in Theorem 1, we discuss the transverse stability of periodic
traveling waves in the KP-II equation (1.1). Here we formulate the transverse spectral and linear
stability problems and state the main results. We prove these results in Section 4.

3.1 Transverse spectral stability

One-dimensional periodic traveling waves of the KP-II equation (1.1) are solutions of the KdV equation
(1.2) of the form u(x, t) = φc(x+ct), with φc a periodic function and c a constant speed of propagation.
In Section 4, we recall some well-known properties of these periodic traveling waves which are needed
for our analysis. Without loss of generality, we can restrict to 2π-periodic and even solutions φc, for
c > 1, as given by Proposition 4.1.

In a coordinate system moving with the speed c of the periodic traveling wave, the corresponding
linearization of the KP-II equation (1.1) is given by

(wt +wxxx + cwx + 6(φc(x)w)x)x + wyy = 0, (3.1)
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in which, for notational simplicity, we denoted by x the variable x+ ct from the KP-II equation (1.1).
Following the transverse spectral stability approach in [11], we consider solutions of the form

w(x, y, t) = eλt+ipyW (x),

with W satisfying the differential equation

λWx +Wxxxx + cWxx + 6(φc(x)W )xx − p2W = 0.

The left hand side of this equation defines a linear differential operator with 2π-periodic coefficients

Ac,p(λ) = λ∂x + ∂4
x + c∂2

x + 6∂2
x(φc(x) ·) − p2,

and the spectral stability problem is concerned with the invertibility of this operator, for certain values
of p and in a suitable function space. The periodic wave φc is spectrally stable if Ac,p(λ) is invertible
for any λ ∈ C with Reλ > 0, and unstable otherwise. The type of the perturbations determines the
choice of the underlying function space and the values of p. Here we consider general bounded two-
dimensional perturbations of the periodic wave, and we therefore assume that Ac,p(λ) acts in Cb(R),
the Banach space of uniformly bounded continuous functions on R, and consider any real number p.

The particular case p = 0 corresponds to one-dimensional perturbations of the periodic wave which
do not depend upon the transverse variable y. The dynamics of such perturbations is better described
by the KdV equation rather than the KP equation. In particular, the operator Ac,0(λ) obtained using
the KP equation has an unnecessary factor ∂x, which is also a noninvertible operator. It is therefore
more appropriate to replace in this case the operator Ac,0(λ) by the one given by the KdV equation,

Ãc,0(λ) = λ+ ∂3
x + c∂x + 6∂x(φc(x) ·),

for which the invertibility question is equivalent to the one of studying the spectrum of the operator

B̃c,0 = −∂3
x − c∂x − 6∂x(φc(x) ·).

The results in [3] (see also [13] for the case of small-amplitude waves) imply that the spectrum of
this operator is purely imaginary, hence showing spectral stability with respect to one-dimensional
perturbations.

Truly two-dimensional perturbations correspond to p 6= 0. Since spectra of differential operators
with periodic coefficients acting in Cb(R) are typically continuous, the Hypothesis 2.1(iv), which requires
point spectra, is not satisfied with this choice of the function space. In order to overcome this difficulty,
we use first a Bloch decomposition, based on Floquet theory, showing that the operator Ac,p(λ) is
invertible in Cb(R) if and only if the operators

Ac,p(λ, γ) = λ(∂x + iγ) + (∂x + iγ)4 + c(∂x + iγ)2 + 6(∂x + iγ)2(φc(x) ·) − p2,

are invertible in the space L2
per(0, 2π) of square-integrable 2π-periodic functions, for any γ ∈ [0, 1) (e.g.,

see [11]). At this point, we distinguish the cases γ 6= 0 and γ = 0.

For any γ ∈ (0, 1), the operator ∂x + iγ has a bounded inverse in L2
per(0, 2π), so that Ac,p(λ, γ) is

invertible if and only if λ belongs to the resolvent set of the operator

Bc,p(γ) = −(∂x + iγ)3 − c(∂x + iγ)− 6(∂x + iγ)(φc(x) ·) + p2(∂x + iγ)−1, (3.2)
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which is a closed operator in L2
per(0, 2π) with domainH3

per(0, 2π). Consequently, our problem is reduced
to that of studying the spectrum of Bc,p(γ), which is an operator with compact resolvent, hence with
point spectrum consisting of isolated eigenvalues with finite algebraic multiplicities, only. Moreover,
Bc,p(γ) has the JL product structure in the previous section,

Bc,p(γ) = J(γ)Lc,p(γ), (3.3)

with
J(γ) = (∂x + iγ), Lc,p(γ) = −(∂x + iγ)2 − c− 6φc(x) + p2(∂x + iγ)−2. (3.4)

It is not difficult to check that the operators J(γ) and Lc,p(γ) satisfy the properties required by the
Hypothesis 2.1.

