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Abstract: The structural difference between one-dimensional (1D) hyperbolic and parabolic
port Hamiltonian system (PHS) is discussed. Then, using a Control by Interconnection (CbI)
approach, a distributed state feedback is designed in order to transform an hyperbolic PHS
into a parabolic one, the latter being asymptotically stable and even purely dissipative (with no
oscillating modes). Distributed wave damping in 1D vibro-acoustic pipes, using piezo actuators,
is considered as an illustration example for the proposed control design.
Keywords: Port Hamiltonian systems (PHS), distributed parameters systems (DPS), Control
by Interconnection (CbI), feedback equivalence with distributed control, Interconnection and
Damping Assignment Passivity Based Control (IDA-PBC)

1. INTRODUCTION

Port-Hamiltonian systems (PHS) [van der Schaft and Mas-
chke, 2002] have become quite popular in the system
theory community as a class of naturally well-posed (li-
near) multiphysics systems [Le Gorrec et al., 2005]. Part
of this success comes from the possibility to use struc-
tural properties of PHS (stability under interconnection,
passivity or losslessness, existence of first integrals and
structural Casimir’s functions) to prove stability results
and more generally to design various non linear control
such as Interconnection and Damping Assignment Passi-
vity Based Control (IDA-PBC) or energy shaping [Ortega
et al., 2002], control based on Casimir Function, Control
by Interconnection (CbI) [Macchelli et al., 2004] or CbI
together with power shaping [Ortega et al., 2008], ...

Although these control methods have successfully applied
to various systems, the controller parameters are only stu-
died case by case. There is still no guideline about how to
choose the desired closed-loop interconnection structure,
as well as the desired damping or closed-loop energy. The
contribution of this paper is to propose a rather simple
but natural idea to tune these parameters when dealing
with hyperbolic systems with distributed actuators. More
precisely, this idea consists in transforming the hyperbolic
PHS into a parabolic one, hence ensuring the exponential
stability of the closed-loop system which behaves as a
purely dissipative system with no oscillation modes.

The considered class of hyperbolic PHS (for two conser-
vation laws) is defined using the canonical 1D differen-
tial operator and the related Stokes-Dirac interconnection

? A part of this work was supported by French sponsored projects
HAMECMOPSYS and Labex ACTION under reference codes ANR-
11-BS03-0002 and ANR-11-LABX-0001-01 respectively.

structure [van der Schaft and Maschke, 2002]. We show
that a parabolic PHS with the same interconnection struc-
ture can be obtained by connecting one of two energy
accumulators to a resistor, in other words, we aim at
canceling “half” of the system’s dynamics. This dynamics
cancellation appears absurd to the system itself, but it is
proved possible to an “augmented plant and controller”
system. The controller dynamics will be canceled so-that
the closed-loop system is parabolized; which is called “im-
mersion and reduction” technique.

General speaking, the main idea is to eliminate the hy-
perbolic operator and replace it with a parabolic one,
while keeping the Stokes-Dirac structure embedded in the
closed-loop system. Note that this “Stokes-Dirac structure
preserving” feedback control allows further possible con-
trol design, including boundary control [Macchelli et al.,
2004, Vu et al., 2015b]. It also provides some structural
robustness properties which are discussed at the end of
the paper.

The paper is organized as follows. Section 2 presents the
considered classes of controlled hyperbolic PHS and target
parabolic PHS. Section 3 briefly recalls the CbI ideas when
dealing with PHS. The proposed “parabolizing” controller
design is presented in section 4, followed with an analysis
of the robustness with respect to some model uncertainty
in section 5. The example of the vibro-acoustic system is
investigated in section 6.

2. CONTROLLED AND TARGET SYSTEMS
CLASSES

This section defines the studied classes of controlled hy-
perbolic systems and closed-loop parabolic systems in the
port Hamiltonian formalism. The Stokes-Dirac intercon-
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nection structure [van der Schaft and Maschke, 2002] is
used to underline the structural similarity between these
two classes. In turn, this suggests a “parabolizing design”
which will be presented in the two following sections.

