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Abstract— Estimation of 3D object position is a crucial step
for a variety of robotics and computer vision applications
including 3D reconstruction and object manipulation. When
working in microscale, new types of visual sensors are used such
as Scanning Electron Microscope (SEM). Nowadays, micro-
and nanomanipulation tasks, namely components assembly,
are performed in teleoperated mode in most of the cases.
Measuring object position and orientation is a crucial step
towards automatic object handling. Current methods of pose
estimation in SEM allow recovering full object movement using
its computer-aided design (CAD) model. If the model is not
known, most methods allow to estimate only in-plane transla-
tions and rotation around camera optical axis. In the literature,
SEM is considered as a camera with parallel projection or an
affine camera, which means image invariance to z-movement
and bas-relief ambiguity. In this paper, authors address the
problem of measuring full 3D rotation of the unknown scene
for uncalibrated SEM without additional sensors. Rotations are
estimated from image triplets by solving a spherical triangle
from fundamental matrices only, without need of intrinsic
calibration, allowing to avoid parallel projection ambiguities.
The presented results, obtained in simulation and on real data,
allow validating the proposed scheme.

I. INTRODUCTION

Estimation of 3D object position and orientation is a
crucial step for a variety of robotics and computer vision
applications including 3D reconstruction and object manip-
ulation. Due to the non-stopping development of micro-
nanoscale technologies, new types of visual sensors started
being used for providing visual feedback for vision-based
control approaches in microscale. One of the examples of
such sensors is a SEM. Nowadays, it is mostly used as
a visualization tool, however, by applying computer vision
theory it can be transformed into a measuring instrument.

When working at microscale, special imaging conditions
should be taken into account. SEM is considered as a
camera with parallel projection (or an affine camera) for
magnification values bigger than ×1000, which is confirmed
in the literature [1], [2]. This statement is supported by the
following fact: when the distance between camera and object
becomes much bigger than the object itself, the projection
rays become parallel, which is the case when working with
SEM, especially at high magnification. This distinctive fea-
ture of SEM imaging raises the following ambiguities. First,
images are invariant to motion along optical axis (usually z)
which makes very challenging the estimation of depth coor-
dinate (Fig. 1,a): most existing solutions are based on focus
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Fig. 1: Motion ambiguities under parallel projection: a)
invariance of 2D projection (image) to z translation, b) bas-
relief ambiguity.

information and not motion [3], [4]. Secondly, bas-relief am-
biguity, which consists in fact that, the 2D projection of two
different objects may be the same depending on combination
of depth variation ∆Z and fronto-parallel rotation ρ ∈SO(3)
(Fig. 1,b) [5]. This property creates big limitations to the
stereoscopy in SEM, because it also results in impossibility
of measuring out-of-plane rotations Rx and Ry from two
images only. Recent works demonstrate that it is possible
to extract the information about object position from SEM
images but only using some additional information. They can
be subdivided in two groups.

The first group of motion estimation techniques is based
on pose computation. In [6], positions along x- (tx) and
y-axis (ty), and rotation about an optical axis (Rz) were
computed using Gauss-Newton method by minimizing the
sum of the projection errors of some points of a pre-defined
2D model. Authors assumed that the object, while moving,
stays on the plane parallel to the image plane. However,
if the object performs a more complex 3D movement, the
results may be inaccurate as the impact of rotations Rx

and Ry cannot be neglected. In [7], the developed solution
based on augmented reality approach used the search for
3D CAD model in the 2D images of SEM to minimize the
distance between lines extracted from images and those of
the model. The pose, comprising position and orientation,
was computed efficiently, but the method works only for
polyhedral structures. In another example, while working on
3D reconstruction in SEM, Tafti et al. obtain the full object
motion information but the tilt angle of the stage and SEM
calibration matrix were known [8].

