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Abstract

Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric
vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of
electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking ad-
vantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency
ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation.
After introducing the aspects the tuning process will focus on, the article details a concrete application
consisting in computing representative electromagnetic excitations and then the structural response of the
stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with
which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This meth-
odology is implementable for concrete industrial applications as it only relies on common commercial
finite-element solvers.

Keywords: viscoelastic behaviour, switched-reluctance machine, encapsulation resin, coupled
electromagnetic-structural response simulation, acoustic emission

1. Introduction

For both energy and environmental reasons, the automotive industry opts more and more for hybrid or
100%-electric powertrain technologies. Amongst the different types of electric machines (direct-current,
synchronous, asynchronous, ...), the so-called Switched-Reluctance Motor (SRM) is distinguished by a
very simple rotor architecture without any windings or permanent magnet. Resulting in low manufactur-
ing costs, this aspect also guarantees robustness to the structure, thus making it attractive for industrial
production. However, SRMs have been known for important torque ripple and high noise generation [1]
that explain the fact they are currently rather undesirable in car powertrains.

Similarly to an alternate-current (AC) electric machine, the stator of an SRM includes windings in
order to generate electromagnetic flux and thus torque when fed with electric currents. Then, the windings
are protected by an insulating resin (usually a polymer) in order to prevent short-circuits from taking place
between the copper wires. But whereas an AC machine’s stator often has numerous, thin teeth, an SRM
is composed of fewer and wider teeth and slots (see Figure 1). Therefore, this difference requires adapted
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resin settings for each motor type; while in the former case, windings are impregnated, the latter stator is
entirely potted (or encapsulated) with resin [2].

(a): distributed AC 
motor windings

(b): on-tooth SRM 
windings

Figure 1: AC vs. SRM stator architectures [3, 4]

Concerning the design of potting resins, usual constraints are electric and thermal insulating specific-
ations related to the conditions the electric machine has to sustain while operating [2]. Including new
specifications for acoustic performances therefore represents new challenges, but also new opportunities.
The first challenge to deal with is the increased complexity that viscoelastic materials represent in com-
parison to standard elastic properties when performing simulations involving polymers. A brief review of
some existing modelling methods in such cases is made in the following paragraph.

Plouin and Balmès [5] have developed a modelling technique for sandwich shell structures includ-
ing frequency- and temperature-dependent viscoelastic properties. Their application to predict the modal
behaviours of flat and curved sandwich composites was successful and coupled to an efficient reduction
approach to mitigate the important computation costs of their simulations. However, the use of two-
dimensional elements in the approach compromises its applicability to general three-dimensional struc-
tures.

Slater et al. [6] as well as Vasques et al. [7] reviewed, developed and compared a series of math-
ematical methods and algorithms designed for modelling viscoelastic effects in finite-element structures,
including the approaches detailed in [8]. The influence of stator temperature on an electric machine’s
NVH behaviour has been observed experimentally by Tan-Kim et al. [9]. The ability to take into account
temperature- and/or frequency-dependency in commercial finite-element software has been implemented
in several widely-used codes such as NASTRAN™, ANSYS™ and COMSOL™. This enables preparing
simulations involving viscoelastic phenomena with relatively small changes in the material definitions
compared to their standard elastic formulations.

Several studies or patents aiming at dimensioning and designing viscoelastic properties for vibrational
and acoustic purposes have been presented in the literature. Jung and Aref [10] associated a honeycomb
and viscoelastic materials for maximising the dissipation of energy in their structures. Their combined
model was able to dissipate up to 2.5 times as much energy as the individual honeycomb or viscoelastic
structure did. The authors outlined the shear resistance and energy dissipation opportunities their work
presents, although the presented solution has not been applied to industrial devices such as rotating ma-
chines in operation.

De Lima et al. [11] designed a multi-objective optimisation procedure for finite-element models in-
volving viscoelastic materials. The initial definition of the finite-element structure’s dynamic equation is
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made with frequency-dependent hysteretic damping:[
Ke +G∗ (ω,T )Kv−ω

2M
]
Q (ω,T ) = F (ω) , (1)

where Ke is the stiffness matrix relative to the elastic materials, G∗ (ω,T )Kv the complex viscoelastic
stiffness matrix, ω = 2 · π · f the circular frequency, M the mass matrix, Q (ω,T ) the vector of the
harmonic generalized displacement magnitudes and F (ω) the vector of the harmonic external loads. The
optimisation algorithm the authors presented also included sub-structuring algorithms that successfully
reduced the computation costs associated to the direct response resolution of Equation (1).

While comparing several viscoelastic material models, Trindade et al. [12] optimised the dimensions
of a viscoelastic material layer in active-passive damping patches on a cantilever beam. Optimum dimen-
sions increased the beam’s modal damping factors up to 9% compared to the initial state.

Tuning the damping level in a structure may be achieved by temperature control, as proposed by
Butaud et al. [13]. In this work, viscoelastic properties of a sandwich composite structure embedding
a highly dissipative shape memory polymer are controlled, allowing drastic changes in the dynamical
behaviour of the structure.

