
19/05/2017

1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr

Distributed Systems
Focus on: Collaborative Platforms, Shared Memory

Distributed Algorithms

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 2

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 3

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Collaboration

Besançon Hospital
(France)

Staff of experts in Geneva
(switzerland)

Networks

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 4

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Internet a new powerful communication vector

q Improvement of performance
v Processors level (compression treatments…)
v Networks levels (flow rates, Quality of Services, …)

q Different domains
v Remote teaching: teleteaching
v Tele-Medicine
v Collaborative editing
v videoconferencing...

Collaboration Domain

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 5

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion
Two types (groups) of media are distinguished

Discrete Media

Continuous Media

q Are images the only one medium?
q Is the text used?

q Does this application use audio?
q And video?

What are the specificities
of this kind of applications

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 6

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work
• CSCW Domain,
• Distributed Architecture,
• Distributed HCI,
• Example of Applications.

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

19/05/2017

2

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 7

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Before the emergence of the concept of CSCW, we, computer
scientist, thought that our developments must manage collaborative
work transparently for users.

q But, during a collaboration phase (face-to-face or using computer) we
need to see what the other users are doing. Or, at least, we need to
feel what the other users are doing.

It is the awareness

q For example: during this talk, I can see on your faces if you are
interested. If my talk was broacasted using remote teaching platform,
I would not be able to know that.

New awareness tools are needed

Collaborative Work is a part of CSCW

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 8

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

CSCW: a pluridisciplinary domain

Psychology,
Linguistic,
Sociology,
Ethnology...

Groupware

Network,
Artificial intelligence,
Distributed systems...

CSCW

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 9

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Other point of view

From Cooperation
Only Sharing

Interactions
To Collaboration

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 10

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work
• CSCW Domain,
• Distributed Architecture,
• Distributed HCI,
• Example of Applications.

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 11

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Collaborative Architecture Models

ReplicatedHybrid

Centralized

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 12

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Advantages: simplicity of
implementation for the
synchronization and concurrency
problems.

Disadvantages: the response
time is increased, and fault
tolerance can not be processed.

Only one process manages the consistency of data and
actions in the globality of the system.

Centralized Architecture

Centralized

functional
core

Interface

19/05/2017

3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 13

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

One process is associated to each user. Data are replicated on
each site (processor) and the consistency will be maintained
using communications between sites.

Advantages: speed due to local
accesses, and fault tolerance due to
the data redundancy involved by
replications.

Disadvantages: difficulty of implementation
including data consistency and scheduling of
actions.

Replicated Architecture

functional
core

Interface

functional
core

Interface

functional
core

Interface

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 14

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

A centralized process is in charge of data consistency, and one
process per user manages users actions on interface.

Advantages: The simplicity and the
partial resolution of problems
begotten by the centralized
management.

Disadvantages: difficulty to
implement the fault
tolerance.

Hybrid Architecture

Functional
Core

Functional
Core

Functional
Core

Interface

Interface

Interface

Functional
Core

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 15

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work
• CSCW Domain,
• Distributed Architecture,
• Distributed HCI,
• Example of Applications.

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 16

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Topologie de la machine virtuelle

GENIE GENeric InterfacE

Collaborative spaces model
From 3-leaf clover to 4-leaf

and finally 5-leaf clover.

FTP
JC connecté en jaune

Forum IRC

Agnès

François nous quitte

Chan

Que pensez-vous ?

François

A bientôt

Eric

ok ? ?
White Board

Régulation

Groupware Interfaces

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 17

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory
• Shared Memory Paradigm,
• Shared Memory Models,

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 18

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Memory Space Sharing

v A collaborative work

Shared context between collaborative members

v Message-passing : very heavy to manage, very costly.

v Distributed shared memory: transparent data sharing

?? or ??Replicated Space Distributed Space

19/05/2017

4

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 19

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Distributed Space Vs Replicated Space

Proc 1 Proc 2 Proc 3

Replicated Space
Various occurrences of the same space

Distributed Space
an aggregate shared address space

Proc 1 Proc 2 Proc 3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 20

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

v Or an object is stored on one processor only,

v Or an object is stored on each processor which uses it.

Problems of replications consistency appear.

v Sharing a set of data, a set of objects

Distributed Space Vs Replicated Space

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 21

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Data consistency

v Several copies of a same shared memory object

(several occurrences of a same shared memory object) are

present in the system, but:

What is the most recent?

What is the most consistent?

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 22

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Consistency problem example

Practitioner 1 Practitioner 2

Edge Detection ThresholdingThresholding
Edge Detection +

Thresholding

Edge Detection

Thresholding + Edge
Detection

inconsistency

Collaborative work
(Telediagnostic)

Data consistency

Consensus

Consensus
(Thresholding + Edge Detection)

Thresholding + Edge
Detection

consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 23

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Formalism

Rpi(x)2

Execution
History

Wpi(x)2

vWpi(o)v : Writing by a processor Pi of v value on an
object o .

Time Axis on Pi

Pi

Rpi(x)1

v Rpi(o)v : Reading by a processor Pi of an object o which
return v value.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 24

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

On Processor 1

On the remote Processor 2

Consistency: a problem of writing order

1.Edge Detection

1.Thresholding

Edge Detection +
Thresholding

Thresholding + Edge
Detection

19/05/2017

5

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 25

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Rpi(o)v : Reading by a processor p of an object o which return v value.

q Wpi(o)v : Writing by a processor p of v value on an object o .

q Writing sequences in our example :
v Wp1(WorkSpace)Picture noted Wp1(WS)P,
v Wp1(WorkSpace)Gray Levels Transformation noted Wp1(WP)G,
v Wp1(WorkSpace)Edge Detection noted Wp1(WS)ED,
v Wp2(WorkSpace)Thresholding noted Wp2(WS)T.

Now, your Job: to write this execution history

1 2 3 4

5 6

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 26

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Correction
Execution History: Scheduling Problem

P1 P2

Consistency Problem

Wp1(WS)P
1

Rp2(WS)P
2

Wp1(WS)G
3

Rp2(WS)G
4

Wp2(WS)TWp1(WS)ED 5

Rp2(WS)EDRp1(WS)T

6

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 27

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory
• Shared Memory Paradigm,
• Shared Memory Models,

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 28

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Consistency types

q Non-synchronized
v 5 types,
v 3 types really in used in applications,
v 2 theoretical types.

q Synchronized

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 29

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Definition using constraints

q Some shared memory need less constraints, to
have a management more flexible.

q The different types of consistency are classified
following to the constraints: time, order...

q Weaken the consistency allows better
performance in execution .

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 30

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

The Constraints

q C1: The operations are observable simultaneously on all
processors.

In these models all operations can be oberved on all processors

q C5: The execution order is only respected for operations
made on the same processor and on the same object.

q C4: The execution order is only respected for operations
made on the same processor.

q C3: The only one execution order, which is respected, is
the causality (read / write).

q C2: The global observed order of the operations is the
same on each processor. All processors observe the same
sequence but not on the same time.

19/05/2017

6

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 31

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion Slow memory
PRAM

The 5 non-synchronized models

Causal

Sequential

Atomic

Theoretical models

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 32

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Rp3(y)2

Rp2(x)3

Atomic Consistency

Atomic consistency is respected within δt

This history respects the
atomic consistencyWp1(x)1

Wp1(y)2

Wp1(x)3

δt
Rp3(y)2

δt
Rp2(x)3

P1 P2 P3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 33

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion
In this model it is not possible to observe this sequence:

Rp2(x)1 after Wp1(x)3

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Atomic Consistency

This history does no respect
The atomic consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 34

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Now, your Job: identify and justify histories
that respect (or not) the atomic consistency

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp2(x)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(y)4

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 35

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Correction

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp2(x)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(y)4

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 36

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Sequential Consistency

The C1 constraint is no more respected:

q C1: The operations are observable simultaneously on all
processors.

q The global observed order of the operations is the same
on each processor. All processors observe the same
sequence but not on the same time.