The second group of motion estimation methods is based
on the matching of a pre-defined 2D model. In [9] and



[10], cross-correlation was used, whereas in [11] model was
represented by active contours and motion was estimated
from the minimization of the active contours and the object
detected edges. Both methods have the same drawback of [6]:
as the rotations Rx and Ry are not considered, measured
quantities may be inaccurate. In [12] an interesting method
was proposed, it is based on the work described in [13] which
used spherical Fourier transform to compute the rotations Rx,
Ry and Rz . The method is promising, however, it was only
tested on simulated SEM images and not in real conditions.

A. Contribution

The present work describes a method allowing to fully
recover the 3D object rotations not by using robot sensors
or defocus information but by adding one more image only,
thus, a method of measuring the full 3D rotation from three
SEM images. While being based on epipolar geometry and
spherical trigonometry, the usage of image triplets allows
avoiding the ambiguities of parallel projection presented
above. An additional advantage associated with the method
is that the SEM calibration (instrinsic parameters matrix)
is not needed. All test images were obtained by moving
the robotic stage inside the SEM, however, for the ease of
demonstration, we consider that not the object but the camera
(SEM) is moving and the object is fixed (the situations are
geometrically equivalent).

The paper is organized as follows: Section II presents
general information about image formation under parallel
projection assumption. Then, in Section III, the geometry
of motion between two and three image frames is analyzed
and presented which leads to the equations of spherical
trigonometry allowing to recover all three components of
rotation. After theoretical developments, Section IV presents
the validation results, first, on simulation with virtual image
sequence, and then on real images of a pollen grain and an
end-effector of a microgripper.

II. PARALLEL PROJECTION MODEL

The parallel projection of a 3D point Q =
(Qx, Qy, Qz, 1)> (in homogeneous coordinates) to the
image frame can be written as follows:

q = KΠcTwQ (1)

with K =

fx 0 0
0 fy 0
0 0 1

 and Π =

1 0 0 0
0 1 0 0
0 0 0 1


where fx and fy define the focal distances in x and y
directions of image frame. cTw denotes a 4×4 homogeneous
matrix that describes the transformation between world and
camera frames. It can be further decomposed in rotation and
translation components,

cTw =

(
cRw

ctw
01×3 1

)
(2)

The fact of parallel projection imposes the following
properties on the process of image formation. First, image
is invariant to the object displacement along the camera
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Fig. 2: Geometry of motion between two views taken with
an affine cameras C1 and C2. Transformation between R1

and R2 is a composition of three rotations with angles θ1, ρ,
and θ2. O is the centroid of 3D points with coordinates
(0, 0, 0, 1)>.

optical axis. In other words, image is invariant to the distance
between camera and object, which is the case in SEM. For
instance, moving the sample closer to the electron beam or
moving it away will not change the resulting 2D projection.
As a result, the depth coordinate is lost in the process of
image formation in case of parallel projection.

Secondly, the projection of the object is independent of
translations in x and y directions of image frame if the
relative coordinates are used both in 3D object frame and
in camera frame [14]. If such translation is performed, only
the position of the object in the image changes, but not the
disposition of its feature points. For any given reference point
(qrx, q

r
y)> in image frame and (Qr

x, Q
r
y, Q

r
z)> in world frame,

the expressions for relative coordinates (q̌ in image frame and
Q̌ in a world frame) can be written as follows:q̌xq̌y

1

 =

qx − qrxqy − qry
1

 (3)


Q̌x

Q̌y

Q̌z

1

 =


Qx −Qr

x

Qy −Qr
y

Qz −Qr
z

1

 (4)

Thus, for every camera, we can choose a reference point
defined as the centroid of the set of points detected in this
image and furthermore work with relative coordinates. It
results in a fact that the centroid of the 3D points in world
frame is projected into the centroid of the points in the
image plane. The centroid of 3D points is considered having
coordinates (0, 0, 0, 1)>.

These two properties allow drawing the following conclu-
sions:
• Parallel projection camera is invariant to translations

in image frame, relative coordinates can be used: all
detected interest points are translated into (0, 0, 1)>. It
means that the centroid of 3D points is in (0, 0, 0, 1)>.
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Fig. 3: Rotations decomposition between two images.

Therefore, in the relative coordinates, for all taken
images z-axis of camera is pointing towards the same
point, the world origin;

• From the second property, as the object-camera distance
is chosen to be one for all views, all camera centers are
at the same distance from the world origin.