In addition to applied academic and industrial research studies, several patents have been applied in
the field of vibration-damping viscoelastic materials. The works [14], [15] and [16] could be thought
of, although the published documents lack of concrete applications on vibrating structures and external
reports on their actual performances.

So far, this section has reviewed some of the state-of-the-art knowledge in modelling viscoelastic
materials for finite-element simulations and concrete applications for reducing vibrations and noise levels
in various structures. As for the acoustic behaviours of electric machines, some works have outlined
the interesting potential of applying simulated electromagnetic excitations on structural finite-element
models in order to compute representative noise levels radiated while functioning. In addition to the
modelling guidelines proposed by Millithaler et al. [17, 18, 19], Schlensok et al. [20], Humbert et al. [21]
and Dupont et al. [22] present multi-physical simulation methods including electromagnetic, structural
and acoustic simulations for predicting the overall motor or powertrain noise emissions. Concerning
design objectives though, to the authors’ knowledge there are currently no published works detailing the
optimisation of potting resins’ viscoelastic properties for minimising electric motors’ acoustic responses
involving electromagnetic excitations.

To elaborate on these bases, this article will present a comprehensive methodology of resin viscoelastic
property optimisation in order to minimise the vibration and noise of a switched-reluctance machine sub-
jected to representative electromagnetic excitations. The method only involves finite-element simulations
on common software programmes and is therefore easy to apply for other concrete industrial structures.
This study intends to investigate new opportunities in the combined applications of viscoelasticity, elec-
tromagnetic excitations and noise, vibration and harshness (NVH) problems on electric machines. The
following sections will begin with some basic notions about viscoelasticity and detail the applications on
the studied electric machine afterwards. These applications are divided into two chronological stages:
firstly the simulation of electromagnetic simulations and then the simulation of acoustic responses.

2. Notions of viscoelasticity

Polymers such as potting resins are usually described by viscoelastic properties [23]. Amongst other
specificities, a viscoelastic material is characterised by a hysteretic stress-strain behaviour, which corres-
ponds to an out-of-phase dynamic response of the material subjected to harmonic perturbations [24, 25,
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26]. The corresponding stress-strain relation involves the complex modulus E∗ which is classicaly written
as

E∗ = E ′+ i ·E ′′ , (2)

introducing the storage modulus E ′ and the loss modulus E ′′, and where the ratio

E ′′

E ′
= tan(δ ) (3)

is called loss factor and can be seen as a mechanical damping.

Although the dynamic behaviour of viscoelastic materials can be expressed as a dependency to the
time, it will be rather seen as dependency to the frequency f for the rest of this article, so that f = ω/(2·π).
In addition to this, the dependency of viscoelastic properties to the temperature T will be also accounted
for [27].

Every viscoelastic material used in this study is considered homogeneous and isotropic, and thus
defined by a Young’s modulus, a shear modulus and a Poisson’s ratio. In this study, Poisson’s effects are
assumed independent from temperature and frequency. This assumption seems reasonable as suggested in
[12], [28], [11] and [7] and judging from the small discrepancies observed in the experimental identifica-
tion presented in [29]. Therefore, the expression of a complex modulus E∗ (T, f ) is related to a complex
shear modulus G∗ (T, f ) by the linear function inspired from isotropic elasticity [30]:

G∗ (T, f ) =
E∗ (T, f )
2 · (1+ν)

, (4)

where ν is the material’s Poisson’s ratio. Equation (3) can thus be re-written in terms of shear moduli:

G∗ (T, f ) = G′ (T, f ) · (1+ i ·η (T, f )) , (5)

where

η = tan(δ ) . (6)

3. Experimental analysis on a resin sample

In order to understand the dynamic behaviour of a given potting resin used for switched-reluctance ma-
chines and namely its dependencies to temperature and frequency, an experimental dynamic-mechanical
analysis (DMA) is performed on a sample of this material. This consists in applying a harmonic load to
the sample and measuring its response, in order to determine E ′, E ′′ and tan(δ ).

Concretely, a sample of a resin called P3 is created (developed and supplied by the company Von
Roll) with a shape of a 70-mm-long rod of 2-mm×4-mm rectangular section, and is subjected to harmonic
strains in tension along its length (there also exist other DMA methods such as bending, but they will not
be presented here). The test is repeated between -39°C and 101°C, and between 0.1 Hz and 10 Hz. The
resulting curves are plotted in Figure 2.

As it can be seen in Figure 2, important variations are observed at higher temperatures. Each curve
η (T ) reaches a maximum between 80°C and 100°C. Although there exist more specific definitions for
this entity, the temperature at which the loss factor reaches a maximum will be seen as the frequency-
dependent glass transition temperature TG ( f ) [31]. In a range of about TG±10°C, it can be seen that the
values of the material’s mechanical damping are above 0.5.
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Figure 2: DMA results for the storage modulus and loss factor changes in P3 sample with temperature and frequency

As outlined in [32], despite the important amount of information the DMA results give, the definitions
are relatively limited in terms of frequency. This is due to practical reasons, such as the analyser’s excit-
ation limitations. However, using algorithms based on the time-temperature superposition principle (see
e.g. [33], [34]) enables to compute so-called master-curves over a larger frequency range. The master-
curves at 81°C computed from the resin P3’s DMA measurements are plotted in 3.

