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Abstract—Stereo rectification is a crucial step for a number
of computer vision problems and in particular for dense 3D
reconstruction which is a very powerful characterization tool for
microscopic objects. Rectification simplifies and speeds up the
correspondence search in a pair of images: the search space is
reduced to a horizontal line. It is mainly developed for perspective
camera model: a projective transformation is found and applied
to both images. This paper addresses the rectification problem
for an image pair obtained with Scanning Electron Microscope
(SEM). In this case, image formation is described by a parallel
projection, indeed perspective effects can be neglected because
of the low value of the sample size over working distance
ratio. Based on these hypotheses, a robust estimation of the
fundamental matrix, that describes the geometry of the image
pair, is proposed. It filters out up to 50% of outliers in a
feature correspondence set. Then, the matrix is used to develop
a rectification solution: the problem is reduced to two rotations
about the optical axis of the camera. The solution is accurate and
does not require any calibration of SEM. It is validated with two
image pairs from two different field effect SEMs.

I. INTRODUCTION

Dense 3D reconstruction is a very powerful tool allowing
the characterization of the microscopic objects, allowing to
measure 3D object properties such as angles, surfaces or
volumes that cannot be directly retrieved from images. More-
over, 3D reconstruction provides the three dimensional range
information that helps users to perform micromanipulation
tasks. The crucial step towards dense reconstruction is the
search for correspondence for every pixel in a stereo image.
Algorithms such as SIFT [1] and SURF ([2] with further
matching allow to obtain only a sparse correspondence set
which is not enough in many cases. Another option is the
realization of dense matching, which consists in a search of
correspondence for every pixel of the first image in the second
one to build a disparity map to recover the depth variation.
In [3], the 3D reconstruction in SEM is estimated from two
images obtained by tilting the object exactly about the vertical
axis of the image. However, when it is not true, the task of
dense matching becomes numerically complicated because the
search space of correspondence represents the entire image.
Nonetheless, it can be simplified by using various techniques
of rectification.

Rectification consists in warping two images in the com-
mon plane (making them coplanar) to reduce the search of
correspondence to one dimension, i.e., to a horizontal line.

This technique is based on epipolar geometry which gives a
number of geometric constraints between the 3D points and
their projections onto the 2D images. These constraints can
be rewritten mathematically in the form of 3 x 3 fundamental
matrix. Usually, these constraints are based on the assump-
tion that camera model is perspective [4], [5] and then the
goal of rectification consists in applying a pair of projective
transformations to the image pair. However, the model and
then rectification can be simplified regarding special imaging
conditions, e.g., when the object is far away from the view
point, i.e., when the focal length is much bigger than the depth
variation of the object which is the case in Scanning Electron
Microscope (SEM). For SEM, the perspective effects can be
neglected and a parallel projection model can be used for
magnification values bigger than %1000, which is confirmed
in the literature [6], [7], [8]. Such model assumes that all
projection rays are parallel, which means that all epipolar lines
are parallel and the epipoles are at infinity [9].

Basically, rectification algorithms can be subdivided into
two main classes depending on whether the cameras are
calibrated [10] or not [11]. In the case of parallel projection,
the calibration is the subject of finding eight parameters,
corresponding to eight degrees of freedom. Even if this subject
is well studied, the SEM intrinsic calibration can be very
complex due to the following reasons. Firstly, in most cases
it requires a calibration template, which often means a special
step of fabrication of such object, which can be very expensive
and time consuming. Moreover, it is very difficult to guarantee
the quality of its fabrication, which has a profound impact on
the precision of the feature extraction algorithms. Secondly,
the classic calibration [12] needs to be done offline, which can
be very restrictive in some applications where the calibration
object cannot be placed in front of the camera once the
operation started. Thirdly, which includes partially the second
point, there is a problem of maintainability of calibration
parameters. In order to re-calibrate the camera, the main
operation task should be stopped. Thus, in this paper we opt
for the uncalibrated rectification.

The problem of rectification for parallel projection was
partially adressed in [13], [4]. Authors work with perspective
cameras and separate the task of rectification on two transfor-
mations: projective and affine. They firstly find a projective
transformation in order to reduce the rectification task to an
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Fig. 1. Equivalence between object motion and camera motion. a) object is
moving, camera is static, b) camera is moving, object is static.

affine one. The affine transformation represents scale, rotation
and translation. All of these parameters are then found by
using optimization approaches.