Thus, when using relative coordinates, at every iteration of
movement, the camera lies on the surface of the sphere
(Fig. 2).

III. MOTION GEOMETRY

A. Two Views

For the remainder of this paper, it is assumed that the
frame of the first camera R1 coincides with the world frame,
that

1Rw = I3×3 (5)

Consider the situation where two views were obtained. If
feature points are already detected and matched, so that 2D
projections 1q in left image frame match the projections 2q
in the right image frame, the centroids can be translated to
(0, 0, 1)> in order to further use relative coordinates. It leads
to the configuration represented in Fig. 2. It is important to
notice that the plane C1OC2, that passes through camera
centers and world origin, represents the epipolar plane. It
intersects each camera’s image plane where it forms the
epipolar lines. Thus, the angles θ1 and θ2 are the slopes
of epipolar lines in image I1 and I2 respectively, and will
be further referred as slope angles.

As a result, the rotation between two views C1 and C2

can be then decomposed as follows:

2R1 = Rz(θ2)Ry(ρ)R>z (θ1) (6)

The steps of transformation between images are represented
in Fig. 3.

In order to measure slope angles, one can use epipolar
geometry. It represents a set of geometric constraints between
3D points and their projections onto two 2D images. Alge-
braically, epipolar geometry constraints are encapsulated in

the 3× 3 matrix F, fundamental matrix. In case of parallel
projection, it has a special form:

F =

0 0 a
0 0 b
c d e

 (7)

where e is generally chosed to be one as the matrix is
normalized, and a,b,c,d are real numbers. In the present
work, we use Gold Standard algorithm dedicated for camera
with parallel projection [5] to estimate the fundamental
matrix from a set of point correspondences across the im-
ages. In addition, we use this algorithm inside RANSAC
scheme that allows filtering outliers in the correspondence
set and increasing the robustness of fundamental matrix
estimation. Being iterative, the RANSAC scheme implies
a random selection of a correspondence subset for further
model estimation. It should be noted that in case of parallel
projection at least four point correspondences are needed to
find F which represents the minimal configuration. Then,
from the chosen subset, fundamental matrix is estimated
using Gold Standard algorithm and the number of inliers
is compared with the one on previous iterations. These steps
are repeated until the maximum number of inliers is found.
In other words, the Gold Standard algorithm is used to fit
the model (fundamental matrix) to a randomly selected set
of four point correspondences. The Gold Standard algorithm
comprises the following steps. Assume one correspondence
is represented by the vector ci:

ci =
(
q′x, q

′
y, qx, qy

)>
(8)

Then, in order to work with relative coordinates all points
are centered in (0, 0)>:

či = ci − c̄ (9)

where c̄ is the centroid of points computed as:

c̄ =
1

N

N∑
i

ci (10)

with N the total number of correspondences found. It allows
the construction of N × 4 matrix A with rows č>i . Then, if
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Fig. 4: Three-view geometry: camera centers C1, C2 and
C3 are located on the surface of a unit sphere and form a
spherical triangle.

the singular vector corresponding to the smallest singular
value of A is denoted as N, all five elements of F can be
found using:

(a, b, c, d) = N>

e = −N>c̄
(11)

The fundamental matrix is then obtained using (7) and
normalized to have e = 1. The slopes of epipolar lines are
then estimated as follows:

θl = arctan

(
−d
c

)
, θr = arctan

(
−a
b

)
(12)

Thus, from two views it is possible to recover two out of
three rotation angles. However, ρ angle can not be obtained
from only two views due to the bas-relief ambiguity as it
was stated previously. The solution proposed in this paper is
to use three-views to solve this problem.

B. Three-view Geometry
Three view configuration in case of an affine camera is

represented in Fig. 4. Assuming that relative coordinates
are used, the origins of all image frames lie on the sphere
with the world origin O as its center. The polygon C1C2C3

(on the surface of the sphere) represents a spherical triangle
as it is formed by intersection of three great circles, one
for each pair of frame centers. Great circle is a circle
that has the same radius as the sphere. It means that it is
possible to use the whole branch of geometry describing the
relations between sphere elements, spherical geometry and
trigonometry. Spherical triangle has the following properties.