2.1 Examples of hyperbolic and parabolic systems realizations
using the same Stokes-Dirac interconnection structure

A canonical 1D hyperbolic example Consider the ca-
nonical Stokes-Dirac structure for the 1D system of two
conservation laws in the lossless case [van der Schaft and
Maschke, 2002]:(

fq
fp

)
= −

(
q̇
ṗ

)
=

(
0 ∂z
∂z 0

)(
eq
ep

)
(2.1)

where the flow variables fq, fp ∈ L2
(
[a, b] ,R2

)
, and the

effort variables eq, ep ∈ H1
(
[a, b] ,R2

)
. One can define a

1D canonical Stokes-Dirac differential operator

J =

(
0 ∂z
∂z 0

)
(2.2)

with domain D (J ) = H1
(
[a, b] ,R2

)
, which is formally

skew-adjoint J + J ∗ = 0. A parameterization of the
admissible boundary port variables (e∂ , f∂) which can be
used with (2.1) in order to define a well-posed linear system
exists [Le Gorrec et al., 2005]. Including homogeneous
boundary conditions (e∂ , f∂) = (0, 0) in the previous
definition of D (J ) it is easily proved using Stokes’ the-
orem that the resulting operator J becomes (truly) skew-
symmetric. For the sake of simplicity, we will consider in
the sequel the particular (impedance passive) case:{

e∂ = eq|∂
f∂ = ep|∂

(2.3)

In this case, the hyperbolic system (2.1) is characterized
noticeably by the fact that all eigenvalues of J lie on the
imaginary axis (see [Gorrec et al., 2011] ).

A canonical 1D parabolic example We consider, using
the same canonical 1D Stokes-Dirac operator, the system
defined by: (

fq
−fd

)
=

(
0 ∂z
∂z 0

)(
eq
ed

)
(2.4)

where the conjugated dissipative variables (ed, fd) have
replaced the variables (ep, fp) in (2.1) associated with the
p energy domain which no longer exists.The dissipative
variables are related with the dissipation constitutive
equations fd = 1/σed. The very same system may also be
defined (as in [Gorrec et al., 2011] for the heat conduction
problem) as: (

fq
eint

)
=

(
0 ∂z
∂z 0

)(
eq
fint

)
(2.5)

when a gyrator {
fint = ed
eint = −fd

is applied to the dissipative effort-flow variables (ed, fd).
These systems (2.4 or 2.5) are parabolic since their dy-
namics reduce to one state variable purely dissipative
equation:

fq = −q̇ = −∂z (σ∂zeq) (2.6)

The boundary condition is kept the same as (2.3) with
ed instead of ep in equation (2.4). With these boundary

conditions all the eigenvalues lie on the real negative axis
[Gorrec et al., 2011] (no oscillating mode). In the linear
case, the equilibrium is exponentially stable, the systems
(2.4 or 2.5) being analytic, dissipative and strongly mono-
tone. This property of parabolic system is of course of great
interest when dealing with stabilizing control problems.

2.2 The controlled system class

We will investigate hereafter the control problem for a class
of distributed parameters PHS defined as:

Σ :

{
ẋ = (J −R) ∂xH + gu

y = gT∂xH
(2.7)

where x (z, t) ∈ Rn is depending on space z and time t
and J = −J ∗ is a formally skew-symmetric differential
operator. For the sake of simplicity we will consider only
a restricted class of differential operators of the form
J = P1∂z + P0 where Mn (R) is the class of matrices of
dimension n, P1 ∈ Mn (R) is a non-singular symmetric
matrix and P0 = −PT0 ∈ Mn (R) is a skew-symmetric
one, although this class may be generalized to higher
order spatial derivatives such as in [Le Gorrec et al.,
2005]. We will in particular focus on the canonical Stokes-
Dirac (or Hamiltonian) operator (2.2). R = RT > 0 is
a symmetric positive semi-definite dissipation matrix, H
is the total energy. ∂xH denotes the variational derivative
of the energy density with respect to the state x. u is a
distributed control, (u, y) is the passive input-output pair
of the system. The passivity of this class of systems is
proved by computing the power balance equation:

dH
dt

=
〈
∂xHT , ẋ

〉
≤ 〈y, u〉+ eT∂ f∂ (2.8)

where 〈·, ·〉 denotes the usual L2 inner product on the
whole spatial domain, with the appropriate choice of
boundary variables (e∂ , f∂) [Le Gorrec et al., 2005] such
as, for instance (e∂ , f∂) defined in (2.3).

