FROM INFORMATIONALLY COMPLETE POVMS TO THE KOCHEN-SPECKER THEOREM

MICHEL PLANAT

Université de Bourgogne/Franche-Comté, Institut FEMTO-ST CNRS
UMR 6174, 15 B Avenue des Montboucons, F-25044 Besançon, France. michel.planat@femto-st.fr

Abstract of talk

It is possible to conciliate informationally complete (IC) measurements on an unknown density matrix and Kochen-Specker (KS) concepts (which forbid hidden variable theories of a non-contextual type). This was shown in [1] for qutrits and it is continued here for two-qubits (2QB), three-qubits (3QB) and two qutrits (2QT). Non symmetric IC-POVMs have been found in dimensions 3 to 12 starting from permutation groups, the derivation of appropriate non-stabilizer states (magic states) and the action of the Pauli group on them $[2,3]$. For 2QB, 3QB and 2QT systems, Kochen-Specker theorem follows.

For $2 Q B$, the magic state is of type $(0,1, \omega, \omega-1), \omega=\exp \left(\frac{i \pi}{3}\right)$, and the IC-POVM manifests dichotomic trace products of projectors $\Pi_{i}=\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ as $\operatorname{tr}\left(\Pi_{i} \Pi_{j}\right)_{i \neq j}=\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|_{i \neq j}^{2} \in\left\{\frac{1}{3}, \frac{1}{3^{2}}\right\}$. The triple products of projectors whose trace is $\pm \frac{1}{27}$, and simultaneously equal plus or minus the identity matrix, are organized as a (3×3)-grid. Taking the vertices of the grid as the 2QB Pauli group operators acting on the magic state instead of the corresponding projectors one recovers the standard form of Mermin square -that is used as an operator proof of the KS theorem.

For $3 Q B$, the Hoggar magic state ($-1 \pm i, 1,1,1,1,1,1,1,1$) leads to a SIC. Within the 4032 triples whose trace of triple products equal $-\frac{1}{27}$ [4], those whose product of projectors equal plus or minus the identity are organized into a geometric configuration $\left[63_{3}\right]$ whose automorphism group $G_{2}(2)=$ $U_{3}(3) \rtimes \mathbb{Z}_{2}$ is of order 12096 and corresponds to the generalized hexagon $G H(2,2)$ (or its dual). These configurations are related to the 12096 Mermin pentagrams that build a proof of the three-qubit Kochen-Specker theorem [5]. From the structure of hyperplanes of our [63_{3}] configuration, one learns that we are concerned with the dual of G_{2}.

Finally for 2 QT , a magic state such as $(1,1,0,0,0,0,-1,0,-1)$ may be used to generate an IC-POVM with dichotomic pairwise products $\left|\left\langle\psi_{i} \mid \psi_{j}\right\rangle\right|_{i \neq j}^{2} \in$ $\left\{\frac{1}{4}, \frac{1}{4^{2}}\right\}$. Defining lines as triple of projectors with trace $\frac{1}{8}$, one gets a geometric configuration of type $\left[81_{3}\right]$ that split into nine disjoint copies of type $\left[9_{3}\right]$. Each of them can be seen as a 3QT proof of KS theorem since the product law for the eigenvalues of 2QT operators O_{i}, that is $\nu\left(\Pi_{i=1}^{9} O_{i}\right)=\Pi_{i=1}^{9}\left[\nu\left(O_{i}\right)\right]$,

[^0]is violated. The left hand side equals ω_{3} while the right hand side equals ± 1 [3]. No non-contextual hidden variable theory is able to reproduce these results.

References

[1] I. Bengtsson, K. Blanchfield and A. Cabello, A Kochen-Specker inequality from a SIC, Phys. Lett. A376 374-376 (2012).
[2] M. Planat and Rukhsan-Ul-Haq, The magic of universal quantum computing with permutations, arxiv 1701.06443 (quant-ph).
[3] M. Planat and Z. Gedik, Magic informationally complete POVMs with permutations, 1704.02749 (quant-ph).
[4] B. M. Stacey, Geometric and information-theoretic properties of the Hoggar lines, arxiv 1609.03075 [quant-ph].
[5] M. Planat, M. Saniga and F. Holweck, Distinguished three-qubit 'magicity' via automorphisms of the split Cayley hexagon, Quant. Inf. Proc. 12 2535-2549 (2013).

[^0]: QUANTUM CONTEXTUALITY IN QUANTUM MECHANICS AND BEYOND, PRAGUE, CZECH REPUBLIC, JUNE 4-5 (2017).