Our contribution consists in the development of a direct
linear rectification method for uncalibrated SEM. At our
knowledge, this topic has never been addressed in the lit-
erature. The method is based on epipolar geometry, on the
special form of the fundamental matrix in case of parallel
projection. A robust algorithm based on Least Median of
Squares is used for estimation of the affine fundamental matrix
for a pair of uncalibrated images. The rectifying transformation
is then directly derived from the elements of this matrix.
The image pair is obtained by moving the robot stage inside
SEM. However, we consider that the object was static and
that the camera (SEM) performed the motion. It can be seen
from Fig. 1 that these situations are equivalent.

The remaining of this paper is organized as follows. Sec-
tion II presents the camera model and its properties. In
Section III, a method for robust estimation of fundamental
matrix is presented as well as the rectification algorithm.
Section IV shows the results of algorithm application.

II. PARALLEL PROJECTION MODEL

The parallel projection of a 3D point Q = (Q, Qy, @, 1)
(in homogeneous coordinates) to the image frame can be
written as follows:

q=KIT'T,Q (1)
fz 0 0 1000

with K=(0 f, 0JandII = |0 1 0 O] where
0 0 1 0 0 01

fz and f, define the focal distances in = and y directions
of image frame. “T,, denotes a 4 x 4 homogeneous matrix
that describes the transformation between world and camera
frames. It can be further decomposed in a rotation and trans-
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Fig. 2. Geometry of motion between two images taken with SEM (left and
right). Transformation between R1 and R2 is a composition of three rotations
with angles 01, p, and 02. Object motion is represented as a motion of camera
(SEM).

The fact of parallel projection imposes the following proper-
ties on the process of image formation. First, image is invariant
to object displacement along the optical axis of the camera. In
other words, image is invariant to the distance between camera
and object, which is the case in SEM. For instance, moving
the sample closer to the electron beam or moving it away
will not change the resulting 2D projection.Mathematically, it
can be proved as follows. Assume the object has performed a
displacement AZ along the optical axis, thus the value of @,
has changed. As it can be seen from the Eq. 1 this value will
always be multiplied by zero because of the parallel projection
matrix II which has three zeros in the third column. As a
result, the depth coordinate is lost in the process of image
formation in case of parallel projection.

Secondly, the projection of the object is independent of
translations in z and y directions of image frame if the
relative coordinates are used both in 3D object frame and
in camera frame [14]. If such translation is performed, only
the position of the object in the image changes, but not the
disposition of its feature points. For any given reference point
(¢5,4;)" in image frame and (Q},Qy,Q%)" in world frame,
the expressions for relative coordinates (¢ in image frame and
@ in a world frame) can be written as follows:

Qw _ qx — q;:
(‘jy) a (Qy - q;) ®

Q:z: Qz - Q;

Qy| _ | Qv—@Qy

0.~ |e - @
1 1

Thus, for every camera, we can choose a reference point de-
fined as the centroid of the set of points detected in this image
and furthermore work with relative coordinates. It results in
a fact that the centroid of the 3D points in world frame is
projected into the centroid of the points in the image plane.
The centroid of 3D points is considered having coordinates
(0,0,0,1)T.



These two properties allow to draw the following conclu-
sions:

o Parallel projection camera is invariant to translations
in image frame, relative coordinates can be used: all
detected interest points are translated into (0,0,1)7. It
means that the centroid of 3D points is in (0,0,0,1)7.
Therefore, in the relative coordinates, for all taken images
z-axis of camera is pointing towards the same point, the
world origin;

« From the second property, as the object-camera distance
is chosen to be one for all views, all camera centers are
at the same distance from the world origin.

Thus, when using relative coordinates, at every iteration of
movement, the camera lies on the surface of the sphere
(Fig. 2). It results in the fact that the following decomposition
between two views is possible:

2R1 = RZ(QZ)Ry(p)R;(GI) )

This result is crucial for the purpose of rectification because
to obtain the rectified image pair one has to apply a rotation
to both image by angles 6, and 65, respectively. These angles,
slope angles, can be directly derived from the special form of
the fundamental matrix as it will be demonstrated further.