In contrast, for γ = 0, the operator ∂x is not invertible in L2
per(0, 2π). However, for p 6= 0, any

function in the kernel of Ac,p(λ, 0) has zero mean, so that the invertibility of Ac,p(λ, 0) in L2
per(0, 2π) is

equivalent to the invertibility of Ac,p(λ, 0) in the invariant subspace L̇2
per(0, 2π) of functions with zero

mean. In this subspace, ∂x has a bounded inverse, and Ac,p(λ, 0) is invertible if and only if λ belongs to
the resolvent set of the operator Bc,p(0) defined in (3.2) for γ = 0. We point out that L̇2

per(0, 2π) is an
invariant subspace for the operators Bc,p(0) and J(0) but not for Lc,p(0). Therefore, in the subsequent
analysis, we replace, when needed, the operator Lc,p(0) by the projected operator Π0Lc,p(0), where
Π0 : L2

per(0, 2π) → L̇2
per(0, 2π) is the standard orthogonal projection on the nonzero Fourier modes.

For notational simplicity, we denote the projected operator Π0Lc,p(0) also by Lc,p(0), and refer to it as
the restriction of Lc,p(0) to L̇2

per(0, 2π).

Summarizing, we can restrict our analysis to the case of truly two-dimensional bounded perturba-
tions, p 6= 0. Nevertheless, the existing results for the limit case p = 0 from [7] will play a key role
in the subsequent proofs. The arguments above show that the question of transverse spectral stability
for a periodic wave φc reduces to the study of the (point) spectrum of the operators Bc,p(γ). For this
spectral analysis, we apply the general counting result in Corollary 2.5 with J = J(γ), L = Lc,p(γ),
and suitably chosen operators K = Kc,p(γ), which are nonnegative. These operators are constructed
in Sections 4.2 and 4.3 below. We obtain the following theorem showing transverse spectral stability.

Theorem 2 Consider a periodic traveling wave φc of the KdV equation (1.2) with the properties given
in Proposition 4.1 below. For every p 6= 0, the following properties hold.

(i) The linear operator Bc,p(γ) = J(γ)Lc,p(γ) defined in (3.3)–(3.4), acting in L2
per(0, 2π), when

γ ∈ (0, 1), and in L̇2
per(0, 2π), when γ = 0, has purely imaginary spectrum, for any γ ∈ [0, 1).

(ii) The linear operator Ac,p(λ) is invertible in Cb(R), for any λ ∈ C with Reλ > 0.

Consequently, the periodic traveling wave φc is transversely spectrally stable with respect to two-dimensional
bounded perturbations.

We prove the first part of this theorem in Section 4.4. The second part is an immediate consequence
of the arguments above.

Remark 3.1 As explained in [11], in the case of small-amplitude limit, c → 1, the spectral properties
of Lc,p(γ) for p 6= 0 are not good enough to conclude on spectral stability using the classical counting
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criterion (with K = L). Indeed, with Fourier series, we find that the spectrum of the limit operator
L1,p(γ) from (3.4) is given by

σ(L1,p(γ)) =
{
k2 − 1− p2k−2 ; k = γ + n, n ∈ Z, γ + n 6= 0

}
.

Since the map k 7→ k2−1−p2k−2 is negative for k2 6 (1+
√

1 + 4p2)/2, the operator has an increasing
number of negative eigenvalues as p → ∞. This property remains true for values of c close to 1, hence
making difficult to conclude on the absence of unstable eigenvalues for the operator J(γ)Lc,p(γ) for
any p.

3.2 Transverse linear stability

The positivity properties of the operators K = Kc,p(γ) used in our spectral stability analysis, also
allows us to prove a transverse linear stability result. However, this latter result is restricted to doubly
periodic perturbations, which are subharmonic with zero mean in the direction of propagation x and
have an arbitrary, but fixed, period in the transverse direction y.

Restricting to periodic perturbations which have zero mean in x, we rewrite the linearized equation
(3.1) as an evolutionary problem

wt = Bcw, (3.5)

in which Bc is a differential operator with 2π-periodic coefficients having a JL-product structure, more
precisely,

Bc = JLc, J = ∂x, Lc = −∂2
x − c− 6φc(x)− ∂−2

x ∂2
y . (3.6)

Here, the operator Bc is well-defined and closable in the space of locally square-integrable functions on
R2 which are 2πN -periodic and have zero mean in x, for some N ∈ N, and are 2π/p-periodic in y, for
some fixed wave number p. We denote this space by L̇2(N, p). In this space, the operators J and Lc

are skew- and self-adjoint operators, respectively.

The key observation in our linear stability proof is that the existence of a self-adjoint operator Kc

satisfying the commutativity property

LcJKc = KcJLc, (3.7)

just as the ones in Hypothesis 2.1(ii), implies that the associated quadratic form 〈Kc·, ·〉 is constant
along suitable solutions to the linearized equation (3.5), hence it acts as a Lyapunov functional. Indeed,
a simple formal calculation gives

d

dt
〈Kcw,w〉 = 〈KcJLcw,w〉 + 〈Kcw, JLcw〉 = 〈KcJLcw,w〉 − 〈LcJKcw,w〉 = 0.