Finally, considering a symmetry about the median frequency value, the similarities in the shapes of the
loss factor curves in Figures 2 and 3 is an interesting aspect to bring under the spotlight. Indeed, whereas
in Figure 2, the high-damping range (η > 0.4) was about 20°C-wide, Figure 2 shows that these values
span over more than three decades in terms of frequency. It is this specificity that this study aims at taking
advantage of.

4. Analytical modelling of viscoelastic properties

As it has been stated earlier, the objective of this article is to determine optimum viscoelastic prop-
erties for a stator’s potting resin. For convenience in this tuning process, these properties need to be
described by easily-controllable parameters. This is why analytical models are used to approximate the
polymer’s real behaviour. For consistency with the electromagnetic excitations simulated as frequency
spectra, viscoelastic effects will be modelled with frequency-dependent moduli at fixed temperatures,
therefore corresponding to the above-presented master-curves.

4.1. Zener model

Several analytical formulations exist to describe the frequency dependency of viscoelastic moduli [29].
The fractional derivative Zener model [35] is particularly convenient to use in this study as it is generated
from four easily-identified input parameters, namely the static elastic modulus

E0 = lim
f→0

E ′ ( f ) , (7)
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Figure 3: Master-curves for resin P3 with T0 = 81°C

the high-frequency modulus
E∞ = lim

f→+∞
E ′ ( f ) , (8)

the maximum loss factor
ηmax = max

f
η ( f ) (9)

and the corresponding frequency
fη_max = f |η( f )=ηmax . (10)

For convenience, fη_max will be referred to as “master-frequency” in this entire article. The determination
of these input parameters is illustrated in the (fictive) master-curve example in Figure 4.

Then, the order of fractional derivative α and the material’s relaxation time τ are determined with the
expressions [28, 35]

α =
2
π
· arcsin

(
ηmax · (E∞−E0) ·

2 ·
√

E∞ ·E0 +(E∞ +E0) ·
√

1+η2
max

η2
max · (E∞ +E0)

2 +(E∞−E0)
2

)
(11)

and

τ =
1

2 ·π · fη_max
·
(

E0

E∞

) 1
2·α

, (12)

with the aid of which the complex Young’s modulus is constituted:

E∗ ( f ) =
E0 +E∞ · (i · f · τ)α

1+(i · f · τ)α . (13)
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Figure 4: Input parameters for the Zener model

Finally, using the same expressions as shown in Section 2 enables to compute the associated storage and
loss moduli as well as the loss factor. Considering shear moduli instead of Young’s moduli with the Zener
model is applied in an identical way as long as Equation (5) holds.

In order to model resin P3 at the temperature T0 = 81°C, the Zener input values are identified from
the results plotted in Figure 3: E0 = 6 · 107 Pa, E∞ = 4 · 109 Pa, ηmax = 0.8 and fη_max = 10−1 Hz. The
comparison between the master-curves of resin P3 at the temperature T0 = 81°C and the corresponding
analytical curves E ′ ( f ) and η ( f ) is shown in Figure (5).

The shapes of the analytical and the experimental curves are reasonably similar, although there exist
some discrepancies. Amongst other aspects, it can be seen that Zener’s loss modulus curve η ( f ) is
symmetric about fη_max, which is not clearly the case for the corresponding master-curve. Considering
other analytical laws such as the models presented in [5] or [29] could improve the representativeness.
However, the Zener parameters E0, E∞, ηmax and fη_max are directly related with the concrete properties
this study aims at designing in a polymer. Judging from the pre-processing simplicity and the control over
convenient physical parameters it presents, the Zener model is therefore preferred.

4.2. Extrapolation of frequency-temperature models

As stated at the end of Section 3, a master-curve can be seen as the extended isothermal behaviour of
the material at the reference temperature chosen for its computation. In addition to the practical approach
detailed in Section 3 for computing frequency shift factors, it can be noted that several analytic laws have
been proposed for modelling the dependency of aT towards T . Amongst the most common, the Arrhenius
law can be seen as a linear function of ln(aT ) with respect to 1/T , whereas the Williams-Landel-Ferry
(WLF) law is a linear function of 1/log(aT ) with respect to 1/(T−T0) [36]. In detail, numerical evaluations
enable to approximate Arrhenius and WLF laws for T0 = 81°C with the respective linear functions:

ln(aT ) = 8.489 ·104 · 1
T
−2.387 ·102 (14)

and
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Figure 5: Master-curves for resin P3 with T0 = 81°C (solid lines and circles) and corresponding Zener models (red dashed lines)

1
log(aT )

=−5.740 · 1
T −T0

+9.709 ·10−2 , (15)

where ln is the natural logarithm (base e) and log the common logarithm (base 10).