19/05/2017

7

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 37

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2 P3

Wp2(x)2

Rp2(x)3

Rp2(x)2

Rp2(x)1
Rp3(y)1

Rp3(y)2

Rp3(x)1

Rp3(x)3

Rp3(x)2

This history respects the
sequential consistency

Rp2(x)3

Rp2(x)2

Rp2(x)1

Rp3(x)1

Rp3(x)3

Rp3(x)2

The operations sequence is:
Rpi(x)1 Rpi(x)2 Rpi(x)3

Sequential Consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 38

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2 P3

Rp2(x)3

Rp2(x)2

Wp2(x)2

Rp2(x)1
Rp3(y)1

Rp3(y)2

Rp3(x)1

Rp3(x)2

Rp3(x)3

Because operations sequences are different on P1 and on P2:
Rp2(x)1 Rp2(x)2 Rp2(x)3

Rp3(x)1 Rp3(x)3 Rp3(x)2

Sequential Consistency

This history does not respect
The sequential consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 39

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Now, your Job: identify and justify histories
that respect (or not) the sequential consistency

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)4

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)1

Wp1(y)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)1

Wp1(y)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)2

Wp1(y)4

Rp2(x)2

Rp3(x)1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 40

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3 Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)4

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)1

Wp1(y)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)1

Wp1(y)4

Wp1(x)1

Rp2(x)3

Wp1(y)2

Rp3(y)2

P1 P2 P3

Rp2(x)1

Wp1(x)3

Rp3(y)3

Rp3(x)3

Rp3(x)2

Wp1(y)4

Rp2(x)2

Rp3(x)1

Correction

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 41

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Causual Consistency

The C2 constraint is no more respected:

q C2: The global observed order of the operations is the
same on each processor. All processors observe the
same sequence but not on the same time.

q The only one execution order, which is respected, is the
causality (read / write).

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 42

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp2(x)2

Wp1(x)1

Wp1(y)2

Wp1(x)3

P2

Rp2(x)3

Rp2(x)2

Rp2(x)1
Rp3(y)1

P3

Rp3(y)2

Rp3(x)1

Rp3(x)2

Rp3(x)3

P1

Causual Consistency

(a) Wp2(x)2 causually depends on
Wp1(x)1, because p2 reads the
value 1 before writing the value 2.(a)

(b)

(b) Wp1(x)3 causually depends
on Wp1(x)1, because they are
on the same processor.

These constraints have
to be respected:
Rpi(x)1 Rpi(x)2
Rpi(x)1 Rpi(x)3

19/05/2017

8

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 43

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Now, your Job: to draw all dependencies

Wp2(x)2

Wp1(x)1

Wp1(y)2

Wp1(x)3

P2

Rp2(x)3

Rp2(x)2

Rp2(x)1
Rp3(y)1

P3

Rp3(y)2

Rp3(x)1

Rp3(x)2

Rp3(x)3

P1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 44

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

P1

Wp1(x)1

Wp1(y)2

Wp1(x)3

P2

Rp2(x)3

Rp2(x)2

Wp2(x)2

Rp2(x)1

P3

Rp3(y)1

Rp3(y)2

Rp3(x)1

Rp3(x)2

Rp3(x)3

Non-exhaustive list of dependencies

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 45

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2

Rp2(x)3

Rp2(x)2

Wp2(x)2

Rp2(x)1
Rp3(y)1

P3

Rp3(x)1

Rp3(x)2

Rp3(x)3

Rp3(y)2

Causual Consistency (Theoretical models)

This history does not respect
The causual consistency

Rp3(x)2 Rp3(x)1 does not respect (a)

(a)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 46

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

The C3 constraint is no more respected:

q C3: The only one execution order, which is respected, is
the causality (read / write).

q The execution order is only respected for operations made
on the same processor.

PRAM Consistency (Theoretical models)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 47

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2

Rp2(x)3

Rp2(x)2

Wp2(x)2

Rp2(x)1
Rp3(y)1

P3

Rp3(x)1

Rp3(x)2

Rp3(x)3

Rp3(y)2

Rp2(x)1 Rp2(x)3 and Rp3(x)1 Rp3(y)2 Rp3(x)3 respect the
writing execution order on p1 :

Wp1(x)1 Wp1(y)2 Wp1(x)3, writing on x and on y.

This history respects the
PRAM consistency

PRAM Consistency (Theoretical models)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 48

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2

Rp2(x)3

Rp2(x)1

Rp3(y)1

P3

Rp3(x)1

Rp3(x)3

Rp3(y)2

Rp2(x)0

Rp2(y)2

Because on P2 after Rp2(y)2, the
writing on x must return the value
1 because on p1 :
Wp1(x)1 Wp1(y)2

Rp2(x)0

Rp2(y)2 This history does not respect
The PRAM consistency

PRAM Consistency (Theoretical models)

19/05/2017

9

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 49

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Slow Memory (Theoretical models)

The C4 constraint is no more respected:

q C4: The execution order is only respected for operations
made on the same processor.

q The execution order is only respected for operations made
on the same processor and on the same object.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 50

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Slow Memory Consistency

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2

Rp2(x)3

Rp2(x)1

Rp2(x)0
Rp3(y)1

P3

Rp3(x)1

Rp3(x)3

Rp3(y)2

Rp2(y)2

On P2 (as on P3) the reading of
value 1 on x precedes the reading
of value 3 on x, so the P1’s writings
on x are respected by these
readings:

Wp1(x)1 Wp1(x)3

This history respects the
Slow memory consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 51

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2

Rp2(x)1

Rp2(x)3

Rp2(x)0
Rp3(y)1

P3

Rp3(x)1

Rp3(x)3

Rp3(y)2

Rp2(y)2

The P1’s writings on x:
Wp1(x)1 Wp1(x)3

are not respected on P2

Slow Memory Consistency

This history does not respect
The slow memory consistency

Rp2(x)1

Rp2(x)3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 52

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

In these first five models, all writing operations have to be
observable by all processors.

q In these last two models, all operations are not necessary
observable. Only operations, which are synchronized, are
observable.

q Two models are exposed:
v The weak ordering,
v The release consistency.

Synchronized Consistency Models

Session 2

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 53

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q A new operator is defined S, used with Rpi(o)v et Wpi(o)v.

q Remark: it is possible to defined S for each object:

Sx, Sy

Weak Ordering

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 54

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2 P3

S

Rp2(x)3

S

On P2 after S, the returned
value on an x reading can
only be 3.

Rp3(x)1

Rp3(y)2

On P3 there is no
synchronization, so
there is no constraint on
readings for P3.

Weak Ordering

This history respects the
weak ordering consistency

19/05/2017

10

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 55

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2 P3

Rp3(x)1

Rp3(y)2

Rp2(x)1

S
S

On P2 after S, the returned
value on an x reading
cannot be 1.

Weak Ordering

This history does not respect
The weak ordering consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 56

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q It is a refinement of the weak ordering model.

q Indeed in the weak ordering model, during a
synchronization phase it is not possible to determined if a
processor is writing or is reading.

q Acq (Acquire) operation reports the critical section
entry.

q Rel (Release) operation reports the critical section exit.

Release consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 57

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Wp1(y)2

Wp1(x)3

P1 P2 P3

Rel

Acq

Rp2(x)3

Acq

On P2 after Acq, the
returned value on an x
reading can only be 3.

Rel

Rp3(x)1

Rp3(y)2

On P3 there is no
synchronization, so there
is no constraint on
readings for P3.

Release consistency

This history respects the
Release consistency

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 58

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Now, your Job: identify and justify histories
that respect (or not) the release consistency

Wp1(x)1 Wp2(y)2

P1 P2 P3

Rp2(x)4Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Wp1(x)1 Wp2(y)2

P1 P2 P3

Rp2(x)4Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Acq

Rel

Wp1(x)1

P1 P2 P3

Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Wp2(y)2
Rp2(x)4

Acq

Rel

Wp1(x)1

P1 P2 P3

Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)2

Wp2(y)2
Rp2(x)4

Acq

Rel

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 59

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

2 simultaneous critical
access sections

Correction

Wp1(x)1 Wp2(y)2

P1 P2 P3

Rp2(x)4Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Wp1(x)1 Wp2(y)2

P1 P2 P3

Rp2(x)4Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Acq

Rel

Wp1(x)1

P1 P2 P3

Wp1(x)3

Acq

Rel

Rp3(x)3
Wp3(y)1

Acq

Rel

Wp2(y)2
Rp2(x)4

Acq

Rel

Wp1(x)1

P1 P2 P3

Wp1(x)3

Acq

Rel

Rp3(x)3
Rp3(y)3

Wp2(y)2
Rp2(x)3

Acq

Rel

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 60

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Until now, the course has defined only the
theory of consistency.

q Now, we need to study the real protocols that
allows to respect these models.