This calculation becomes rigorous for appropriately regular solutions. Thus, for suitable solutions w(t)
to the linearized equation (3.5), we have

〈Kcw(t), w(t)〉 = 〈Kcw(0), w(0)〉, ∀ t ∈ R. (3.8)

If the operator Kc is coercive in some norm, then the solutions w(t) to the linearized equation (3.5)
stay bounded in this norm for all times, which then implies linear stability.
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The transverse linear stability result is obtained in the energy space for the quadratic form (3.8),
which coincides with the Hilbert space H2,1(N, p) defined by

H2,1(N, p) = {w ∈ L̇2(N, p) : wx, wxx, wy ∈ L̇2(N, p)},

and equipped with the standard norm denoted by ‖·‖2,1. The following theorem is proved in Section 4.5.

Theorem 3 Consider a periodic traveling wave φc of the KdV equation (1.2) with the properties given
in Proposition 4.1 below. For any N ∈ N and any positive p ∈ R, there exists a constant CN,p such
that any solution w ∈ C1(R,H2,1(N, p)) of the linearized equation (3.5) satisfies the inequality

‖w(t) − a(t)∂xφc‖2,1 6 CN,p‖w(0)‖2,1, |a′(t)| 6 CN,p, (3.9)

where a(t) represents the orthogonal projection of the solution on the derivative ∂xφc of the periodic
wave,

a(t) = 〈w(t), ∂xφc〉.
Consequently, the periodic traveling wave is transversely linearly stable with respect to doubly periodic
perturbations in H2,1(N, p).

Remark 3.2 (i) Due to the translation invariance of the KP-II equation, the derivative ∂xφc of the
periodic wave belongs to the kernel of the linearized operator Bc. As we shall see later, it also
belongs to the kernel of the operator Kc, which is only coercive on the subspace orthogonal to ∂xφc.
This explains the presence of the term a(t)∂xφc in the first estimate in (3.9). Furthermore, the
linearized operator Bc has a generalized kernel with one, at least, 2×2 Jordan block. This explains
a possible linear growth of a(t), as indicated by the second inequality in (3.9). The estimates in
(3.9) are the linear counterpart of a standard nonlinear orbital stability result claiming that, as
expected in the presence of translational invariance, solutions stay close to the orbit {φc(· +
x0)}x0∈R of the periodic traveling wave.

(ii) We do not discuss here the initial value problem for the linearized equation (3.5), and hence the
question of existence of solutions w ∈ C1(R,H2,1(N, p)). However, on the basis of semigroup
theory, one expects that for initial data w(0) ∈ H5,3(N, p) a unique solution of (3.5) exists which
satisfies w ∈ C1(R,H2,1(N, p))∩C0(R,H5,3(N, p)), where the space H5,3(N, p) is defined similarly
to H2,1(N, p).

4 Proofs of Theorems 2 and 3

Here we prove the stability results in Theorems 2 and 3. We recall some well-known properties of the
periodic traveling waves of the KdV equation (1.2) in Section 4.1. In Sections 4.2 and 4.3, we construct
the operators K = Kc,p(γ) and discuss their positivity properties. We conclude with the proofs of the
two theorems in Sections 4.4 and 4.5.

4.1 One-dimensional periodic traveling waves

Periodic traveling waves of the KdV equation (1.2) are solutions of the form u(x, t) = v(x + ct), with
v a periodic function in its argument. Due to the Galilean invariance, one can integrate the resulting
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third-order differential equation for v with zero integration constant and obtain v from the second-order
differential equation

v′′(x) + cv(x) + 3v2(x) = 0. (4.1)

Without loss of generality, due to scaling and translation invariances, we scale the period of the periodic
traveling wave to 2π, translate the wave profile v to be even in x, and so restrict to 2π-periodic even
solutions to the differential equation (4.1). A complete characterization of these periodic waves is
available in terms of Jacobi elliptic functions (e.g., see [7]). The following proposition specifies this
explicit result.