1) Angles ^C1,^C2,^C3 (symbol ^ denotes spherical
angle). The angles of the triangle are equal to the the angles
between the tangent vectors of the great circle arcs where
they meet at the vertices. In our case, it represents the angle
between epipolar lines from two other images, e.g., the angle
^C1 is measured in the first view as the angle between
epipolar lines from images 2 and 3 (Fig. 4):

^C1 = 1θ2 − 1θ3 (13)

where iθj is the slope of epipolar line in image i defined by
image j. These angles are found using 12.

2) Sides C1C2, C1C3 and C2C3. According to the theory
of spherical geometry, on the unit sphere the lengths of the
sides of spherical triangle are numerically equal to the radian
measure of the angles that the great circle arcs subtend at
the centre. It means that, revising our configuration, one can
conclude that the sides of the triangle are equal to the angles
ρ that could not be measured in two-view case:

ρ12 = ∠C1OC2 (14)

Thus, we have all the elements of the triangle expressed
using rotational parameters of camera positions:

^C1 = 1θ2 − 1θ3
^C2 = 2θ1 − 2θ3
^C3 = 3θ1 − 3θ2

(15)

and
ρ12 = C1C2 = ∠C1OC2

ρ13 = C1C3 = ∠C1OC3

ρ23 = C2C3 = ∠C2OC3

(16)

In the presented configuration, the angles of the spherical
triangle are recovered using image pairs and Eq. 12. The
problem of solving spherical triangle, with its angles known,
is quite common and can be solved by applying a supple-
mental cosine law of spherical trigonometry. Using presented
notations, it has the following form:

ρ12 = arccos
(

cos(C3)+cos(C1) cos(C2)
sin(C1) sin(C2)

)
ρ13 = arccos

(
cos(C2)+cos(C1) cos(C3)

sin(C1) sin(C3)

)
ρ23 = arccos

(
cos(C1)+cos(C2) cos(C3)

sin(C2) sin(C3)

) (17)

Thus, all rotational parameters are recovered: slope angles
jθi were calculated using (12) and ρij using (17). The
rotation jRi matrix can be then obtained by substituting
these values in (6).



IV. METHOD VALIDATION

In order to evaluate the performance of the proposed
method, two types of experiment were conducted. First, the
method was tested on the manually generated sequence of
virtual images using MATLAB. Secondly, 2 image datasets
coming from SEM Carl Zeiss Auriga 60 were used. The
features were obtained using AKAZE descriptors [15] from
OpenCV library [16] and then matched. Authors of this
algorithm declare that it outperforms BRISK, ORB, SURF
and SIFT in most of the scenarios. The fundamental ma-
trices were estimated using Gold Standard algorithm inside
RANSAC scheme as it was stated previously.

A. Validation through simulation

Virtual image sequence represents an image set containing
150 images of a diamond (Fig. 3) with predefined pose. The
orientation of the object (diamond) was estimated for all
frames using the method presented above. In the absence
of noise, the resulting graphs (Fig. 5) allow to compare the
estimated values with the predefined ones. As the result the
error stays inferior to 1 microdegree for all orientation Euler
angles, which allows first validation of the method. It is
important to notice that it is possible to measure object ori-
entation for the second image but only at the moment when
the third one becomes available. This fact is also reflected
in Fig. 5. Next step consisted in a test of method robustness:
for this, random noise was added to the coordinates of the
extracted points (Fig. 6). For noise amplitudes below 0.5
pixel, the mean error of rotation estimation stays inferior to
0.1 degrees for all three rotation components. With further
increase of noise (up to 1 pixel), the error don’t exceed
the value of 0.5 degrees. This error comes from the errors
in fundamental matrices as the quality of correspondences
degrades with increasing noise.