These models are theoretical ones, but what are the
algorithms that really implement these models

19/05/2017

11

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 61

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management
• Invalidation Protocol,
• Pilgrim Protocol,
• Shared Memory guarantied Models.

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 62

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q To guarantee that messages arrive ordered, without loss and duplication
q To facilitate the management of shared data consistency

q 3 types of protocols exist:

Broadcast of Information

Asymetric Protocol

Symetric Protocol

Turning Coordinator Protocol

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 63

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management
• Invalidation Protocol,
• Pilgrim Protocol,
• Shared Memory guarantied Models.

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 64

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Replicated memory: an object is stored on each processor which
uses it.

q The grain of the application is the object.

q This protocol uses the technics of invalidation on writing.

Invalidation Protocol Specifications

q From an object point of view, this protocol is a
simpleWriter/multipleReaders one.

q From the memory point of view, this protocol is a
multipleWriters/multipleReaders one.

q The owner of an object is the only one which can write on
this object

After each writing an
invalidation must be broadcast

For each object

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 65

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Invalidation Protocol

proc1

proc3

proc2

A1

A2 A3
A4

A5

A6

deamon

deamon

deamon

a 1 proc1 … size 1 proc3

a 1 proc1 … size 0 proc3a 1 proc1 … size 1 proc3

q This implementation was made using a message passing platform. On
each server a deamon is running.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 66

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Invalidation Protocol

Writer
v The owner

• writing,
• Then, invalidation broadcasting.

v The non-owners
• request to recover the ownership,
• Then, ownership change

o Writing
o Then, invalidation broadcasting.

Reader
v The owner

• Local reading.
v The non-owners

• Local reading if valid, if not recover remote value (in the
same time the local flag value becomes 1)

19/05/2017

12

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 67

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Invalidation protocol: writing

proc1

proc3

proc2

A1

A2 A3
A4

A5

A6

deamon

deamon

deamon

a 1 proc1 … size 1 proc3

a 1 proc1 … size 1 proc3a 1 proc1 … size 1 proc3

If the application A1 (on processor proc1) want to
write on object a, his daemon is the owner, so it
can directly write and it sends the invalidation to
the other daemons.

sends the invalidation

0

0
May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 68

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Invalidation Protocol

proc1

proc3

proc2

A1

A2 A3
A4

A5

A6

deamon

deamon

deamon

a 1 proc1 … size 1 proc3

a 0 proc1 … size 1 proc3a 1 proc1 … size 1 proc3

If the application A5 wants to
read the value of the object
a, as the daemon of its
processor as a valid value of
the object a (flag at 1), it
can read the local value of a.

If the application A1 (on processor
proc1) wants to read the value of the
object a, as the daemon of its
processor is the owner, it always reads
the local value which is always valid.

If the application A4 (on processor proc2)
wants to read the value of the object a,
as the daemon of its processor as a
invalid value of the object a (flag at 0),
first the daemon must recover the last
value of a.

And then the flag becomes 1
and a local read is possible.

1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 69

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management
• Invalidation Protocol,
• Pilgrim Protocol,
• Shared Memory guarantied Models.

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 70

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Replicated memory: an object is stored on each processor which
uses it.

q The grain of the application is the object.

q This protocol uses the technics of token ring.

Pilgrim Protocol Specifications

q From on object point of view, this protocol is a
simpleWriter/multipleReaders one.

q From the memory point of view, this protocol is a
multipleWriters/multipleReaders one.

q The owner of an object is the only one which can write on
this object

only one message which allows
token circulation is sent The Pilgrim

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 71

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

2

4

1

3

q Messages for objects ownership
management.

O
11

O
12

O
15

O
21

O
33

O
35

{ { {{{

node1 node2 node3
No object on node 3
objects list and on

garbage list
q Objects broadcasts,

The Token or Pilgrim

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 72

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Structure of an object:

q Command: the command can have one value among the
following: N(null), D(delete object), C(change object
ownership), Q(question to earn object ownership), A(accept to
give up object ownership), R(refuse to give up object
ownership).

q Parameter: the parameter is optional, for example it
indicates the number of the asking site.

q Rank: the rank is the identifier of the object oij.

q Data: n octets, Data size depends on the cooperative
application developed.

Object structure (in Pilgrim Algorithm)

command parameter rank data

Oij

19/05/2017

13

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 73

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Illustration of the Pilgrim Execution

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 74

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Writer
v The owner

• writing

v The non-owners
• request to recover the ownership,
• ownership change
• Writing

Reader
v The owner

• Local reading.

v The non-owners
• Local reading

Do you remember The Pilgrim algorithm ?
Together we will think about the automata of an object

ownership (simple writer, multiple readers)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 75

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management
• Invalidation Protocol,
• Pilgrim Protocol,
• Shared Memory Guarantied Models.

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 76

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Your Job: to Find the Consistency Model Allowed
by the Use of the Invalidation Protocol

Wp1(x)3

Rp3(x)?

Rp3(y)?

P1 P2 P3

Consistency Model Allowed by the
Use of the Invalidation Protocol

Rp3(x)3
Rp2(x)?

Rp2(x)3

Wp2(y)2

Rp3(y)2

δt

Rp2(x)3

P1 P2 P3

Atomic Consistency Model

Wp1(x)3

Wp2(y)2

Rp3(y)2

δt

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 77

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Wp1(x)1

Rp3(x)3

Wp1(x)3 Wp2(y)4
Wp2(y)5

Rp2(x)3

Wp1(x)2

Rp3(y)5

P1 P2 P3

Consistency Model Allowed by the
Use of the Pilgrim Protocol

Your Job: to Find the Consistency Model Allowed
by the Use of the Pilgrim Protocol

P1

Wp1(x)1
Wp1(x)2
Wp1(x)3

P2 P3

Rp2(x)3

Rp3(x)3

Rel

Rel

Acq

Acq
Wp2(y)4
Wp2(y)5

Acq

Rp3(y)5

Release consistency model
Rel

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 78

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms
• Model checking,
• Petri Net,
• Finite State Automata.

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

19/05/2017

14

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 79

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

SPIN overview

q open-source software tool (http://spinroot.com),
q (freely available since 1991),
q one of the most prominent tools for formal verification of

distributed software systems,
q developed by Gerald Holzmann at Bell Labs (beginning in 1980),
q awarded the prestigious System Software Award 2001 by the ACM,
q Primer and Reference Manual [Hol03].

To use SPIN, you need to implement your distributed
protocol in ProMeLa Language.