However, such laws are only valid in certain temperature ranges and possibly depend on experimentally-
based constants. In order to overcome these limitations and approximate the behaviour of the resin in wide
ranges of both temperatures and frequencies, the evolution of the “master-frequency” fη_max (see Equa-
tion (11)) is analysed for a few reference temperatures T0. A polynomial function is computed to fit the
values (minimisation of least squares), as plotted in Figure 6.
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Figure 6: Measured master-frequencies (blue circles) and fitting polynomial curve (red dashed line)

The following first-order polynomial function is identified from the values:

log( fη_max) = 0.4054 ·T0−32.316 . (16)
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The coefficient of determination D associated to this fit is computed with the expression

D = 1−
∑

i∈Tre f

(
log
(

f {m}i

)
− log

(
f {c}i

))2

∑
i∈Tre f

(
log
(

f {c}i

))2 , (17)

where Tre f is the set of reference temperatures, f {m}i are the measured master-frequencies and f {c}i the
frequencies calculated with Equation (17). The value D = 99.59% confirms the good agreement between
the experimental and the analytical evolutions of master-frequencies with respect to reference temperat-
ures. Extrapolating the values of fη_max with relation (17) and using Zener models enables to predict the
viscoelastic behaviour of the resin in wide ranges of temperatures T and frequencies f . The evolutions of
the storage modulus E ′ and the loss factor η with respect to T and f are plotted in Figure 7.
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Figure 7: Graphical representations of E ′ (T, f ) and η (T, f )

5. Electromagnetic excitations

The device studied in this article is a “12/8” (12-toothed stator, 8-toothed rotor) switched-reluctance
motor designed for automotive 100%-electric traction vehicles. The number of teeth are referred to as ZS

for the stator and ZR for the rotor. A 2-D mesh is designed for electromagnetic finite element analyses,
and is shown in Figure 8. It is composed of 221,985 nodes and 105,454 elements. Symmetries and
antisymmetries could have been used to reduce the size of the problem.

In a switched-reluctance machine, the stator windings are powered sequentially so that the magnetic
flux circulating from the stator to the rotor creates torque while aligning the rotor teeth with the stator
poles. On the illustration shown on Figure 9, the winding phase “3” (right-hand side) is powered directly
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windings

Figure 8: Finite-element mesh for electromagnetic simulations (Cedrat Flux2D™)

after phase “1” (left-hand side): by minimising the distance in the air, the circulation of the flux (thin lines)
creates torque, until the next pair of coils is powered instead and the rotor is spun anew.
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Figure 9: Flux density maps in the SRM

For each of the rotor speeds Nr of 500, 1000, 2000, 3000, ... and 12000 revolutions per minute
(rpm), a simulation is performed with the electromagnetic finite-element solver Cedrat Flux2D™. The
input voltage Ui is controlled in order to impose a constant global magnetic flux Φg in the motor (pro-
portional to the ratio Ui/Nr), so that Ui does not exceed the battery voltage Ub = 400V in the speed range
[500; 12000 rpm]. Therefore, the input voltage for each simulation is computed from the corresponding
rotor speed with

Ui =Ub ·
Nr

12000
. (18)
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Finally, flux density values B(θs,θr) are computed at the motor’s air gap for each rotor position θr.
The virtual sensors where flux densities are computed are localised with their angular values θs, and are
illustrated in Figure 10. This enables to determine Maxwell stresses Pn and Pt with the expressions [37, 38]

Pn (θs,θr) =
[Bn (θs,θr)]

2− [Bt (θs,θr)]
2

2 ·µ0
(19)

and

Pt (θs,θr) =
Bn (θs,θr) ·Bt (θs,θr)

µ0
, (20)

where indices n and t respectively refer to normal (radial) and tangential components, and where µ0 is
the magnetic permeability of vacuum. Maps of the radial and tangential Maxwell stress distributions are
shown in Figure 11, where angle values are localised in a positive trigonometric (i.e. anti-clockwise)
system about axis +z.

stator
tooth

rotor
tooth

virtual 
sensors

windings

air

Figure 10: Virtual sensors in the air gap
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Figure 11: Spatial distributions of Maxwell stresses

The distribution maps clearly show that radial Maxwell stress components are significantly greater
than tangential contributions, which is consistent with the remarks outlined in [39] and in [21]. Also, the
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rotor circumference clearly exhibits 8 magnitude maxima, and the stator 12. These numbers expectedly
correspond to the numbers of teeth ZR and ZS, respectively.

The next step consists in analysing spectral representations of these excitation maps. Assimilating Nr

to a circular frequency ωr = 2 ·π ·Nr/60 and θr to the time t = θr/ωr, and computing Fourier transforms of
Pn and Pt about both variables yields the spectral matrices Pn and Pt , that describe the electromagnetic
excitations in terms of spatial orders me and frequencies fe. A graphical representation of matrix Pn is
shown in Figure 12, where engine orders k (referred to as “Hk”) are multiples of the engine’s fundamental
frequency and are defined by the expression

k =
2 ·π · fe

ωr
. (21)

Therefore, the engine order H0 is not considered for dynamic analyses.
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Figure 12: Engine order - spatial order representation of the radial excitation (for Nr = 1,000rpm)

Several observations can be made from the representation in Figure 12:

• The highest excitation magnitudes are found at low engine orders.