III. METHODS

The presented algorithm of rectification is based on the
properties of epipolar geometry under parallel projection. The
next two sections are devoted to the robust estimation of
the fundamental matrix for SEM images and to image pair
rectification. The developed algorithms do not require any
calibration of SEM. They are entirely based on exploitation of
the set of correspondences obtained using standard techniques
such as SIFT or SURF.

A. Robust estimation of affine fundamental matrix

In the case of parallel projection the fundamental matrix has
the following form:

0 0
F=(0 0 (6)
c d

o

where e is often taken as one, a,b,c,d are real numbers.
The fundamental matrix is usually estimated from a set of
point correspondences obtained using SIFT or SURF feature
detectors with further matching. One of the methods dedicated
for the estimation of this type of fundamental matrix is the
Gold Standard method [9]. It should be noted that one needs
at least four point correspondences to find F. The Gold
Standard algorithm comprises the following steps. Assume one
correspondence is represented by the vector c;:

¢ = (¢ d)r Gur ay) (7)

Then, in order to work with relative coordinates all points are
centered in (0,0)":
éi =C; — C (8)

where c is the centroid of points computed as:

c=+ e ©)

with IV the total number of correspondences found. It allows
the construction of N x 4 matrix A with rows &, . Then, if the
singular vector corresponding to the smallest singular value of
A is denoted as N, all five elements of F' can be found using:

(a7 b7 C’ d) = NT

e— _NTe (10)

The fundamental matrix is then obtained using Equation (6).
The Gold Standard allows to find such fundamental matrix

that minimizes the residual error which represents the mean

distance from all points to the corresponding epipolar lines:

N Y

3
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where q; is the i-th feature extracted from the first image,
q; from the second image, d(-,-) is the geometrical distance.
The main drawback of this method is the lack of robustness
towards the presence of outliers. Thus, we use this algorithm
inside the Least Median of Squared (LMedS) or RANSAC
schemes. Both methods are iterative and based on a random
selection on a subset for further model estimation. The goal
of LMedS is to minimize the median of the squared errors.
It is robust for the sets containing at least 50% of inliers.
RANSAC algorithm seeks to maximize the number of features
considered as inliers. In both cases, first, four correspondences
are chosen randomly from the whole set as fundamental matrix
has four degrees of freedom. Then, the fundamental matrix
is estimated using Gold Standard algorithm and the median
(LMedS) or the inliers fraction (RANSAC) is compared with
the values on previous iterations. These steps are repeated until
the lowest median or the maximum number of inliers is found.
The final version of the algorithm in case of LMedS scheme
is summarized in Fig. 3.

B. Rectification

The goal of rectification for classical perspective cameras
is often stated as follows: apply a perspective transformation
to both images in order to make their optical axes parallel
and their epipolar lines horizontal. However, in the case of
SEM parallel projection with constant magnification, as it
will be demonstated further, the condition may be formulated
in another way: to obtain a pair of rectified images, the
only necessary condition is the coplanarity of x axes of both
cameras.

As it can be seen from Fig. 2, there is a circle passing
through the centers of both cameras and the world origin.
This circle defines uniquely a plane 7, from three points. As
a result, for images to be rectified, it is enough to apply a
rotation about optical axis in order to make z-axis of both
cameras tangent to this circle. As the position of cameras is
constrained by the epipolar geometry, the demanded rotation
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Fig. 3. Algorithm of robust estimation of fundamental matrix for a SEM
image pair using Least Median of Squared (LMedS) scheme.

angle can be found using fundamental matrix. In fact, all
epipolar lines are parallel between themselves and to the
plane 7., which means that the needed rotation angle can be
calculated as a slope of one of epipolar lines for both images:

d a
01 = arctan <_c> ,05 = arctan (_5)

where a,b,c,d are the elements of the fundamental matrix.
Knowing the slope angles, one can rectify the stereo-image
using the algorithm presented below.