ProMeLa (Process Meta Language)
→ the name SPIN stands for Simple ProMeLa Interpreter

Validation with model checking tools (average 40 existing MCTs)

The most famous SPIN

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 80

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Channel declarations:
chan ChannelName = [capacity] of {mtype, T0,T2, . . . ,Tk-1};

q ChannelName : name of the channel,
q capacity : capacity of the FIFO channel (O in Pilgrim),
q Ti, 0 ≤ i ≤ k-1: type of transmittable data (tuples),

v Example
{mtype,byte,byte,byte,int,byte,byte,byte,int,byte,byte,byte,int};

q Mtype is the Label: example mtype = {pilgrim,ackn,premier}

Communication:
q synchronous message passing ← capacity 0,
q asynchronous message passing ← capacity > 1,

Communication actions:

q sending: ChannelName! expr1, expr2, . . . , exprk ;
v Example: token[node1]!pilgrim(c1,f1,p1,d1,c2,f2,p2,d2,c3,f3,p3,d3);

q receiving: ChannelName? x1, x2, . . . , xk ;

v Example: ack[node1]?ackn

SPIN

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 81

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Repetitive command/loop:
do

:: (g) -> statement ← WHILE (g) DO statement OD
od

q Conditional command:
if

:: (g) -> statement1 ← IF (g) THEN statement1 ELSE statement 2 FI
:: (⌝g) -> statement2

fi

q Non deterministic loop:
do

:(true) -> statement1

:(true) -> statement2

od

SPIN

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 82

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

proctype transmitter(){
byte info = 1
do

:: (true) ->support! data,info;
:: (true) ->support! control,info;

od
}

proctype receiver(){
byte info;
do /* loop => exit with break */

:: (true) -> support? data,info ->printf("received data message: %d", info)
:: (true) -> support? control,info -> printf("received control message: %d", info)

od
}

init {
atomic { /* execution of an indivisible sequence */

/* Parallel processes instantiation */

run transmitter();
run receiver();

}
}

SPIN: Classic Presented Case
q If several parts are kept activable simultaneously when each of them has an

equal probability chance being selected: non deterministic decisions. This means
that during checking all solutions will be verified.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 83

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

#define N 100
#define R 102
#define A 103
#define Q 104

#define TRUE 1
#define FALSE 0

#define PROCESSEUR 3

mtype = {pilgrim,ackn,premier}

chan token[PROCESSEUR] = [0] of
{mtype,byte,byte,byte,int,byte,byte,byte,int,byte,byte,byte,int};

chan ack[PROCESSEUR] = [0] of {mtype};

SPIN: Extracts of Pilgrim ProMeLa Implementation

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 84

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Init {
byte s;
atomic {

run premierenvoi();
/* Creation of SUCC and PRED lists */
s=0;
do

:: (s < PROCESSEUR) -> AnneauSucc[s] = (s+1) % PROCESSEUR ;
AnneauPred[s] = (PROCESSEUR + s-1) % PROCESSEUR ;
s=s+1 ;

:: (s >= PROCESSEUR)-> break;
od;
/* Successive startup of the different nodes*/
s=0;
do

:: (s < PROCESSEUR) -> run Recevoir(s);
s=s+1;

:: (s >= PROCESSEUR)-> break;
od

}
}

SPIN: Extracts of Pilgrim ProMeLa Implementation

19/05/2017

15

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 85

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

SPIN: Extracts of Pilgrim ProMeLa Implementation

do
:: token[s]? msg(c1,f1,p1,d1,c2,f2,p2,d2,c3,f3,p3,d3); /* receiving */......

if
::(msg == pilgrim) -> ack[AnneauPred[s]]!ackn; /*sending of Ack */

if
::(s==p1) -> do

::(TRUE) -> …
break;

::(TRUE) -> …
break;

od;
::(s==p2) -> do

::(TRUE) -> …
break;

::(TRUE) -> …
break;

od;…
fifi

/* pilgrim sending and ack waiting */
token[AnneauSucc[s]]! pilgrim(c1,f1,p1,d1,c2,f2,p2,d2,c3,f3,p3,d3);
ack[s]? Ackn;

::(msg==premier) ->token[AnneauSucc[s]]!pilgrim(c1,f1,p1,d1,c2,f2,p2,d2,c3,f3,p3,d3);
ack[s]?ackn;

…
od

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 86

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

XSPIN
Visualization (token with 3 nodes)

1 2 3

1

2

3

token

Ack

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 87

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Xspin
Visualization (token with 4 nodes)

1 2 3 4
Pilgrim

Pilgrim

Pilgrim

Pilgrim

Pilgrim

1

2 3

4

modeled ring

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 88

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Execution Results on XSPIN

After one night of calculation…

q With a depth of 9999 in the execution tree

q No error were found

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 89

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Execution Results on XSPIN

SMV from Carnegie Mellon University…
Model Checking @CMU

Cadence SMV is a symbolic model checking
tool that allows you to formally verify temporal
logic properties of finite state systems, such as
computer hardware designs

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 90

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms
• Model checking,
• Petri Net,
• Finite State Automata.

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

19/05/2017

16

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 91

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q PN consists of three types of components: places (circles), transitions
(rectangles) and arcs (arrows):

v Places represent possible states of the system;
v Transitions are events or actions which cause the change of state;
v Every arc simply connects a place with a transition or a transition with a

place.
v Tokens are dots (or integers) associated with places; a place containing

tokens indicates that the corresponding condition holds.

A Petri Net Specification

transition

output place

input place

token

input arc

output arc

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 92

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q From a place one way or another

q From transition: duplication of the token

A Change of State in Petri Net: the Firing of a transition

1

3

1

2b2a
42

xor xor

Duplication

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 93

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

2

q is denoted by a movement of token(s) (yellow dots) from
place(s) to place(s); and is caused by the firing of a transition.

q The firing represents an occurrence of the event or an action
taken.

q The firing is subject to the input conditions, denoted by token
availability.

A Change of State in Petri Net: the Firing of a transition

1

2

1a 1b 1

2b2a

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 94

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q It is possible to defined a weight on input arcs: it is the
number of token which are consumed

Extension with on input arcs

1

2

2
Arc Weight
(nota: default is 1)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 95

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Several Distributed Algorithms Phases
Modelized by Petri Net.

Parallelism Synchronization
for Meeting
(mpi_barrier)

Resources
Sharing

Memorization Capacity
Limitation

Synchronization
by Semaphore

Resource
access

Resource
access

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 96

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Concurrency
Independent inputs permit “concurrent” firing of transitions

2

1a 1b

2

1a 1b

19/05/2017

17

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 97

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Conflict
Overlapping (sharing) inputs put transitions in conflict

2

1a 1b

2

1b

Only one of a or b may fire

a ba b

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 98

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Mutual Exclusion
The two subnets are forced to synchronize

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 99

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Mutual Exclusion
Your job: The two subnets are forced to

synchronize with equity

2

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 100

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Mutual Exclusion
Another solution: student’s one

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 101

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Mutual Exclusion
Another solution: a second student’s one

2

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 102

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Your Job: to Create the Petri Net (PN) for the Following Execution
Fork one place to 3 places,

work parallel,
and then Join 3 places to one.

19/05/2017

18

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 103

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

© Oscar Nierstrasz

Petri Nets Your Job: to Create the Petri Net (PN) for the Following Execution
A Cycle of Producer with Buffer (also called WaitingPlace: Place with 3

possible tokens) and a Cycle of Consumer

3

Producer Consumer

Buffer
WaitingPlace

With cardinality3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 104

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Line3
Treatment

Line2
Treatment

Line1
Treatment

Matrix
Gather

Matrix
Scatter

Parallelization of matrix treatments

Possibility of Label Attachment:

q Label on transitions: actions for example «treat», «realize task», «open»...

q Label on places: present participle or adjective for example «beginning the
job», «exiting the job», «active», «intactive»…

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 105

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Your Job: to Create the Petri Net (PN) for the Following Execution
A token ring with 3 nodes, on each node a task to realize on each round

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 106

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Animation
A token ring with 3 nodes, on each node a task to realize on each round

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 107

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Inhibitor arcs:
v Inhibitor arcs are represented with a circle-headed arc.

v The transition can fire iff the inhibitor place does not contain tokens.

q Weight & Capacity: It is possible to define every place has a
capacity and every arc has a weight.

q Timed Petri Net:
v Time delays associated with transitions and/or places.

v Fixed delays or interval delays.

v Stochastic Petri nets: exponentially distributed random variables as
delays.

q Coloured Petri Net: Tokens or places have “colours”, holding
complex information.