The PHS system (2.7) may be equivalently represented
using Stokes-Dirac interconnection structure associated
with a dissipative closure equation of the form:(

f
ed

)
=

(
J −I
I 0

)(
e
fd

)
+

(
gu
0

)
,

fd =Red (2.9)

where fT =
(
fTq , f

T
p

)
= ẋT , eT =

(
eTq , e

T
p

)
= ∂TxH, eTd =(

eTdq, e
T
dp

)
and fTd =

(
fTdq, f

T
dp

)
. Homogeneous boundary

conditions (e∂ , f∂) = 0 are considered here.

Proposition 1. In the canonical case of hyperbolic system
in the form (2.9) with R invertible, if half of the system
dynamics is canceled (i.e. fp = ṗ = 0), the hyperbolic
system (2.9) is transformed into a parabolic one.

1. Assume fp = 0, then fT =
(
fTq , 0

)
and fTd =(

0, fTdp 6= 0
)

and the system (2.9) becomes:(
fq
fdp

)
= J

(
eq
edp

)
+

(
gu
0

)
(2.10)

which may be written in explicit form as the parabolic
system:

fq = ∂z (1/R∂zeq) + gu (2.11)
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Remark 2. In the more general case where both dissipa-
tion components may be non null (fdp 6= 0 and fdq 6= 0),
the reduced system becomes:

fq = ∂z (1/R∂zeq)− fdq + gu (2.12)

This additional term may arise as a supplementary dissipa-
tion term (such as in a reaction-diffusion problem) which
can also be considered as a supplementary distributed
source term.

The observation in proposition 1 will now be investigated
with control purpose, using the transformation of an
hyperbolic PHS into a parabolic one to achieve asymptotic
stability.

However, it seems to be unreachable to design a controller
which can annul half of the original system dynamics.
To be able to apply the idea in Proposition 1, one of
the solutions is to use the “immersion and reduction”
technique. First for immersion, we double the dynamics
of the closed-loop system using CbI method (Section
3); the IDA-PBC principle, interconnection assignment
precisely, is then applied to couple each system dynamics
to a controller dynamics, in the manner to reproduce
the canonical interconnection structure (2.2) as well as to
assure the non null dissipation. Finally, for reduction, the
controller dynamics are canceled to parabolize the closed-
loop system.

3. BACKGROUND OF CBI METHOD

The CbI method [Ortega et al., 2008] uses a controller ΣC
in PHS form coupled to the (PHS) plant Σ via a power
preserving interconnection structure ΣI .

ΣC :

{
ẋc = (Jc −Rc) ∂xc

Hc + gcuc
yc = gTc ∂xcHc

(3.1)

The feedback is realized as a Dirac interconnection struc-
ture of the form:

ΣI :

{(
u

uc

)
=

(
0 −1

1 0

)(
y

yc

)
+

(
υ

0

)
(3.2)

Then the closed-loop system (or augmented system):(
ẋ
ẋc

)
=

(
J −R −ggTc
gcg

T Jc −Rc

)(
∂xH
∂xc

Hc

)
+

(
gυ
0

)
(3.3)

is passive since from (2.7,3.1,3.2):

Ẇ = Ḣ + Ḣc ≤ yTυ (3.4)

with the total energy W.

In [Ortega et al., 2008], the Casimir method is used to
shape the closed-loop energy function. It states the relation
between the controller state and the system state, which
allows to reduce the augmented system in 3.3; we call
it immersion / reduction method. However, the Casimir
method admits a limit for its application due to the
dissipation obstacle. Some solutions are also revealed in
that work (such as power shaping).

Otherwise, in this work, we propose to combine the idea
of immersion / reduction method with the idea presented
in Proposition 1 to transform an hyperbolic system (like
system in (3.3)) into a stable parabolic one. The new

proposed interconnection will play the role of Intercon-
nection assignment (similar to IDA-PBC control while the
dissipation injection is accomplished by the CbI damping).