Next step consists in applying an affine transformation of
the same form to both images. The transformation of the first
image is:

(12)

1 0 u| | cos(0r) sin(6y) O [1 0 —u
T,=10 1 w| |—sin(f1) cos(f1) 0] |0 1 —v
0 0 1 0 0 11 {0 0 1

(13)

which represents the rotation by an angle 6 about the image
center (u,v)". The second transformation 7T} is obtained by
replacing 6; with 65. After this transformation all epipolar
lines are horizontal, however, they still need to be aligned

TABLE I
ALGORITHM PERFORMANCE FOR TWO IMAGE PAIRS

Brassica Cutting
tool
Images:
size 854 x 680 2048 x 1536
Matching:
total number of features 138 320
(with outliers)
Fundamental matrix:
Residual error (Gold Standard) 9.159 0.555
Residual error (with RANSAC) 6.168 0.105
Residual error (with LMedS) 0.203 0.094
Rectification
Slope angle 01, degree -1.92 -73.61
Slope angle 2, degree -1.83 -63.69
Reconstruction
number of points 406747 712588

vertically. In order to do that, a vertical shift As should be
applied to one of the image, e.g., if its sign is negative, As
lines should be added to the beginning of the second (right)
image.

N

1
As=—1[0 1 0 Z [T1q; — T>qi']

N (14)

i

At this step, the images are rectified: all epipolar lines are
horizontal after image rotation and then the vertical shift was
compensated.

IV. RESULTS

In the present work, two image pairs are choosen to present
the results:

e Brassica [15], [16], [17], [18], [19]: Images of a pollen
grain of white turnip plant from a Hitachi S-4800 field
emission SEM. Authors present their results of sparse
reconstruction (up to 1000 points). p = 3 degrees.

e Cutting tool: Two images of the edge of micro cutting
tool. Images were taken using a SEM Zeiss AURIGA
60. p = 5 degrees.

The preliminary step for the techniques presented in this
paper consists in extraction of the features with further match-
ing. For the feature detection and extraction the AKAZE
algorithm was used [20]: the authors of this algorithm declare
that it outperforms BRISK, ORB, SURF and SIFT in most
of the scenarios. When the features are extracted, a matching
strategy should be adopted: in the present work a matching was
realized using BruteForce algorithm implemented in OpenCV
library [21]. The analysis of the results showed that the set
of correspondences contains outliers, that were than partially
filtered using the method presented by Lowe in [1]: it rejects
poor matches by computing the ratio between the best and
second-best match. If the ratio is below a defined threshold,
the match is discarded as being of low-quality. The value of
matching threshold was kept the same for all image pairs.
This step allowed to guarantee that the set contains at least
50% of inliers. The number of matches obtained is 138 and
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Fig. 4. Results of dense 3D reconstruction in SEM. Left column: Brassica pollen grain. Right column: edge of cutting tool. For each pair, only one of
epipolar lines is shown for clearness.



320 for Brassica and Cutting tool, respectively. All results are
summarized in Table I.

The comparison of fundamental matrix estimation proved
the viability of the introduction of robust estimators such as
RANSAC and LMedS. The number of iteration was kept
the same and equal to 1000. In the case of RANSAC, a
threshold was defined with the value of 0.1 pixels squared.
The residual error is almost ten times smaller in the case
of LMedS scheme. As it was already mentioned before, the
LMedsS results were chosen for rectification as there is no need
in threshold definition.

Regarding the rectification, the slope angles computed from
the fundamental matrices are: -1.92 and -1.83 degrees for
Brassica dataset and -73.61 and -63.69 degrees for Cutting
tool. The original as well as the rectified image pairs are
shown in Fig. 4. Disparity maps were obtained using the
technique of Semi-Global matching implemented in OpenCV
software [22]. Their quality validates the rectification approach
presented in this paper. Finally, the reconstructed point clouds
were obtained from disparity maps and known camera ma-
trices using the triangulation techniques [23]. The number of
points has increased dramatically in comparison with sparse
reconstruction, it was multiplied by a factor of 1000: 406747
and 712588 for Brassica and Cutting tool, respectively.

V. CONCLUSION

Dense 3D reconstruction is one of the few tools allowing
to measure the 3D properties of microscopic objects. In order
to achieve it, the images need to be rectified first to proceed
to dense matching algorithms. In this paper, we address the
problem of rectification for an uncalibrated SEM for which the
image formation is described with parallel projection model.
First, we propose an algorithm allowing accurate and robust
measurement of fundamental matrix describing the geometry
of camera/object movement. The estimated matrix has smaller
error (x10) comparing to literature solution that was possible
due the robustness towards the presence of outliers in corre-
spondence set. Secondly, a direct linear method of rectification,
based on the camera properties and fundamental matrix, is
proposed. Both algorithms were then validated on two image
pairs coming from two different SEMs: disparity maps as well
as the results of dense 3D reconstruction were obtained.
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