• The excitation magnitudes are negligible if the engine order is not a multiple of eight. This is
consistent with the facts that the highest Maxwell stress magnitudes are observed at the conjunctions
of stator and rotor teeth, and that conjunctions occur eight times (as ZR = 8) per rotor revolution
at each stator tooth (see Figure 11). Concretely, excitation spectra of higher engine orders are
harmonics of the fundamental H8.

• In a similar way, the magnitudes are negligible if the spatial order is not a multiple of four. This
corresponds to the greatest common divisor of ZS and ZR, which is a consequence of the Fourier
transforms. In practice, the spatial order of an excitation distribution corresponds to the number
of magnitude maxima in the air gap circumference. Due to the complex nature of the excitations,
magnitude maxima are displaced with increasing angle values at the air gap circumference while
the stress phases are increased. In other terms, observing the excitation in a trigonometric view for
a given frequency and a given positive spatial order shows a positive rotation of magnitude maxima.
This orientation is reversed for negative spatial orders.

This representation has a similar shape for other values of Nr. The global radial force resultant and
tangential force resultant (i.e. torque) are integrated over the entire air gap’s surface, and are plotted in
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Figure 13. It can be clearly seen that the global radial resultant is almost constant in the speed range
[500; 12,000 rpm].
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Figure 13: Global radial and tangential resultant forces at the air gap

In the following stages of this study, dynamic responses will be simulated for rotor speeds between
250 and 12,000 rpm with steps of 250 rpm (thus 48 speed cases), where engine orders above H56 as well
as spatial orders beyond the range [−20;+20] will be discarded. However, generating 48 excitation spec-
tra represents an important amount of data and therefore significantly long simulations. This is why the
extraction of excitation spectra according to specific engine orders is preferred. Therefore, only the excit-
ation spectra H8, H16, H24, H32, H40, H48 and H56 are considered for the dynamic response simulations.
For a given excitation spectrum, the structure’s deformations can be separated into independent responses
to each of spatial force harmonics, according to the superposition principle. Eventually, Maxwell stresses
are interpolated from neighbouring values if no electromagnetic simulation has been performed at the
given rotor speed.

6. Structural dynamic response

Now that the electromagnetic excitations are processed, the dynamic response of the structure can
be simulated. At this stage, modelling the rotor is no longer necessary. The entire stator is meshed in
three dimensions, with 81,719 nodes and 58,634 solid elements. The main properties of the finite-element
model are detailed as following:

• outer diameter: 245 mm;

• inner diameter (at stator teeth): 127.2 mm;

• air gap length (about direction z): 154 mm;

• mass: 34.1 kg.

The nodal coordinates as well as the material properties are expressed in the cylindrical coordinate
system {r,θ ,z}, where z is the stator’s revolution axis. In order to stabilise the structure, four addi-
tional node-to-ground stiffness elements are connected to the frame at each of the stator’s end faces. No
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damping is considered in these elements, while their stiffness values are 1,000N ·m−1 in every direction
(sufficiently high for an effective stabilisation and still negligibly low for not perturbing the structure’s
overall behaviour). An illustration of the entire mesh is given in Figure 14.
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Figure 14: Cutaway of the stator’s mesh

As shown in Figure 14, the air gap is identified by the core teeth’s inner faces. As a prerequisite for
the simulation output detailed in Subsection 6.2, the frame’s lateral surface is coated with shell elements
(“outer surface” in Figure 14). The associated material has negligible stiffness and thickness properties in
order not to alter the overall mechanical behaviour.

6.1. Modal basis
Before computing dynamic responses, comparing the structure’s modal behaviour to the excitation

spectra’s spatial distributions is a good indicator to anticipate resonance phenomena. In the case of a
frequency-independent non-dissipative system (thus neglecting damping effects), the i-th eigenvalue can
be described with the expression [40] (

K −ω
2
i M

)
φi = 0 , (22)

where K (resp. M ) is the entire system’s stiffness (resp. mass) matrix. The associated natural frequency
fi = ωi/2π and deformed shape φi constitute the structure’s i-th mode (real values in this case). With the aid
of Equation 22, associating the excitation spectra H8 to H56 and the speed range [250; 12,000 rpm] corres-
ponds to the frequency range [66.7; 11,200 Hz]. Therefore, the modes of the reference structure are com-
puted up to 11,200 Hz. The reference structure is composed of frequency- and temperature-independent
material properties. In particular, the resin is modelled with constant elastic properties corresponding to
the measured low-temperature Young’s modulus E = 4 ·109 Pa (see Figure 2) and Poisson’s ratio ν = 0.38.