Proposition 4.1 For every c > 1, the differential equation (4.1) possesses a unique 2π-periodic even
solution φc which satisfies φc(0) > 0 and is given by

φc(x) =
2K2(k)

3π2

[
1− 2k2 −

√
1− k2 + k4 + 3k2cn2

(
K(k)

π
x; k

)]
. (4.2)

Here cn is the Jacobi elliptic function, K(k) is a complete elliptic integral, and the elliptic modulus
k ∈ (0, 1) parameterizes the speed parameter c by

c =
4K2(k)

π2

√
1− k2 + k4. (4.3)

Proof. It follows from the explicit expressions involving Jacobi elliptic functions (e.g., see [7]), that
the function

u(ξ) = 2k2cn2(ξ; k), k ∈ (0, 1),

is a 2K(k)-periodic solution of the second-order differential equation

u′′(ξ) + 4(1 − 2k2)u(ξ) + 3u2(ξ) = 4k2(1− k2). (4.4)

In order to remove the constant term from the right-hand side of equation (4.4), and normalize the
period of u to 2π, we use the scaling and shift transformation

φc(x) =
K2(k)

π2

[
A(k) + u

(
K(k)

π
x

)]
, (4.5)

and take

c =
K2(k)

π2

[
4(1− 2k2)− 6A(k)

]
, (4.6)

where A(k) is a solution of quadratic equation

3A2 − 4(1 − 2k2)A− 4k2(1− k2) = 0, (4.7)

satisfying A(0) = 0. Solving the quadratic equation (4.7), we obtain

A(k) =
2

3

[
1− 2k2 −

√
1− k2 + k4

]
. (4.8)

Substituting (4.8) into (4.5) and (4.6), we obtain (4.2) and (4.3).
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Remark 4.2 As k → 0, the explicit solution given by (4.2) and (4.3) recovers the Stokes expansion
for small-amplitude periodic waves,

φc(x) = a cos(x) +
a2

2
[cos(2x) − 3] +O(a3), c = 1 +

15

2
a2 +O(a4), (4.9)

where a = k2/4 +O(k4) is the projection to the first Fourier mode. Note that c > 1 follows from (4.3)
for every k ∈ (0, 1).

4.2 Construction of commuting operators Mc,p(γ)

We start by constructing a self-adjoint operator Mc,p(γ) which satisfies the commutativity condition
(2.1) in Hypothesis 2.1(ii). For notational simplicity, we restrict in the following arguments to the case
γ = 0 and take

J = ∂x, Lc,p = −∂2
x − c− 6φc(x) + p2∂−2

x . (4.10)

For γ 6= 0, the operators Mc,p(γ) are easily obtained from the resulting operator Mc,p by formally
replacing the derivative ∂x with ∂x + iγ.

We search for a self-adjoint operator Mc,p which satisfies the commutativity condition (2.1) in
Hypothesis 2.1 (ii). As in Remark 2.2 (i), we write the commutativity condition in the form

Lc,p∂xMc,p = Mc,p∂xLc,p. (4.11)

For the purpose of symbolic computations, we write

Lc,p = LKdV + p2LKP, (4.12)

where
LKdV = −∂2

x − c− 6φc(x), LKP = ∂−2
x , (4.13)

and similarly,
Mc,p = MKdV + p2MKP, (4.14)

where MKdV and MKP are the operators to be found.

The case p = 0 corresponds to the KdV equation for which the operator MKdV has been constructed
in [7]. We briefly recall this construction here. The operators LKdV and MKdV are related to linearized
equations of the KdV hierarchy. Formally, the second-order differential equation (4.1) is the Euler–
Lagrange equation for the energy functional

Sc(u) = E(u) − cQ(u), (4.15)

where E(u) and Q(u) are the Hamiltonian and momentum, respectively, of the KdV equation (1.2)
given by

E(u) =

∫ [
u2x − 2u3

]
dx, Q(u) =

∫
u2dx.

The higher-order energy functional of the KdV equation takes the form

H(u) =

∫ [
u2xx − 10uu2x + 5u4

]
dx. (4.16)
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To obtain MKdV, we observe that a solution of the second-order differential equation (4.1) is also a
critical point of the higher-order energy functional

Rc(u) = H(u)− c2Q(u) + 2IC(u), (4.17)

where C(u) =
∫
u dx is the Casimir-type functional, which does not contribute to the second variation,

whereas I is the first-order invariant for the second-order differential equation (4.1) given by

I =

(
dv

dx

)2

+ cv2 + v3 = const.

By computing the Hessian operator of Rc(u) at the periodic wave φc, we obtain the linear operator

MKdV = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2, (4.18)

and straightforward symbolic computations confirm that

LKdV∂xMKdV −MKdV∂xLKdV = 0.

Next, we are looking for MKP from the commutativity condition

LKdV∂xMKP −MKP∂xLKdV = MKdV∂xLKP − LKP∂xMKdV, (4.19)

which corresponds to the order O(p2) obtained from (4.11), (4.12), and (4.14). From the explicit
expressions (4.13) and (4.18), we find the right-hand side of (4.19),

MKdV∂xLKP − LKP∂xMKdV = 10v′(x) + 10c
(
∂−1
x φc(x)− φc(x)∂

−1
x

)
.

On the other hand, the left-hand side of (4.19) is given by the operator

LKdV∂xMKP −MKP∂xLKdV

= MKP∂
3
x − ∂3

xMKP + c (MKP∂x − ∂xMKP) + 6 (MKP∂xφc(x)− φc(x)∂xMKP) .