Possible Declinaisons of Petri Net
1a

2

1a 1b

2

1b

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 108

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

A Token Ring with 3 Nodes
With Inhibition Arcs and One Inactive Node

19/05/2017

19

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 109

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

A Token Ring with 3 Nodes
With Inhibition Arcs and Only One Active Node

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 110

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Reachability (atteignabilité)
v “Can we reach one particular state from another?”

q Boundedness (est-il borné)
v “Will a storage place overflow?”

q Liveness (vivacité)
v “Will the system die in a particular state?”

q Softwares and tools: TINA (INRIA), PEP, HiQPN, Design/CPN

Behavioural Properties: a Way to Prove the Protocols

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 111

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

In 1965, Dijkstra posed and solved a
synchronization problem called the
dining philosophers problem. The
problem can be stated as follows:
q Five philosophers are sitting around a

table. Each philosopher has a plate of
noddles.

q A philosopher needs two chopsticks to
eat it. There is one chopstick
between each plates.

q The life of a philosopher consists of
alternate periods of eating and
thinking.

q When a philosopher gets hungry, he
tries to acquire his left and right
chopsticks, one at a time.

q If successful in acquiring two
chopsticks, a philosopher eats for a
while, then puts down the chopsticks
and continues to think.

Your Job to conclude this Part on Petri Net:
The five Philosophers Welknown Problem

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 112

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

First Classical Solution

Think3

cp1

cp5cp2

cp3 cp4

eat1

eat2

eat3

eat4

eat5 eatni : state eating

cpni : state
chopstick present

Thinkni : state thinking

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 113

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Your Job: to Add Equity Between Philosophers ?
A Philosopher Can Eat for the Second Time Only if his

Other Colleagues Have Already Ate

q The first modelization allows to one philosopher to eat many
times, and his neighbors cannot eat

q It should be interesting to propose a mecanism to allows to
share fairly the possibility to eat.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 114

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Solution with Equity

One
philosopher
eats alone

two
philosophers

simultaneously
eat

5

19/05/2017

20

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 115

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms
• Model checking,
• Petri Net,
• Finite State Automata.

V. Implementations on Message Passing Layer

VI. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 116

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Finite state automata are classicaly used to modelize distributed
protocols.

q These automata are used to prove these protocols.

q A finite state automaton is composed of states and transitions.

Other Possible Modelization of Distributed Protocols

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 117

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q This is a tutorial session: students can communicate with students and
they can communicate with the teacher.

First Example to Understand the Construction of an Automaton

q It is not a lecture course

q Remote Teaching Scenario
v This is a collaborative example.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 118

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Behaviors Modelization

q To establish study a system, it is first necessary to define the
behavior of the actors:

v First Automata: the behavior of the students,

v Second Automata: the behavior of the teacher.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 119

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Student Behavior

1

State1: Initial state

6

State6: Student requesting a dialog with another student

4

State4: Student subject to a student’s request for a dialog
State5: Student in a dialog with another student

5 acceptation

2

State2: Student requesting a dialog with the teacher

3
acceptation

State3: Student in a dialog with teacher

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 120

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

1

State1: Initial state
State2: Teacher subject to a student’s request for a dialog

2

State3: Teacher in a dialog with a student

3
acceptation

Teacher Behavior

19/05/2017

21

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 121

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Do you remember The five Philosophers ?
Your job, this time: to design the automata of a philosopher behavior

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 122

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Philosopher Behavior (one first simple solution)

1

State1: Initial state philosopher thinking

no available couple
of chopsticks

2

State2: Philosopher eating

Takes the
chopsticks

Puts down the
chopsticks

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 123

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Philosopher Behavior (a solution with separate chopsticks)

Puts down the
chopsticks

3

State3: Philosopher eating

1

State1: Initial state philosopher thinking

no available
chopstick

no available
chopstick

Takes a
chopstick

2

State2: Philosopher with one chopstick

negative aspect of this solution: this solution will require a
subsequent management of neighbors locked in state 2

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 124

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q There is a boat available for crossing the river, but it can carry only
the man and at most one other object.
v The wolf may eat the goat when the man is not around, and,
v The goat may eat the cabbage when unattended.

q Can the man bring everyone across the river without endangering the
goat or the cabbage? And if so, how?

A farmer is travelling with a wolf, a goat, and a cabbage. The four
come to a river that they must cross.

Your Job: to propose a finite state automaton of this
behavior

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 125

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Proposed notations:
v Initial State FWGC // Ø, that means the farmer, the wolf, the goat and the

cabbage on the left bank, and nobody on the other bank.
v Final State Ø // FWGC.
v The transitions:

Ø Farmer alone on the boat f,
Ø Farmer crosses with the wolf fw,
Ø Farmer crosses with the goat fg,
Ø Farmer crosses with the cabbage fc.

q Rules:
v The farmer can cross alone or at most one other object.
v The wolf may eat the goat when the man is not around
v the goat may eat the cabbage when unattended.

So the following states are inaccessible : GC//FW, FW//GC, FC//WG, WG//FC, F //
WGC, WGC // F

Your Job: to propose a finite state automaton of this behavior

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 126

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q States examples:

Your Job: to propose a finite state automaton of this behavior

FG//WC

q Transitions examples:

G//FWC

FG

FW

FGC//W FC

FGC//W CGF//W CFG//WFCG//WGFC//WGCF//W

q These representations are the same state:

19/05/2017

22

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 127

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

One Solution

fgfg
FGWC//0

ff

fc

fc

fg
fg

fw

fw

fg

fg
ff

fc fc

fgfg

fw

fw

WC//FG

FWC//G

C//FWG W//FGC

FGC//W

G//FWC

FG//WC

0//FGWC

FGW//C

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 128

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Do you remember The Pilgrim algorithm ?
Together we will think about the automata of an object

ownership (simple writer, multiple readers)

Node2

Node4

Node3

Node1

Let a whiteboard:
q It is shared by 4 nodes (4

processors),
q and it contains one object: a circle,

The owner of this object is the node2.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 129

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

is the owner
of the circle

2

The token turns empty

Do you remember The Pilgrim algorithm ?
Together we will think about the automata of an object

ownership (simple writer, multiple readers)

Node2

Node4

Node3

Node1

two nodes try
to become the
owner of the
circle

3 1Adds his request
on the token

3

1

Adds his request
on the token

Cannot add his
request because
one other request
is already on the
token

3

1

Adds his request
on the token

Is not working,
and accepts to
lose the
ownership

3

2

Becomes the new
owner of the
circle

3

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 130

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Writer
v The owner

• writing

v The non-owners
• request to recover the ownership,
• ownership change
• Writing

Reader
v The owner

• Local reading.

v The non-owners
• Local reading

Do you remember The Pilgrim algorithm ?
Together we will think about the automata of an object

ownership (simple writer, multiple readers)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 131

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

(rjd)^(writing)

(reading)(reading)

(writing)

(rtd)

(rtr)

(rjd)^(writing)

(rta)

O : Owner
NO: Non-Owner

States Transitions

(reading)
(writing)
(rtd): receive token with demand

(rta): receive token with accept
(rtr): receive token with refuse

O NO

A First Simple Finite State Automaton

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 132

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

(reading)

(rtd)

(rtd)

(rtn)

(reading) (rtn)

(writing)

(reading)
(writing)

(reading)

(rtc)

(reading)

(rtn)

(rtd)^(rta)^(rtr)^(rtc)

(reading)

(reading)

(rtr)

OLO

IO

(rtd)

(rtn)

ALO

NOCA

NOA

NOW

Pilgrim’s Finite State Automaton

(reading)

AUO

NO

ALO: Active Locked OwnerAUO: Active Unlocked OwnerIO: Inactive OwnerOLO: Owner which Loses the OwnershipNO: Non-OwnerNOCA: Non-Owner which Could Ask for the OwnershipNOA: Non-Owner which AsksNOW: Non-Owner which Wins the Ownership

19/05/2017

23

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 133

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Mutual Exclusion Theorem:
The Pilgrim protocol guarantees mutual exclusion for
writing on a shared object.

q Liveliness Theorem:
An object always has an owner or has one after finite
time t.