In this case, the reference modal basis contains 77 modes, the first 6 of which (below 10 Hz) describe
the rigid-body suspension of the structure on the node-to-ground stiffness elements. For convenience,
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radial mode shapes are labelled with “(m,n)”, where m is the spatial order and n the number of undeformed
nodal circles about the stator length. Analysing the entire modal basis indicates that the highest spatial
order m (number of lobes on the stator’s circumference) in the considered frequency range is 5, for a mode
at 11,729 Hz. As resonance occurs when both the spatial order and the frequency of the excitation coincide
with the mode, the only modes to focus on are thus of spatial orders 0 and 4, and whose deformed shapes
are symmetric about the stator length (even values for n):

• “breathing” mode (0,0) at 6,295 Hz,

• “ovalisation” mode (4,0) at 7,090 Hz,

• mode (0,2) at 7,416 Hz,

• mode (4,2) at 8,747 Hz.

The modes are referred to as “critical”, and are illustrated in Figure 15.

(a): mode (0,0) – 6,295 Hz (b): mode (4,0) – 7,090 Hz

(d): mode (4,2) – 8,747 Hz(c): mode (0,2) – 7,416 Hz

Figure 15: Critical modes below 12,000 Hz
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6.2. Simulation details

At the opposite of the above-presented modal basis computation, the response simulations involve
the electromagnetic excitations detailed in Section 5, which are projected onto the air gap nodes (see
Figure 14). In order to estimate the acoustic emission associated to a given simulation, the Equivalent
Radiated Power (ERP) responses are computed at the stator’s “outer surface” panel. This type of output is
commonly used in the automotive industry [41] for its direct estimation of radiated power without need to
be post-processed through an acoustic simulation tool. Such outputs are only enabled on shell and plate
elements (hence the choice of coating the frame’s lateral face), but this choice has negligible impact on
the global structure’s behaviour and is more cost-effective than standard computations of normal velocities
at nodes. ERP data are summed over all the nodes and elements of the panel with the following global
expression [41]:

ERP( f ) = ρair · cair · ∑
j∈panel

V 2
j,n ( f ) ·S j , (23)

where ρair is the density of air, cair the speed of sound in air, Vj,n ( f ) the normal (i.e. radial) velocities at
element j and frequency f and S j surface of element j.

The temperature is considered fixed at T0 = 81°C, so that only frequency-dependent phenomena are
modelled. The simulations are performed with the finite-element solver MSC.Nastran™ v. 2013, which
is able to account for frequency-dependent definitions of material properties. The idea is to distinguish
several cases where the viscoelastic properties of the potting resin are changed, while the other parts
of the stator’s finite-element model are kept identical. In this section, the choice is made to tune only the
master-frequency fη_max, while the other Zener parameters are fixed with the values measured on resin P3:
G0 = 2.2 ·107 Pa, G∞ = 1.4 ·109 Pa and ηmax = 0.8. Although shear moduli are preferred for convenience
with the solver’s interpretation of viscoelastic properties, the equivalence with Young’s moduli is strictly
respected through Equation 5, with ν = 0.38. The different cases are labelled with specific IDs, as defined
in Table 1.

ID fη_max [Hz] ID fη_max [Hz]
1 0 7 101

2 10−4 8 102

3 10−3 9 103

4 10−2 10 104

5 10−1 11 105

6 1 12 106

Table 1: Definitions of the response cases

The value fη_max = 0Hz associated to case 1 corresponds to the reference case with frequency-
independent resin properties G = 1.4 ·109 Pa, ν = 0.38 and η = 0. For cases 2 to 12, the evolutions of the
the potting resin’s storage shear modulus and loss factor with respect to frequency are illustrated in Fig-
ure 16. It can be clearly seen that the cases for which fη_max is below 10−2 Hz are modelled by very similar
viscoelastic properties. Also, case 5 represents the current behaviour of resin P3 with fη_max = 10−1 Hz,
as shown in Figure 5.

The proposed cases may not be processed by the same simulation techniques. The fact that all the
material properties are constant in case 1 enables to compute the responses with the modal superposition
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Figure 16: Evolution of the resin’s viscoelastic properties (cases 2 to 12)

method [40]. On the contrary, the cases 2 to 12 require direct response solving due to the frequency-
dependent resin properties, which can be significantly longer than modal superposition (6 minutes for
case 1 against 16 hours for each of the cases 2 to 12). This same disadvantage is reported for the iterative
complex eigensolution approach developed in [7]. Mitigation solutions exist, such as the pseudo-modal
approaches such as in [42] or the numerical reduction methods suggested in [43] or reviewed in [35].
However, each of these alternative choices would require processing the structure’s mass and stiffness
matrices with external numerical tools, which may be delicate and time-consuming to prepare and perform
as the model is composed of about 250,000 degrees of freedom. Therefore, standard direct response
solving strategies (as introduced with Equation (1)) are preferred for the cases 2 to 12.