By using symbolic computations, again, we obtain that the operator

MKP =
5

3

(
1 + c∂−2

x

)
(4.20)

is a solution of the linear equation (4.19). Moreover, since LKP and MKP in (4.13) and (4.20) are
operators with constant coefficients, the commutativity condition (4.11) at order O(p4) is satisfied
identically:

LKP∂xMKP −MKP∂xLKP = 0.

Thus, the commutativity condition (4.11) is satisfied at all orders with the operator Mc,p given by
(4.14), (4.18), and (4.20), or explicitly, by

Mc,p = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2 +

5

3
p2

(
1 + c∂−2

x

)
. (4.21)

Finally, by replacing ∂x with ∂x + iγ in (4.21) we find

Mc,p(γ) = (∂x + iγ)4 + 10(∂x + iγ)φc(x)(∂x + iγ)− 10cφc(x)− c2 +
5

3
p2

(
1 + c(∂x + iγ)−2

)
. (4.22)

This operator is well-defined and self-adjoint in L2
per(0, 2π), for any γ ∈ (0, 1). For γ = 0, we use the

restriction of Mc,p(0) to L̇2
per(0, 2π), as explained in Section 3.1 for the operator Lc,p(0).
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Remark 4.3 For c = 1, when φc = 0 and the operators have constant coefficients, we can explicitly
compute the spectrum of M1,p(γ) in (4.22). We obtain

σ(M1,p(γ)) =

{
k4 − 1 +

5p2

3
− 5p2

3k2
; k = γ + n, n ∈ Z, γ + n 6= 0

}
,

from which we conclude that the operators M1,p(γ) have at least some negative eigenvalues, just as
L1,p(γ). However, the linear combination M1,p(γ)− 2L1,p(γ) of these two operators has a nonnegative
spectrum,

σ(M1,p(γ)− 2L1,p(γ)) =

{
(k2 − 1)2 +

5p2

3
+

p2

3k2
; k = γ + n, n ∈ Z, γ + n 6= 0

}
. (4.23)

In the next section we show that, by choosing an appropriate linear combination of the operators Mc,p(γ)
and Lc,p(γ), this positivity property can be extended to all c > 1.

4.3 Construction of positive operators Kc,p,b(γ)

Our construction of a positive linear combination of the operators Mc,p(γ) and Lc,p(γ), relies upon the
following result obtained for the KdV equation in [7], which corresponds to p = 0 in our case.

Proposition 4.4 Consider a periodic traveling wave φc of the KdV equation (1.2) with the properties
given in Proposition 4.1, and a linear combination of the operators Lc,0 and Mc,0 in (4.10) and (4.21),

Kc,0,b = Mc,0 − bLc,0, (4.24)

for some real number b. Assume that Lc,0, Mc,0, and Kc,0,b act in L2
per(0, 2πN), the space of locally

square-integrable functions on R which are 2πN -periodic. Then, for any N ∈ N and b ∈ (b−(c), b+(c)),
where

b−(c) =

(
5

3
+

1− 2k2

3
√
1− k2 + k4

)
c, b+(c) =

(
5

3
+

1 + k2

3
√
1− k2 + k4

)
c, (4.25)

with k ∈ (0, 1) being the elliptic modulus in Proposition 4.1, there exists a positive constant CN,c,b such
that

〈Kc,0,bW,W 〉 > CN,c,b‖W‖2, ∀ W ∈ H2
per(0, 2πN), 〈W,∂xφc〉 = 0.

Here 〈·, ·〉 denotes the usual hermitian scalar product in L2
per(0, 2πN) and ‖ · ‖ the corresponding norm.

Proof. We transfer the result in [7] to our variables, just as in the proof of Proposition 4.1. According
to [7], the result in the proposition holds for the operator

K̃KdV = ∂4
ξ + 10u(ξ)∂2

ξ + 10u′(ξ)∂ξ + 10u′′(ξ) + 30u(ξ)2 − 16 + 56k2(1− k2)

+c21(−∂2
ξ − 6u(ξ) + 8k2 − 4),

in which u is the 2K(k)-periodic solution of the second-order differential equation (4.4) in the proof of
Proposition 4.1, and the constant c21, which plays the role of b, satisfies

4(3k2 − 2) < c21 < 4(4k2 − 2).
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Transforming variables through (4.5) and (4.6), after some computations, we obtain

K̃KdV =
π4

K(k)4
[
∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2

]
+

π2

K(k)2
[c21 + 10A(k)]

[
−∂2

x − 6φc(x)− c
]
.

Comparing the expression of K̃KdV with Kc,0,b given by (4.10), (4.21), and (4.24), we obtain the
correspondence between b and c21,

b = −K(k)2

π2
[c21 + 10A(k)] ,

and the values of b for which the results in the proposition holds,

4K2(k)

3π2

(
5
√

1− k2 + k4 + 1− 2k2
)
< b <

4K2(k)

3π2

(
5
√

1− k2 + k4 + 1 + k2
)
.