This Automaton Was Used to Prove these Theorems

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 134

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim’s Proof

q Let EE be the set of states containing nn elements and TT the set of

transitions(events) containing mm elements,

q The automaton edges represent an application from EE x TT EE

q The structure created is a graph with nn .. mm edges.

q nn = 88 et mm = 88, so the mathematic definition imposes 6644. But some of
them are impossible.

q If we strictly abide by this definition, we have to create a trash state
which would receive all iimmppoossssiibbllee eeddggeess. To simplify our model we have

not created this state.

q For each state we also state 1100 rules defining the automaton, and

especially the iimmppoossssiibbllee eevveennttss.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 135

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim’s Proof: 10 rules
For each state we also state 1100 rules defining the

automaton, and especially the iimmppoossssiibbllee eevveennttss.

q Rule 1:
The (reading) event does not change the state of a site.

q Rule 2:
A site can write on an object only if it is in one of the following states: ALO (Active
Locked Owner), AUO (Active Unlocked Owner) or IO (Inactive Owner).

q Rule 3:
A site can send an ownership request for an object only if it is in the NO (Non-Owner)
state.

q Rule 4:
At time t one site at the most can be in the NOA (Non-Owner which Asks for the
ownership)
state.

q Rule 5:
A site in the NOA state cannot receive a message with an accept or refuse command
(one of the two events (rta) ou (rtr))

q Rule 6:
A site in the NOW (Non-Owner which Wins the ownership) state or in the OLO (Owner
which Loses the Ownership) state cannot receive a token with a request, an accept
command
or a refuse command (one of the following events (rtd), (rta) ou (rtr)).

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 136

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim’s Proof: 10 rules

q Rule 7:
A site in the NOW (Non-Owner which Wins the ownership) state or in the OLO (Owner
which Loses the Ownership) state cannot receive a token with no command (event
(rtn)).

q Rule 8:
A site in the NOW (Non-Owner which Wins the ownership) state or in the OLO (Owner
which Loses the Ownership) state cannot write on the object.

q Rule 9 :
A site in one of the owner states (ALO, AUO, IO or OLO) cannot receive a token with
an answer to a request (event (rta) or (rtr)).

q Rule 10:
A site in one of these three owner states (ALO, AUO, IO) cannot receive a token with
an owner change command (event (rtc)).

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 137

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim’s Proof: examples of States Justifications

q NOA (Non-Owner which Asks the ownership) State:
Rule 5 recall:
A site in the NOA state cannot receive a message with an accept or refuse
command (one of the two events (rta) ou (rtr))

Justification: In this state a site is waiting for an answer to its ownership earn
request: accept command or refuse command. if a NOA site received a token with no
command or a token with an ownership change command or an ownership earn
request (one of the following events (rtn), (rtc) or (rtd)), this would indicate a
dysfunctioning of the system like a fault of the owner that cannot send an answer.

Rules 2 and 3 show that in NOA the events (writing) and (request) are impossible. A
(reading) event does not change the state of the site(rule 1).

If the ownership earn request is accepted, the site changes to NOW (Non-Owner which
Wins the ownership), and will have to manage the owner change. Otherwise it will
return to NO and make another request.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 138

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim’s Proof: examples of States Justifications

q AUO (Active Unlocked Owner) State:

Rule 3 shows that in AUO, the event (request) is impossible. A (reading) event does
not change the state of the site (rule 1). Rules 9 and 10 show that the following
events are impossible: (rta),(rtr) and (rtc). If a site in AUO writes on the object, it
changes to ALO, because it becomes active again.

We called this state Active Unlocked Owner, because if it receives a token with a
request (event (rtd)), it has to accept the request. Then, it changes to OLO when
receiving a token with no command, it changes to IO (Inactive Owner).

19/05/2017

24

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 139

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim: Proof of Mutual Exclusion Theorem
The Pilgrim protocol guarantees mutual exclusion for writing on a shared object.

q Rule 11:
A non-ownership site cannot answer an ownership earn request.

q Lemme 1 :
When a site in the NOW (Non-Owner which Wins the ownership) state changes to the
ALO (Active Locked Owner) state, the site which was the owner changes to the NO
state.

q Lemme 2 :
When a site changes from the OLO (Owner which Looses the Ownership) state to the
NO (Non-Owner) state, one and only one site becomes the owner of the object. As
soon as the winner receives the token, it changes to ALO (Active Locked Owner).

Using Lemme1, and Lemme2, we prove:
q Mutual Exclusion Theorem:
The Pilgrim protocol guarantees mutual exclusion for writing on a shared object.

At time t0, consider a site in ALO (Active Locked Owner) and n-1 sites in NO. The

theorem is true at time t0, because the ALO site is the only one which can write on the

object. We have to prove that this theorem still remains true (for each event that
modifies the system).

Conclusion: The mutual exclusion theorem is true at time tt00 and remains true
following events which modify the system. Therefore the Pilgrim protocol guarantees
mutual exclusion for writing on a shared object.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 140

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Pilgrim: Proof of Liveliness Theorem
An object always has an owner or has one after nite time t.

Using Using the same approach, we have to show that the liveliness theorem is true at
time t0 and that it remains true following various events which modify the system.

At time t0, consider a site in ALO (Active Locked Owner) and n-1 sites in NO. The

theorem is initially true, because the ALO site is the owner of the object.

Working with Rule1, Rule 2, Lemme2 and Rule 4 the proof is written.

Conclusion: The liveliness theorem is true at time tt00 and remains true following

events which modify the system. Therefore with the Pilgrim protocol an object
always has an owner or has one after finite time tt.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 141

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer
• PVM,
• MPI.

IV. Computer Science Advances in these Domains

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 142

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM: Parallel Virtual Machine

q Version 1: 1989-90 Oak Ridge National Laboratory (first a research
project),

q Version 2: 1991 ; more simple ; more robust,
q Version 3: 1993 ; is more suitable for parallel architectures,
q Version 3.4: Major extensions(Introduction of communicative

contextsand static process groups).

q PVM provides an unified framework for developing parallel programs
with the existing infrastructure,

q PVM enables a collection of heterogeneous computer systems as a
single parallel virtual machine,

q Transparent to the user,

q All tasks on PVM cooperate by sending and receiving messages from
one another,

q PVM supports functional and data parallelism,
q A well defined library of PVM interface routines are used for

programming.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 143

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM allows to consider a set of machines as an only one
virtual machine with many processors (virtual or not)

The first solution for GRID COMPUTING

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 144

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Many processors virtual or not

q PVM is used for the development of parallel programs or parallel
algorithms:

v Several virtual processors can be simulated on only one physical
processor,

v Or for real parallelism: each virtual processor is associated to a
physical processor,

v Mixed solutions with more or less physical and logical processors
processors

19/05/2017

25

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 145

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM: Parallel Matrix Algebra
Parallel Matrix Multiplication

Example
On Node A

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

? ? ?

? ? ?

? ? ?
* =

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 146

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Node A

1 2 3

4 5 6

7 8 9

(1 2 3) *
1 2 3

4 5 6

7 8 9

(7 8 9) *

Node C

1 2 3

4 5 6

7 8 9

(4 5 6) *

Node B

PVM: Parallel Matrix Algebra
Parallel Matrix Multiplication

=
? ? ?

? ? ?

? ? ?

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 147

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Simple (hiding technical issues from the users),

q Portability : under Linux, FreeBSD, SunOS, Mips, SG IRIS...,

q Heterogeneity : machines, architectures, OS, network

with the use of eXternal Data Representation

q Users oriented,

q Use the available power of a set of machines: a cluster,

q Collaboration of a set of machines.

q PVM is composed of:
v A daemon (pvmd or pvmd3) that resides on all computers making

the virtual machine;
v A console: once configured, tasks can be started (spawned),

killed, signaled from a console;
v a library of PVM interface routines: libpvm3.a (and libfpvm3.a,

and libgpvm3.a)

PVM’s Specifications

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 148

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q A PVMd deamon resides on all computers making the virtual machine,

q A PVMd is owned by one user and has no interaction with deamons
from another user,

q A PVMd routes et controls messages,

q The first running is the « master » and the other are « slaves »

q A PVMd owns a table of hosts and tasks under his control,

q A PVMd owns also queue of packets and a queue of messages,

q When a deamon PVMd is running, the file « /tmp/pvmd.<uid> » is
created.

Deamons: PVMd

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 149

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q A PVMd deamon resides on all computers making the virtual
machine

Virtual Machine Creation

Deamon 1 Deamon 3Deamon 2

It has to be registered to participate to the Virtual Machine

1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 150

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Each task is connected to the deamon running on the processor
where it has been launched .