4. CONTROL DESIGN PROPOSITION

The controller structure in (3.1) is employed to form an
augmented system:(

ẋ
ẋc

)
=

[(
J 0
0 Jc

)
−
(
R 0
0 Rc

)](
∂xH
∂xcHc

)
+

(
gu
gcuc

)
(4.1)

At this stage, we do not use the previous interconnection
structure ΣI defined in (3.2). Instead, using the idea of
IDA-PBC [Ortega et al., 2002], we aim to transform the
above system (4.1) into a desired system, which is:(

ẋ
ẋc

)
=

[(
0 J1
J2 0

)
−
(
R 0
0 Rc

)](
∂xH
∂xcHc

)
(4.2)

by using control gu and virtual control gcuc. The structure

of the augmented system (4.1) Jaug =

(
J 0
0 Jc

)
can be

transferred into a new desired one Jd =

(
0 J1

J2 0

)
which

satisfies Jd + J ∗d = 0 if (and only if):gu = −J ∂xH+ J1∂xcHc

gcuc = −Jc∂xcHc + J2∂xH
(4.3)

This condition (matching equation) satisfies the intercon-
nection structure property: yTu+ yTc uc = 0.

2. The energy balance in the interconnection element:

yTu+ yTc uc = ∂xHT gu+ ∂xcHT
c gcuc

= ∂xHT (−J ∂xH+ J1∂xcHc)

+∂xcHT
c (−Jc∂xcHc + J2∂xH)

= 0

(4.4)

thanks to the skew-symmetric Jaug = −J ∗aug and Jd =
−J ∗d .

In the sequel, in order to apply the idea presented in
Section 2.1, the desired interconnection Jd is chosen as
the first order partial derivative operator: J1 = J2 =(

0 ∂z
∂z 0

)
. This interconnection assignment allows to split

the desired system (4.2) into two “independent” subsys-
tems:

(
ẋ1

ẋc2

)
=

[(
0 ∂z

∂z 0

)
−
(
R1 0

0 Rc2

)](
∂x1H
∂xc2Hc

)
(
ẋ2

ẋc1

)
=

[(
0 ∂z

∂z 0

)
−
(
R2 0

0 Rc1

)](
∂x2H
∂xc1Hc

) (4.5)

Then the closed-loop system (4.5) is parabolized by taking
the static control states ẋc1 = ẋc2 = 0. One can notice
that without controller damping Rc, the method would
not work. In fact, the added damping Rc takes the role of
diffusivity for two new diffusion equations from (4.5).

Remark 3. This distributed control u only impacts the
balance equation, hence the boundary condition (e∂ , f∂) =
(∂x1

H, ∂x2
H) |∂ is still preserved in the closed-loop system.

Otherwise, regarding the static controller and the mat-
ching equation, a relation between Rc and Hc can be
revealed from (4.2) and (4.3):
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ẋc = 0 = J2∂xH−Rc∂xcHc

gu = −J ∂xH + J1∂xc
Hc

⇔


∂xcHc = R+

c J2∂xH

gu = −J ∂xH + J1

(
R+
c J2∂xH

)
(4.6)

where R+
c corresponds to the inverse of Rc > 0.

Finally, the proposed method overcomes the difficulty of
solving the PDE in CbI method (we don’t need to know
Hc and Jd is already fixed in this method), and restricts
the controller parameter choice of CbI control into only
one freely designed parameters Rc = RTc > 0.

5. ROBUSTNESS ANALYSIS

The control idea developed in the previous section aims
at suppressing all the oscillating mode, and replace with
an exponential stable mode. The challenge is not on the
design method, but on the robustness properties: in case
the oscillating mode is not totally compensated, is the
closed-loop system still stable? This section will first deal
with the model uncertainties when we try to eliminate the
oscillating phenomenon.

Remark 4. The proposed control law in (4.6) requires a
full knowledge of the system state. A PHS observer can be
considered for this fact. However, the observer itself is not
discussed in this paper.

In the sequel we focus only on the error of the obser-
ved states and Hamiltonian function, denoted x̂ and Ĥ
respectively. Other disturbances such as δR on dissipation
R or external/random disturbances can also be stabilized
with IDA-PBC technique (normally by using enough dam-
ping Rc to dominate these perturbations). Substituting
the proposed control law in (4.6) which is now:

gu = −J ∂x̂Ĥ + J1

(
R+
c J2∂x̂Ĥ

)
(5.1)

the closed-loop system with observation error is:

ẋ = (J −R) ∂xH− J ∂x̂Ĥ+ J1
(
R+

c J2∂x̂Ĥ
)