Finally, using the explicit definition of the speed c in (4.3), we obtain the formulas in (4.25).

Remark 4.5 The result in this proposition has been proved in [7] by evaluating the quadratic form
associated to K̃KdV on a complete set of eigenfunctions of the linearized KdV operator. This set of
eigenfunctions is known explicitly, due to the integrability of the KdV equation. Recently, in the context
of the cubic NLS equation, such a result has been obtained in [9] by directly estimating the quadratic
form, hence without using the knowledge of an explicit set of eigenfunctions. For the KdV equation
there is no such direct proof, so far. However, in the case of small-amplitude solutions (see the Stokes
expansion (4.9) in Remark 4.2), such a direct proof can be obtained using perturbation arguments, just
as recently done in [14] for the reduced Ostrovsky equations.

We consider now a linear combination of the operators Mc,p(γ) and Lc,p(γ),

Kc,p,b(γ) = Mc,p(γ)− bLc,p(γ), (4.26)

for some real number b. As a consequence of the previous proposition we obtain the following result
for p = 0.

Corollary 4.6 (p = 0) Consider a periodic traveling wave φc of the KdV equation (1.2) with the
properties given in Proposition 4.1. Then for every γ ∈ (0, 1) and b ∈ (b−(c), b+(c)), where b−(c) and
b+(c) are given by (4.25), there exists a positive constant Cc,0,b(γ) such that the linear operator Kc,0,b(γ)
satisfies the inequality

〈Kc,0,b(γ)W,W 〉 > Cc,0,b(γ)‖W‖2, ∀ W ∈ H2
per(0, 2π).

For γ = 0, the derivative ∂xφc of the periodic wave belongs to the kernel of Kc,0,b(0), and the inequality
holds for any W ∈ H2

per(0, 2π) satisfying 〈W,∂xφc〉 = 0. Here 〈·, ·〉 denotes the usual hermitian scalar
product in L2

per(0, 2π) and ‖ · ‖ the corresponding norm.

Proof. For rational numbers γ = j/N ∈ [0, 1), the assertion in this corollary is a consequence of
Proposition 4.4. Indeed, using Floquet decomposition in x, we obtain that the spectrum of the operator
Kc,0,b acting in L2

per(0, 2πN) is given by

σ(Kc,0,b) =
⋃

γ∈IN

σ (Kc,0,b(γ)) , IN =

{
j

N
; j = 0, . . . , N − 1

}
,
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where the operators Kc,0,b(γ) act in L2
per(0, 2π). Then the result in Proposition 4.4 implies that the

operators Kc,0,b(γ) are positive for any rational number γ = j/N ∈ (0, 1), and that for γ = 0 they are
nonnegative and have a one-dimensional kernel spanned by ∂xφc. Consequently, the result holds for
any rational number γ ∈ Q∩ [0, 1). Finally, the density of Q in R together with a standard perturbation
argument shows that the result holds for any γ ∈ [0, 1), which proves the corollary.

We can now state the positivity result for the operators Kc,p,b(γ) in (4.26), for p 6= 0. These
operators act in L2

per(0, 2π) when γ ∈ (0, 1), and are restricted to L̇2
per(0, 2π) when γ = 0.

Lemma 4.7 (p 6= 0) Consider a periodic traveling wave φc of the KdV equation (1.2) with the prop-
erties given in Proposition 4.1. Assume that p 6= 0. Then, for any γ ∈ (0, 1) and b ∈ (b0(c), b+(c)),
where b0(c) = max{5c/3, b−(c)} and b±(c) are given by (4.25), there exists a positive constant Cc,p,b(γ)
such that the linear operator Kc,p,b(γ) defined in (4.26), satisfies the inequality

〈Kc,p,b(γ)W,W 〉 > Cc,p,b(γ)‖W‖2, ∀ W ∈ H2
per(0, 2π).

For γ = 0, the same property holds for W ∈ H2
per(0, 2π) ∩ L̇2

per(0, 2π).

Proof. We rewrite

Kc,p,b(γ) = Kc,0,b(γ) +
5

3
p2 −

(
b− 5c

3

)
p2(∂x + iγ)−2.

For any b > 5c/3, the last two terms in the right hand side of this equality define a positive operator.
Combined with the result in Corollary 4.6, this proves the lemma.

4.4 Proof of Theorem 2

Theorem 2 (i) is a consequence of the general result in Corollary 2.5. Indeed, take Kc,p,b(γ) with some
b ∈ (b0(c), b+(c)), as constructed in Lemma 4.7. The operators J(γ), Lc,p(γ), and Kc,p,b(γ) satisfy
the Hypothesis 2.1 in Section 2.1, and Kc,p,b(γ) is positive when p 6= 0, according to Lemma 4.7.
Consequently, Kc,p,b(γ) is nonnegative with trivial kernel, and the result in Corollary 2.5 implies that
the operator J(γ)Lc,p(γ) has no unstable spectrum. This proves Theorem 2 (i). The proof of the
second part of Theorem 2 has been discussed in Section 3.1.