Tasks Connections

2

Deamon 3Deamon 2Deamon 1

task1

19/05/2017

26

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 151

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q A connected task can create other task (with pvm_spawn)

Tasks Connections

3

Deamon 3

task4 task1 task2 task3

Deamon 1

task5 task2

Deamon 2

task1

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 152

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q The configuration of the virtual Machine is defined in the hostfile:

Ø pvmd3 hostfile &

Ø > pvm to run the consol

Ø pvm> conf give the configuration of the Virtual Machine

q Console commands

Hostfile, and console

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 153

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

It Contains both parent and child code.

This function must be called before any other call. This call

must be positive number.

This call tells what goes wrong with the last call.

Retuns the Parent ID or else will retrn Error code

“PvmNoParent” says that the process is spawned by user and

not by any other process.

PVM program – Example

/* find out my task id number */
mytid = pvm_mytid();

pvm_perror(argv[0]);

/* find my parent's task id number */
myparent = pvm_parent();

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 154

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

• Following code differenciate the parent of all childs.

• So by this you can differenciate the code of top process and
child code.

• This is the code which spawns childs.

/* if i don't have a parent then i am the parent */
if (myparent == PvmNoParent) {

/* spawn the child tasks */
info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault,

(char*)0, ntask, child);

PVM program – Example

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 155

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

•Parameters
q First perameter gives the name of the program that the child

should run.
q Second perameter is the arguments that can be passed to child
q Third perameter – this says that where the child should spawn.

We can give specific architecture or host name where the child
can spawn

q Fourth perameter will have the values of the third perameter
q Fifth perameter specifies the number of the childs to be spawned.
q Last perameter is the array name which holds the child Id's.

This Function is returning the no of child successfully spawned which
should be equal to the sent number n the 5th perameter other wise
something gone wrong.

/* spawn the child tasks */
info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault,

(char*)0, ntask, child);

PVM program – Example

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 156

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

• Following code is the waiting blocking call of parent.

• So by this parent is waiting for all the childs to send the join
message.

• Parent gets the data from the child via the message and the
following code gets the data from the buffer.

• After getting the join messages from all the childs parent also
exits pvm.

/* recv a message from any child process */
buf = pvm_recv(-1, JOINTAG);

info = pvm_bufinfo(buf, &len, &tag, &tid);

PVM program – Example

19/05/2017

27

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 157

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

• Following code is run by child.

• First line - For message to be sent first we need to create the
buffer to send the data.

• Second line – We are adding the child's Id to the message.
• Third line sending the join call to the parent with the message

attached.
• Fourth line calls off the child from pvm and distroy its memory

references.

info = pvm_initsend(PvmDataDefault);
info = pvm_pkint(&mytid, 1, 1);
info = pvm_send(myparent, JOINTAG);
pvm_exit();

PVM program – Example

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 158

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q PVM debuggers
v TotalView - commercial parallel debugger from Etnus (formerly Dolphinics) - well done!
v Xmdb - parallel programming and debugging trainer for beginners
v p2d2 - a portable parallel distributed debugger from NASA.

v AIMS - nice tool developed by NASA

q Noteable PVM related Software
v LPVM LPVM is PVM3 bindings for Common Lisp,
v SCALAPACK - a library of optimized, parallel linear algebra routines using PVM,

v pypvm-0.92 Python-PVM into a single release.,
v IDL to PVM interface. lets you perform parallel processing with IDL through PVM call,
v EasyPVM is a C++ wrapper for the PVM libraries,

v PVM Toolbox for Matlab a toolkit for calling PVM from Matlab,
v HP-PVM – PVM clone: Supports PVM 3.3 on Windows and Unix as well as shared memory,
v Fortran 90 PVM interface - to take advantage of Fortran 90 facilities,

v tkpvm - this package combines the power of tcl/tk and PVM,
v WPVM 2.0 - a PVM version for Microsoft Windows,
v jPVM - with PVM 3.4, a native methods interface to PVM for the Java (tm) platform,
v JPVM - is a PVM-like class library implemented in and for use with Java,

v Perl-PVM - Perl extension for PVM,
v Pypvm is a Python interface to PVM,
v CPPvm (C Plus Plus PVM) - a C++ interface to PVM 3.4,

v …

Distributions of PVM

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 159

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Communications are based on TCP and UDP/IP: UDP mode between
deamons, possibility of TCP mode between tasks.

q Several communication modes are allowed:
v Pvmd-pvmd
v pvmd-task
v task-task

Communications

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 160

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q All connected tasks can communicate

Messages Exchanges

4

Deamon 3

task4 task1 task3

Deamon 1

task5 task2

Deamon 2

direct routing

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 161

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Communications are asynchronous and keep the order
of messages:

vsend: non-blocking

vblocking receive

vnon-blocking receive

vdirect routing

vmulticasting and broadcasting

Communications

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 162

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q pvm_recv: when this function is called the task is blocked until
the reception of the message.

Blocking Receipt

A B
t

pvm_send pvm_recv

Interruption of
execution

19/05/2017

28

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 163

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q pvm_nrecv : This function is non-blocking. you just make sure
that the message is not used before the final reception.

Non-Blocking Receipt

A B
t

pvm_send pvm_nrecv

Normal
execution

pvm_nrecv

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 164

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q pvm_bcast: sends to all nodes in a group, whether that group
is predefined.

q Pvm_mcast: sends to all nodes with node numbers that appear
in an predefined array.

These functions are more efficients than succesive sendings

Multicasting and Broadcasting

Deamon 3

task4 task1 task3

Deamon 1

task5 task2

Deamon 2

Task3 would like to
bcast or mcast

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 165

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

XPVM: a graphical interface for PVM

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 166

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

XPVM: a graphical interface for PVM

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 167

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Algo. Distrib

XPVM: a graphical interface for PVM

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 168

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer
• PVM,
• MPI.

IV. Computer Science Advances in these Domains

19/05/2017

29

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 169

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q You will work on MPI during practical exercises with Violeta
Felea

MPI

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 170

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM
q The development of PVM

started in summer 1989 at
Oak Ridge National
Laboratory (ORNL).

q PVM was effort of a single
research group, allowing it
great flexibility in design
of this system

PVM Versus MPI

MPI
q The development of MPI
started in April 1992.
q MPI was designed by the
MPI Forum (a diverse
collection of implementors,
library writers, and end
users) quite independently of
any specific implementation.

1989 9490 96 97 99 2000
PVM-1

MPI-1 MPI-2

PVM-2 PVM-3 PVM-3.4

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 171

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM

A distributed operating system

Portability

Heterogeneity

Handling communication
failures

MPI

A library for writing application
program, not a distributed

operating system
Portability

High Performance

Heterogeneity

Well-defined behavior

PVM Versus MPI

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 172

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

MPI - Message Passing Interface

q A fixed set of processes is created at program initialization, one
process is created per processor :

mpirun –np 5 program

q Each process knows its personal number (rank)

q Each process knows number of all processes

q Each process can communicate with other processes

q Process cannot create new processes (in MPI-1)

What is MPI ?

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 173

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM - Parallel Virtual Machine

q Is a software package that allows an heterogeneous collection of
workstations (host pool) to run as a single high performance parallel
machine (virtual),

q PVM, through its virtual machine provides a simple yet useful
distributed operating system,

q It has daemons running on all computers making up the virtual
machine.

What is PVM ?

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 174

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Portability – source code written for one architecture can be
copied to a second architecture, compiled and executed
without modification (to some extent),

q Support MPMD (Multiple Program Mutiple Data) programs as
well as SPMD (Simple Program Multiple Data),

q Interoperability – the ability of different implementations of
the same specification to exchange messages,

q Heterogeneity (to some extent)
PVM & MPI are systems designed to provide users with libraries
for writing portable, heterogeneous, MPMD programs.

What is Not Different?

19/05/2017

30

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 175

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Ability to start and stop tasks, to find out which tasks are
running, and possibly where they are running,

q PVM contains all of these capabilities – it can spawn/kill tasks
dynamically,

q MPI -1 has no defined method to start new task.
q But MPI -2 contain functions to start a group of tasks and to

send a kill signal to a group of tasks,

q Message Passing operations: MPI Vs PVM:
v PVM: Simple message passing,
v MPI : Rich message support.