6.3. Response results of case 1

Each case introduced in Table 1 is divided into seven sub-cases, as the seven excitation spectra H8 to
H56 are applied separately. This is necessary as each excitation order corresponds to a specific frequency
range (see Equation 22). The results of case 1 have been transcribed in terms of engine speeds Nr to allow
comparison between the different responses. The curves are plotted in Figure 17, where the labels “Hu_r”
refer to the respective responses to excitation spectra Hu. The dashed curve “RSS_r” is the quadratic sum
of the results of all sub-cases i ∈ J1;7K, as defined by the following expression:
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RSS (Nr) =

√
7

∑
i=1

ERP(Nr)
2 . (24)
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Figure 17: Comparison of ERP responses for case 1

Note that RSS (Nr) can be seen basically as an overall sound power level including the contributions
H8 to H56. It can be seen that the highest ERP levels are reached in curves H32_r, H40_r, H48_r and
H56_r, while lower-order spectra are not responsible of any resonances in this speed range. This can be
explained by the fact that for orders H8, H16 and H24, the engine speeds corresponding to the mode’s
frequencies are above 12,000 rpm: in spite of the high stress levels illustrated in Figure 12, these orders
only create forced responses, whose magnitudes are significantly lower than modal resonances. As for the
low engine speeds, the relatively high ERP levels are due to stator’s suspension on low-stiffness elements,
and should not be regarded as noise problems in real applications.

The peak values on curves H32_r, H40_r, H48_r and H56_r are explained by coincidences with the
modes described in Figure 15. The frequencies associated to the peak ERP values are compared to the
stator’s natural frequencies, whereas the operational deformed shapes are compared to the structure’s mode
shapes. This comparison is detailed in Table 2.

Response
Speed Frequency Spatial order of the Excited
[rpm] [Hz] excitation contribution mode

H32_r 11,750 6,267 0 (0,0)
H40_r 10,750 7,167 +4 (4,0)
H48_r 8,000 6,400 0 (0,0)

9,250 7400 0 (0,2)
H56_r 7,500 7,000 -4 (4,0)

9,250 8,633 -4 (4,2)

Table 2: Modal coincidences in case 1

As it has been asserted earlier, Table 2 shows that each of the peak ERP values spotted in the studied
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Figure 18: Comparison of the curves RSSdB for all cases

case coincides in terms of both frequency and deformed shape with one of the structure’s critical modes
introduced in Figure 15. Except for the sub-case H32_r, these modal coincidences are determined by
the excitation spectra’s main spatial contributions, which are different according to the load case (see
Figure 12).

It can be noted that in H32_r, the resonance at 11,750 rpm coincides with mode (0,0) although the spa-
tial order of the main excitation contribution is -4; the frequency of mode (4,0) would have been reached
above 13,000 rpm and thus outside the speed range. This resonance is due to the effective excitation of
the (0,0) mode by a secondary excitation contribution whose spatial order is 0.

6.4. Comparison with other cases

After every simulation is performed, the ERP responses are processed and a “RSS” curve is computed
for each case in order to represent the contributions of all the excitation orders. The values are expressed
in dB according to the expression

RSSdB (Nr) = 10 · log
(

RSS (Nr)

re fdB

)
, (25)

with re fdB = 10−12 W, and are plotted in Figure 18. In order to compare them, the criterion RSg is
computed for each case with

RSg = 10 · log


√

∑RSS (Nr)
2

re fdB

 . (26)

Judging from the criterion RSg, the model for which the radiated levels are lowest is case 8, where
fη_max = 102 Hz. Compared to case 1 (initial state), the peak response values have been decreased by 5
to 10 dB, which outlines an interesting acoustic opportunity for industrial applications. The results show
that ERP maxima are shifted to lower engine speeds as fη_max is shifted to higher frequencies. This is
consistent with the shapes of the curves G′ ( f ) in Figure 16: increasing fη_max decreases G′ values and
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thus the structure’s natural frequencies. In these conditions, the case fη_max = 102 Hz can be seen as the
best compromise between damping and resonance frequencies for the studied case.

According to the superposition model presented in Subsection 4.2 and described by Equation (17), the
glass-transition temperature at 1 Hz is TG = 79.7°C, whereas the master-frequency corresponding to the
reference temperature T0 = 81°C is fη_max = 3.29Hz. Re-arranging Equation (17) such that f new

η_max = 102 Hz
as found in Section 6 yields:

log
(

f new
η_max

)
= 0.4054 ·T new

0 −30.834 . (27)

Assuming this new superposition law valid for the optimised resin, the new glass-transition temperat-
ure at 1 Hz will be T new

G = 76.1°C.

6.5. Discussion

So far, this study has optimised the resin’s viscoelastic properties by tuning only its representative
“master-frequency” fη_max. The other Zener parameters could also be thought of for reducing even more
the acoustic response of the stator. However, some comments must be outlined in regard of such possible
new optimisation steps:

• The resin’s mechanical as well as electric and thermal behaviours all depend on the polymer’s
composition and thus on its components’ properties. Due to this dependency towards the monomers’
properties, the Zener’s asymptotic storage moduli E0 and E∞ are also related to the variations of
fη_max. In this study however, as the main excitations (i.e. the radial force resultants) are constant
over the considered speed range (see Figure 13), there is no specific need to shift the stator’s critical
natural frequencies. Therefore, changes of E0 and E∞ resulting from changes of fη_max would have
negligible impact on the stator’s acoustic behaviour as long as no new mode coincidences occur
below 11,200 Hz.