Remark 4.8 The abstract result in Corollary 2.5 allows to also recover the proof of spectral stability of
the periodic traveling wave φc as a solution of the KdV equation (1.2). Indeed, for p = 0, the operators
J(γ), Lc,0(γ), and Kc,0,b(γ) satisfy the Hypothesis 2.1 in Section 2.1, and by Corollary 4.6, Kc,0,b(γ)
is positive for γ ∈ (0, 1), and for γ = 0 it is nonnegative and has a one-dimensional kernel spanned
by ∂xφc. Since ∂xφc also belongs to the kernel of J(0)Lc,0(0), due to the translational invariance, the
result in Corollary 2.5 implies that the operator J(γ)Lc,0(γ) has no unstable spectrum, for any γ ∈ [0, 1).
Consequently, the periodic traveling wave φc is stable as a solution of the KdV equation (1.2).

4.5 Proof of Theorem 3

Following the arguments in Sections 3.2, 4.2 and 4.3, we define the linear operator

Kc = Mc − bLc, (4.27)
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with

Mc = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2 − 5

3

(
1 + c∂−2

x

)
∂2
y ,

Lc given by (3.6), and some b ∈ (b0(c), b+(c)), as in Lemma 4.7. Then Kc satisfies the commutativity
property (3.7) with J = ∂x, and we claim that its restriction to the space L̇2(N, p) is a nonnegative op-
erator with one-dimensional kernel spanned by the translation mode ∂xφc. (Here again, the restriction
to the space L̇2(N, p) means that Kc as defined above is composed with the standard projection on
the subspace of functions with zero mean.) Indeed, it is not difficult to check that Kc is a self-adjoint
operator and using Fourier series in y, and Floquet decomposition in x, that its spectrum is given by

σ(Kc) =
⋃

n∈Z

⋃

γ∈IN

σ (Kc,pn,b(γ)) , IN =

{
j

N
; j = 0, . . . , N − 1

}
,

with Kc,pn,b(γ) being the operators defined by (4.26). Then the result in Lemma 4.7 proves the claim.
As a consequence, there exists a positive constant cN,p, such that

〈Kcw,w〉 > cN,p‖w‖2, ∀ w ∈ Ḣ2,1(N, p), 〈w, ∂xφc〉 = 0,

where 〈·, ·〉 and ‖ · ‖ denote the scalar product and the norm, respectively, in L̇2(N, p). G̊arding’s
inequality further implies that

〈Kcw,w〉 > cN,p‖w‖22,1, ∀ w ∈ H2,1(N, p), 〈w, ∂xφc〉 = 0, (4.28)

with a possibly different constant cN,p.

For a solution w ∈ C1(R,H2,1(N, p)) to the linearized equation (3.5), the equality (3.8) holds. We
set

w(t) = a(t)∂xφc + w1(t), a(t) =
〈w(t), ∂xφc〉
‖∂xφc‖2

, 〈w1(t), ∂xφc〉 = 0.

Inserting this decomposition into (3.8), using the inequality (4.28), and the fact that ∂xφc spans the
kernel of Kc, we find

cN,p‖w1(t)‖22,1 6 〈Kcw1(t), w1(t)〉 = 〈Kcw(t), w(t)〉
= 〈Kcw(0), w(0)〉 6 CN,p‖w(0)‖22,1, (4.29)

where CN,p exists due to the boundedness of the quadratic form (3.8) in the energy space H2,1(N, p).
This proves the first inequality in (3.9).

Next, by taking the scalar product of the linearized equation (3.5) with ∂xφc we obtain that a(t)
satisfies the first order differential equation

a′(t) ‖∂xφc‖2 = 〈Bcw1(t), ∂xφc〉 = −〈w1(t), Lc∂
2
xφc〉. (4.30)

The inequality (4.29) above, together with the Cauchy-Schwarz inequality, implies that the last term
in (4.30) is a bounded function. Consequently, a′(t) is bounded, which proves the second inequality in
(3.9) and completes the proof of Theorem 3.
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5 Discussion

The general counting result in Section 2 allowed us to prove the transverse spectral and linear stability of
periodic waves for the KP-II equation (1.1). In this section, we address the question of their transverse
nonlinear stability which remains open.