= J1
(
R+

c J2∂xH
)
−R∂xH︸ ︷︷ ︸

desired closed-loop

+
(
J − J1R+

c J2
) (
∂xH− ∂x̂Ĥ

)︸ ︷︷ ︸
error

(5.2)

The error model is equivalent to a PHS system with

Rε ≡ J1R+
c J2 and ∂εH (ε) ≡

(
∂xH− ∂x̂Ĥ

)
:

ε̇ = (J −Rε) ∂εH (ε) (5.3)

which is stable in the Lyapunov sense:

dH (ε)

dt
= ∂εH (ε) ε̇ = ∂εH (ε) (J −Rε) ∂εH (ε) ≤ 0

(5.4)
thanks to J = −J ∗.
Remark 5. The ideal control law derived in the second
equation of (4.6) seems to be evident when the hyperbolic
property is entirely replaced by the parabolic one on
preserving the Dirac structure. However, to analytically
deduce the control signal u is not trivial, especially in
the under-actuated case where g is not full rank. In

[Vu et al., 2015b], we propose a simultaneous use of
the average distributed control and the boundary one
to stabilize the error from this matching equation. First,
an average distributed control approach the closed-loop
system to a desired one, which admits an error from
matching equation. Then the boundary control, using
Volterra transformation to describe the propagation of
boundary effects, stabilizes the error system.

An example of a vibro-acoustic system is investigated as
a demonstration of the proposed control method in the
following section.

6. EXAMPLE

6.1 Wave equation for vibro-acoustic system

Fig. 1. Vibro-acoustic system

The simplified vibro-acoustic system [Collet et al., 2009] is
employed to illustrate the proposed method. This system
consists of an acoustic wave traveling in a tube equipped
with a network of microphones/ loudspeakers without
energy losses . [Collet et al., 2009]. The wave source is
the loudspeaker at one side of the tube, and an anechoic
chamber preventing any reflection on the other side. The
issue is to reduce the acoustic wave inside and at the
output of the tube. In [Collet et al., 2009], the active
surface partly covered the tube’s wall was proposed (see
subsection 6.2).

The 2D PHS model is derived in [Trenchant et al., 2015]
with the cylindrical symmetry, the 2D operator is then a

special “spatial derivative operator” d = [∂z, ∂r]
T

:(
∂tΦ
∂tΓ

)
=

(
0 −d
−d 0

)(
v
P

)
(6.1)

where Φ, v, Γ, P are respectively the kinetic momentum,
velocity, volumetric expansion, and the pressure of the
particle at the point (z, r) ∈ [0, L]× [0, R] ⊂ R2.

Nevertheless, to obtain an appropriate control model
which will serve as illustration for our proposed control
law, we assume that L� R, meaning the wave is keeping
a constant propagation on radius axis r with ∂r. = 0, and
all the variables now depend only on z. Hence, we consider
till the end the equivalent 1D model:(

∂tΦ
∂tΓ

)
=

(
0 −∂z
−∂z 0

)(
v
P

)
(6.2)

with the constitutive relation:{
v = Φ/µ0

P = Γ/χs

(6.3)
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where µ0 and χs are the air mass density and the adiabatic
compressibility coefficient respectively. The energy power
is thus equivalent to a quadratic form:

H =
1

2

ˆ L

0

(
Φ2

µ0
+

Γ2

χs

)
dz (6.4)

Finally, the boundary variables are defined (similar in
[Trenchant et al., 2015]), with respect to the system

derivative operator J =

(
0 −∂z
−∂z 0

)
such that the

system passivity is satisfied:(
f∂
e∂

)
=

−P (L)
v (0)
v (L)
P (0)

 (6.5)

The anechoic termination yields the boundary condition
[Collet et al., 2009], that is no reflected wave at the
termination:

∂zP |z=L = −1/c0∂tP |z=L (6.6)

where c0 is the speed of sound in the air.

6.2 Actuator - active surface and control design

The elastic surface is attached to the wall r = R of
the cylinder to attenuate the acoustic wave along the
wall and at the output of cylinder. The infinite array of
parallel mass-spring-damper model used to represent the
active wall is also presented in Hamiltonian formulation in
[Trenchant et al., 2015].