• Detecting which excitation orders are likely to lead to modal coincidences prior to the simulation
could decrease the computation costs significantly. For example in case 1, the excitation spectra H8,
H16 and H24 could have been discarded by predicting that mode coincidences would have occurred
beyond 11,200 Hz.

• Other command specifications than imposing a constant global magnetic flux in the motor can be
considered. If for instance the strategy had been to impose a constant power in the motor (product
of torque and engine speed), the excitation magnitudes would have been inversely proportional to
engine speed. In this case, increasing the values of E0 and E∞ in the resin would have stiffened the
structure and thus shifted the natural frequencies to higher values, where the excitation levels are
less significant. This could have helped reducing the overall ERP responses.

• Concerning the maximum damping ratio ηmax, it seems obvious that the higher the value, the smaller
magnitude the vibration response would have at the frequency fη_max. In terms of Zener models,
increasing ηmax is equivalent to increasing the slope of E ′ ( f ) in the fast-transition frequency range
(see Equations (12) and (13)). Nevertheless, another interesting property to consider is the frequency
range over which the resin’s master-curves show high damping values (e.g. above ηmax/2). Designing
a direct parameter for tuning this property would thus require another model than Zener’s, and could
possibly lead to challenging specification for the concrete design of the corresponding polymer.
Because of this limitation, optimising the shapes of the curves η ( f ) has not been addressed in this
article.
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Eventually, tuning the resin’s properties in order to shift the critical modes above 11,200 Hz could lead
to significantly higher asymptotic storage moduli. Although this option is out of the scope of this study,
its potential for possible noise reduction will be shortly discussed here.

Let us consider a new polymer Pnew whose storage moduli would be so great that all critical modes
would be shifted outside of the study’s frequency range. As no mode appropriation would occur anymore,
the only vibrational/acoustic phenomena that could be observed would be directly related to the excitations
(enforced vibrations).
Comparing this case to the current study could be made by recalculating Equation 27 in the half range
[0; 6,000rpm] (i.e. before the first mode appropriation) and with each RSS term doubled. Taking as
example case 2, for which RSg(P3) = 110.1 (see Figure 18), the new value would be RSg(Pnew) = 96.5.
This change would not only represent a 12%-drop compared to the resin P3, but also confine the radiated
power to a maximum level (approx. 85 dB) which is 20 dB lower than the resonances observed on modal
appropriations.
Although the example presented here seems promising in terms of simulation results, other requirements
the resin should fulfill when integrated in an industrial electric machine need to be accounted for (as
discussed earlier in this section). Moreover, the storage moduli E0 and E∞ the resin should have in order
to shift all the critical modes to sufficiently high frequencies may be significantly larger than the usual
polymers currently available in the market. Designing and producing such materials might mean increased
costs of both development and use that would possibly make them unattractive. These aspects will be
analysed in further studies.

Conclusion

In this article, the optimisation opportunities of a polymer’s viscoelastic properties have been investig-
ated for an objective of vibrational and acoustic response reduction in a switched-reluctance machine
stator. Focusing on the resin that encapsulates the windings in the stator, master-cruves were com-
puted from experimental dynamic analyses and modelled by analytical Zener models. A temperature-
superposition analysis enabled to predict the dependence of the polymer in wide ranges of temperature
and frequencies. The practical application of this work consisted in simulating realistic electromagnetic
excitations and projecting the resulting Maxwell stresses onto the stator’s structural finite-element model.
Then, the acoustic response could be minimised by tuning the resin’s viscoelastic properties, leading to a
reduction of peak equivalent radiated power values of 5 to 10 dB.

Within the speed range defined for this application, four “critical” mode coincidences have been out-
lined as responsible of the peak acoustic responses of the stator. The optimisation of the resin’s viscoelastic
properties can be therefore seen as the best compromise between mechanical damping and natural fre-
quency shifting for the studied structure.

It seems clear that the results presented in this article are specific to this work; analysing other practical
settings with a different polymer to optimise may require developing a similar application. However,
the method this article has presented can be applied for any types of structural applications as long as
the finite-element simulations take into account the frequency- or temperature-dependent behaviours of
the involved viscoelastic materials. The fact that only common finite-element solvers have been used
makes this approach easily applicable for other types of concrete industrial applications. As for the design
of high-performance resins, attempting to maximise loss tangent values may be a realistic guarantee of
vibration level minimisation for many cases.

Eventually, this work presents a new perspective for powering electric vehicles with switched-reluctance
machines. Indeed, whereas encapsulating the windings could represent costly operations in the manufac-
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turing process, the acoustic opportunity this method introduces could be decisive in comparison to im-
pregnated stators, where the resin is in lower quantity and has thus a reduced mechanical influence. In
addition to this, more advanced polymer designs could be thought of for acoustic level reduction possib-
ilities. For example, polymers with several glass transitions (such as detailed in [44]) could be tuned so
that each damping maximum would be placed at frequencies neighbouring the resonances. Future works
will focus on analysing the influence of faults on switched-reluctance machines in a similar viscoelastic
tuning process, and apply this methodology in other types of electric machines.
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