It is tempting to construct a higher-order energy functional associated with the linear operator Mc,p

given by (4.21), which could then be used for a nonlinear stability proof, just as for the KdV and NLS
equations [4, 7, 9]. Since the part MKdV in Mc,p is the Hessian operator for Rc(u) in (4.17), which is
constructed from the higher-order energy functional H(u) in (4.16), whereas the part MKP in Mc,p has
constant coefficients, a higher-order energy functional can be thought in the following form

F̃ (u) =

∫ ∫ [
u2xx − 10uu2x + 5u4 +

5

3
u2y −

5c

3
(∂−1

x uy)
2

]
dxdy. (5.1)

However, the function F̃ (u) has a speed parameter c in front of the last term, which is also the last
term of the energy functional Ẽ(u) for the KP-II equation (1.1) given by

Ẽ(u) =

∫ ∫ [
u2x − 2u3 − (∂−1

x uy)
2
]
dxdy.

Since Ẽ(u) is constant in time and the speed c is an independent parameter, the quantity F̃ (u) in (5.1)
is not related to a conserved quantity of the KP-II equation (1.1). Therefore, the commuting operator
Kc in (4.27) constructed in this paper is not the Hessian operator for a higher-order conserved quantity
of the KP-II equation (1.1).

On the other hand, for the KP-I equation, a conserved higher-order energy functional has been
constructed in [24, 25]. After transforming this quantity to the variables used in the KP-II equation
(1.1), it can be written in the form

H̃(u) =

∫ ∫ [
u2xx − 10uu2x + 5u4 − 10

3
u2y +

5

9
(∂−2

x uyy)
2 +

10

3
u2∂−2

x uyy +
10

3
u
(
∂−1
x uy

)2
]
dxdy.

Similarly to F̃ (u), the y-independent part of H̃(u) is equivalent to the higher-order energy functional
H(u) of the KdV equation (1.2) given by (4.16). However, unlike F̃ (u), the quantity H̃(u) is constant
in time.

The periodic traveling wave φc is a critical point of the higher-order energy functional R̃c(u) =
H̃(u) − c2Q̃(u) + 2IC̃(u), where Q̃(u) and C̃(u) generalize Q(u) and C(u) by including the double
integration in x and y. After a Fourier transform in the variable y, we find that the Hessian operator
at the periodic wave φc related to R̃c(u) is given by

M̃c,p = ∂4
x + 10∂xφc(x)∂x − 10cφc(x)− c2

−10

3
p2

(
1 + φc(x)∂

−2
x + ∂−1

x φc(x)∂
−1
x + ∂−2

x φc(x)
)
+

5

9
p4∂−4

x . (5.2)

A long, but straightforward, symbolic computation shows that the commutativity condition (4.11) is

indeed satisfied with the two linear operators Lc,p and M̃c,p given by (4.10) and (5.2), respectively.

Note that the expression (5.2) for the operator M̃c,p is different from the expression (4.21) for the
operator Mc,p obtained by our direct symbolic computations. Clearly, the difference between these two
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operators,

Mc,p − M̃c,p =
5

3
p2

(
3 + c∂−2

x + 2φc(x)∂
−2
x + 2∂−1

x φc(x)∂
−1
x + 2∂−2

x φc(x)
)
− 5

9
p4∂−4

x ,

also satisfies the commutativity condition (4.11). The operator equation (4.11) admits multiple solu-
tions, but the most general form for a solution Mc,p is unknown.

In contrast to the operator Mc,p given by (4.21), the operator M̃c,p in (5.2) cannot be used to
construct commuting positive operators, like the operators Kc,p,b(γ) obtained in Section 4.3. Indeed,
by using the Floquet–Bloch transform and by taking a linear combination of the two operators Lc,p(γ)

and M̃c,p(γ) in the form

K̃c,p,b(γ) = M̃c,p(γ)− bLc,p(γ), (5.3)

where γ ∈ [0, 1), we can check the analogue of property (4.23) in Remark 4.3. For c = 1, when φc = 0,
and b = 2, by using Fourier series in x, we obtain the spectrum of K̃1,p,2(γ),

σ(K̃1,p,2(γ)) =

{(
k2 − 1

)2
+

p2(5p2 − 30k4 + 18k2)

9k4
; k = γ + n, n ∈ Z, γ + n 6= 0

}
. (5.4)

If p = 0, which corresponds to the KdV case, the operator K̃1,0,2(γ) is nonnegative, for every γ ∈ [0, 1).
On the other hand, by inspecting the sign of the function in (5.4), we can show that, for every p 6= 0,
the operator K̃1,p,2(γ) has some negative eigenvalues, at least for some values γ ∈ [0, 1), and then

conclude that K̃c,p,b(γ) is not always positive.

Summarizing, the existence of a Lyapunov functional for the KP-II equation (1.1) which could
be used for a transverse nonlinear stability proof for periodic waves is not known, and this nonlinear
stability problem remains open. We point out that the analytical difficulty of using the higher-order
energy functional H̃(u) for a nonlinear stability proof seems to be the same as the one arising in the
proof of global well-posedness of the KP-II equation in the energy space (see [10] and the references
therein).
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