Process control: PVM and MPI

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 176

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PVM

q Virtual machine concept
q Simple message passing
q Communication topology

unspecified
q Interoperate across host

architecture boundaries
q Portability over performance
q Resource and process control
q Robust fault tolerance

PVM is better for:
Heterogeneous cluster, resource

and process control
The size of cluster and the time of

program’s execution are great

MPI

q No such abstraction
q Rich message support
q Support logical communication

topologies
q Some realizations do not interoperate

across architectural boundaries
q Performance over flexibility
q Primarily concerned with messaging
q More susceptible to faults

MPI is better for:
Supercomputers (PVM is not supported)

Max performance
Application needs rich message support

Conclusion: PVM Versus MPI
Each API Has its Unique Strengths

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 177

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

IV. Computer Science Advances in these Domains
• Consensus
• Adaptability,
• Active Networks,
• Components Platforms,
• Ontologies and Traceability

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 178

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Consensus: Mutiple Writers Model

q Agree on a common value chosen from a group of proposed
values:
v Termination.
v Agreement.
v Validity.

q FLP theorem: [FISCHER, LYNCH and PATERSON 1985]:

Asynchronous system + process failure
àà impossible to solve the consensus problem

q Unreliable failure detectors : CHANDRA-TOEUG 1996.
wS à list of suspected processes.

q Leader oracle Ω à one correct process.

q Work in Crash-Stop model.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 179

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Existing consensus algorithms

P0 P1 P2P0 P1 P2

Coordinator / leader:

Coordinator based, c = (r mod n)+1 Leader based, Ω

P0 P1 P2P0 P1 P2

Communication pattern:

Centralized Decentralized

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 180

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Existing consensus algorithms

q Number of correct processes >= ⌈(n+1)/2⌉
è tolerate f < n/2

Coordinator / leader

Coordinator Leader

Communication
pattern

Centralized CT
(T. Chandra, S. Toeug)

Paxos, MPaxos
(L. Lamport)

Decentralized
MR

(A. Mostefaoui, M.
Raynal)

MRLeader
(A. Mostefaoui, M.

Raynal)

Classification

19/05/2017

31

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 181

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Example of a the FLC Consensus Protocol

q Principal idea: a phase of leader election
v Reinforces the choice made by Ω,
v Ensures the existence of one leader per round.

P0 P1 P2

est

LeaderAck()

q est: The estimation sent of the decision value.

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 182

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

P0 P1 P2

est

est

est

LeaderAck()

Example of a the FLC Consensus Protocol
Execution with No Crashes, No Wrong Suspicions

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 183

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

P0 P1 P2

^ ^

^

est

est
est

LeaderAck()

Example of a the FLC Consensus Protocol
Execution with Crash of the Leader, No Wrong Suspicions

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 184

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

P0 P1 P2

est

est
est

est

LeaderAck()LeaderAck()

Example of a the FLC Consensus Protocol
Execution with No Crashes, Wrong Suspicions

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 185

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

IV. Computer Science Advances in these Domains
• Consensus
• Adaptability,
• Active Networks,
• Components Platforms,
• Ontologies and Traceability

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 186

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Adaptability at the Protocol Level From the
Pilgrim Algorithm to the Chameleon Algorithm

Productor-Consumer (PCo) Productor-Consumer Tutor (PCoT)
Simple Consumer ou Tutored (SCo)

Simple Productor (SP)

Chameleon Execution

19/05/2017

32

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 187

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

HCI Adaptability

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 188

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Adaptation to New Devices

Ergonomic study of HCI

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 189

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Ergonomic Adaptation of HCI, … plasticity ?

1280 x 1024 pixels

320 x 240 pixels

Program.java

IPhone.class
office.class

mobile.class

…

JInternalFrames

Stacked Frames

960 ×× 640 pixels

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 190

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

IV. Computer Science Advances in these Domains
• Consensus,
• Adaptability,
• Active Networks,
• Components Platforms,
• Ontologies and Traceability

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 191

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Network
PROXY

3 possibilities to adapt the network
Close to the transmitter (applicative level)

At proxy level

Active networks: at the better place

Transmitter

Network
PROXY

Active
Network

Network adaptation: the use of Active Network
(intelligent networks)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 192

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

PA5

Transmitter

APPAT: an Adaptability Dedicated Platform

PA4

19/05/2017

33

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 193

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

APPAT: an Adaptability Dedicated Platform

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 194

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

IV. Computer Science Advances in these Domains
• Consensus,
• Adaptability,
• Active Networks,
• Components Platforms,
• Ontologies and Traceability

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 195

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Example UbiCore : the functional core of the application

Development based on components

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 196

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Generic tools

Development based on components

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 197

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q New components can be plugged following the targeted application

Development based on components

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 198

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Outline

I. Computer Supported Collaborative Work

II. Shared Memory Theory

III. Distributed Algorithms for Shared Memory Management

IV. Validations of Distributed Algorithms

V. Implementations on Message Passing Layer

IV. Computer Science Advances in these Domains
• Consensus,
• Adaptability,
• Active Networks,
• Components Platforms,
• Ontologies and Traceability

19/05/2017

34

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 199

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q Ontologies

Ontologies

heart attack infarction

Cardiac infarction

Myocardial infarction

These terms represent the same pathology
They must be linked by the ontologies

Like that, everybody speaks about the same concept

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 200

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Diagnosis
Patient

Information

Concentration
of Information

q In medical systems, the most important objective is to identify,
classify and protect the information using relational databases.

q it allows to track the activities of medical procedures and treatments
made by different departments and different professionals.

Ontologies for Traceability in Telemedicine

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 201

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Our objectives

q Providing information sharing
between physicians and improve
the diagnosis in DICOM.

q Traceability chain also includes
the diagnosis using ontology
technology, which is the result of
physician interpretation of the
initial study and further studies
made by collaborative diagnosis
community .

q It is crucial that the professionals
involved in collaborative diagnosis
have total access to medical
information and the up-to-date
reports in the traceability chain.

Ontologies: COOVADIS Platform
(Vascular Diseases)

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 202

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

3 Ontologies as Support Tool for Physicians

Diagnosis Ontology

Traceability of Diagnosis Ontology
Vascular Diseases Ontology

These ontologies provide
the required distributed
information to the
medical collaborative
community for enabling a
best patient monitoring
and diagnosis support in
COOVADIS.

Imagery

Clinical
History

Exams

Temporary
Participation

Symptoms
and

Causes

Disorders in
Vascular
System

Institution and
Professional

Involved

Diagnosis

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 203

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

An Ontology: What Does It Look Like
Vascular Diseases Ontology: Defined with PROTÉGÉ Software

Relations

Is
has
Is_caused_by
Derives_from
Disfunction_of
Complicated_by

Disease/Condition

Artery
Location Symptoms Cause

Evidence

Disease
Type

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 204

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

COOVADIS Global Architecture

19/05/2017

35

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 205

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Ontologies for Tourism in Phuket

Ontologies

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 206

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q If a stranger hears: « Namtok Kathu »

Transliterated Words

Namtork Kathu Numtoc Katu Numtok Kratuu Narmtog Kathu

Nam-tork-Ka-thu Num-toc-Ka-tu Num-tok-Kra-tuu Narm-tog-Kat-hu

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 207

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Ontologies for Tourism in Phuket

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 208

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

q e-Health & Telemedicine is THE WAY of the future for
medicine.

q In this context, in computer science, the main domain for
CSCW is the « Distributed algorithm for collaborative work ».
It is a very large domain in which you find distributed
algorithm, distributed systems, webservices, a touch of
network, adaptability, ontologies…

Conclusion

An Open Door for Many
Research Applicative Subjects

May-17 Jean-Christophe Lapayre - jc.lapayre@femto-st.fr 209

Introduction

CSCW

Shared
Memory

Distributed
Algorithms

Validation

Message
Passing

Advances

Conclusion

Questions ?