B. Real SEM images

Estimation of camera rotations was conducted on two
SEM image datasets. First, seven images of Potamogeton, a
pollen grain of an aquatic plant acquired with Carl Zeiss AU-
RIGA 60 FE-SEM (Fig. 7(a)). The rotation was performed
by tilting the stage of 3 degrees for every image. Second,
End effector dataset which contains seven images of a tip of
the end effector of a microgripper (Fig. 7(b)). The movement
between images was realized using a 6-DoF robot mounted
inside the microscope, first, by the steps of 3 degrees about
each axis and then by 5 degrees. Features were extracted
and matched, the fundamental matrices were found using
Gold Standard algorithm inside RANSAC scheme and the
rotations were then recovered using the presented method.
The estimated values are presented in Table I. Obtained
angles are very close to true ones with a deviation inferior to
0.1 degree. The error can be explained by the fact that during
image acquisition the axis of tilt was not ideally vertical for
the first dataset, i.e., the tilt was not a pure rotation around
y-axis.
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sequence of a diamond. Sequence contains 150 images.
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TABLE I: Comparison between true Euler angles and esti-
mated (in degrees) for two SEM image datasets, Potamogeton
and End effector.

Euler angles, in degrees Estimated angles, in degrees
Rz Ry Rx R̂z R̂y R̂x

Potamogeton:
I1 0 0 0 0 0 0
I2 0 3.00 0 -0.03 3.02 0.07
I3 0 6.00 0 0.07 6.03 0.10
I4 0 9.00 0 0.19 9.02 0.17
I5 0 12.00 0 0.19 12.03 0.22
I6 0 15.00 0 0.38 15.06 0.29
I7 0 18.00 0 0.33 18.04 0.32

End effector:
I1 0 0 0 0 0 0
I2 0 0 3.00 0 0 2.96
I3 0 3.00 3.00 0 2.98 2.96
I4 3.00 3.00 3.00 2.98 2.98 2.96
I5 3.00 3.00 8.00 2.98 2.98 8.00
I6 3.00 8.00 8.00 2.98 7.93 8.00
I7 8.00 8.00 8.00 7.97 7.93 8.00



(a) (b)

Fig. 7: One of the images from: a) Potamogeton dataset,
pollen grain (magnification: ×1000, image size: 2048 ×
1536); b) End effector dataset, end effector of a microgripper
(magnification: ×2000, image size: 1024× 768).

V. CONCLUSIONS

The paper has investigated the problem of out-plane
rotations estimation inside a SEM. At high magnification,
starting from ×1000, projection rays becomes parallel which
leads to the following motion ambiguities: invariance to
translation along optical axis of the camera, and bas-relief
ambiguity in stereo-image case. These ambiguities make
challenging the computation of full 3D motion, particularly
the three rotations. The paper stated how the stereovision
geometry can be described through a spherical geometry.
Then, considering three-view geometry, we showed the way
to recover the three Euler angles through affine epipolar
constraints and spherical trigonometry without any use of
additional sensors. The method was applied to virtual images
and the error between real angles and their estimations was
about 1 microdegree. It was then applied to two sets of
images acquired with Carl Zeiss AURIGA 60 FE-SEM.
The resulting angles differ from the true ones for about
0.1 degree. It can be explained by the fact, that during
image acquisition it was assumed that the stage was perfectly
parallel to the image plane, which was not the case. The
experiments were conducted on different magnifications:
×1000 and ×2000. It should be noted that the presented
method can be used in situations where parallel projection
model is applicable, thus, for magnification ×1000 and
bigger. Being based on algebraic equations, the method is
easy to implement. It resolves affine camera ambiguities
present in stereo case, and can be used for an arbitrary 3D
rotational motion.

Future work will be focused on the deepening of the
solution, particularly its application to automatic nanoobjects
handling, assembly and characterization using vision-based
control schemes. It should be noted that in case of 3D
rotation, the translations cannot be recovered using registra-
tion technique due to the presence of out-of-plane rotations.
This situation can be avoided if, in visual servoing scenario,
one starts with rotation compensation. Then, when current
object orientation is equal to desired one, it is possible to
use registration methods (interest points or Fourrier-based
methods) to measure translation in image plane.
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