In this work, we only consider the wall effect as a pressure
force along the wall, which is a distributed control u (z).
The system with active surface can be considered as:(

∂tΦ
∂tΓ

)
=

(
0 −∂z
−∂z 0

)(
v
P

)
+

(
u
0

)
(6.7)

The main objective of the control is to minimize the
acoustic wave at the anechoic terminator z = L, as
well as along the wall. In this purpose, the proposed
controller which makes the closed-loop system parabolic
is a promising solution.

The CbI-IDA control law (4.6) is applied to this system
i.e.:

gu = −J ∂xH + J1

(
R+
c

)
J2∂xH (6.8)

with ∂xH =

(
v
P

)
and g =

(
1
0

)
. The control para-

meters J1 = J2 are fixed to

(
0 ∂z
∂z 0

)
, the only tuna-

ble parameter is R+
c which is chosen in a simple form

R+
c =

(
Rc1 0
0 Rc2

)
> 0, that implies Rc1, Rc2 > 0 . We

then have: {
u = ∂zP + ∂z (Rc2∂zv)

0 = ∂zv + ∂z (Rc1∂zP )
(6.9)

Note that we are dealing with an under-actuated system,
where the distributed control only acts on a half of system
states . In (6.9), when the control law u satisfies the first
equation with a free choice of Rc2, Φ is stabilized:

∂tΦ = ∂z (Rc2∂zv) = ∂z

(
Rc2∂z

Φ

µ0

)
(6.10)

The second one is not fulfilled. However, it is not really
necessary in this particular case since Γ is indeed stabilized
because the relation:

∂tΓ = −∂zv = −∂z
Φ

µ0
(6.11)

still stands. The only action u cannot fulfill the control
objective: transform a wave equation into a pure diffusion
equation. However, in this particular example, we can
easily prove that Γ is diffusive according to Φ by taking
the spatial derivative of equation (6.10) and then using the
relation (6.11):

∂z (∂tΦ) = ∂z∂z

(
Rc2∂z

Φ

µ0

)
⇔ ∂t (−µ0∂tΓ) = −∂z (∂z (Rc2∂tΓ))

⇔ ∂tΓ− ∂tΓ0 =
1

µ0
∂z (∂z (Rc2Γ))

(6.12)

where the diffusivity coefficient is the same as in (6.10).

Remark 6. The result in equation (6.12) yields the diffu-
sion of the time variation ∂tΓ. Γ itself is also governed by
a diffusion equation but its initial condition is not affected
by the feedback control. This point will be shown in the
following simulation part.

Remark 7. This example is a good illustration of the
under-actuated control case. Yet another actuator limit
can be considered. The ideal case assumes that u is
infinite distributed control, while in practice, there is
only a limit number of actuators along the wall. We
call it a finite rank distributed control. How to choose
a reasonable approximation of the feedback control u in
equation (6.9) is an open issue for some future works.
However, one can consider the solution using piecewise
constant approximations method [Macchelli et al., 2015]
to be able to locally linearize the infinite system at the
corresponding actuator position.

6.3 Simulation

The vibro-acoustic model is simulated using Matlab. The
system parameters used in this example can be found in
table 1.

L 1.84 [m] tube length

µ0 1.204
[
kg/m3

]
air mass density

χS 7.0432× 10−6
[
Pa−1

]
adiabatic compressibility

c0 343.4 [m/s] speed of sound

Table 1. System parameters.

Open-loop and closed-loop (with the aforementioned con-
trol strategy) simulations are shown in Figure 2 where a
sound source is imposed at z = 0 and initial conditions are
chosen equal to zero.

The condition at the anechoic termination (no reflected
wave) is correctly simulated.

Figure 3 shows the feedback control result with the initial
condition. The result illustrates the remark 6, in which it
is stated that Γ is diffusive with the feedback control, but
the initial condition stands still. Otherwise, the variation
∂tΓ is diffusive despite of the initial conditions.
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a.

b.

Fig. 2. Γ in open and closed-loop with sound source at
z = 0 and without initial condition

7. CONCLUSION

A distributed controller which transforms a hyperbolic
PHS system into a parabolic one has been proposed. The
control design has been proved to be robust with uncer-
tainties as well as external disturbances. The proposed
method is illustrated on a vibro-acoustic example, where
an exponential convergence has been obtained as expected.
Among the immediate prospects of this work are the design
of finite rank distributed control approximations and two-
dimensional extensions.
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