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Abstract

The sharpness of the images coming from a Scanning Electron Microscope (SEM) is a very important property for many computer
vision applications at micro- and nanoscale. It represents how much object details are distinctive in the images: the object may be
perceived sharp or blurred. Image sharpness highly depends on the value of focal distance, or working distance in the case of the
SEM. Autofocus is the technique allowing to automatically adjust the working distance to maximize the sharpness. Most of the
existing algorithms allows working only with a static object which is enough for the tasks of visualization, manual microanalysis or
microcharacterization. These applications work with a low frame rate, less than 1 Hz, that guarantees a low level of noise. However,
static autofocus can not be used for samples performing continuous 3D motion, which is the case of robotic applications where it
is required to carry out a continuous 3D position measurement, e.g., nano-assembly or nanomanipulation. Moreover, in addition
to constantly keeping object in focus while it is moving, it is required to perform the operation at high frame rate. The approach
offering both these possibilities is presented in this paper and is referred as dynamic autofocus. The presented solution is based
on stochastic optimization techniques. It allows tracking the maximum of the sharpness of the images without sweep and without
training. It works under uncertainty conditions: presence of noise in images, unknown maximal sharpness and unknown 3D motion
of the specimen. The experiments, that were performed with noisy images at high scan rate (5 Hz), were conducted on a Carl Zeiss
Auriga 60 FE-SEM. They prove the robustness of the algorithm with respect to the variation of optimization parameters, object
speed and magnification. Moreover, it is invariant to the object structure and its variation in time.
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1. Introduction

Autofocus is a very useful feature for all types of visual
sensors and, in particular, for Scanning Electron Microscopes
(SEM): it makes possible to obtain sharp images with the least
human intervention. Two SEM images with sharp and soft fo-
cus are represented in Fig. 1. Of the two usual types of auto-
focus, active with the use of a telemetric system, and passive
with the use of images, only the last type is implemented in
electron microscopy [1, 2, 3]. Autofocus can be also classi-
fied as static or dynamic depending on whether the target ob-
ject is fixed or moving, respectively, because the same princi-
ples are not appropriate for both cases. In electron microscopy,
static autofocus is the most widespread because in most appli-
cations objects are static. However, with the appearance of new
applications in microscopy such as 3D reconstruction that re-
quires smooth acquisition of multiple images with different ob-
ject positions [4, 5, 6, 7, 8] or robotics in the microscope that
requires 3D object tracking, i.e. including depth measurement,
[9, 10, 11, 12, 13, 14, 15, 16, 17] static autofocus is no longer
appropriate and dynamic autofocus needs to be developed. The
object needs to stay in focus for the whole operation time.
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(a) (b)

Figure 1: Images of a pollen grain acquired with a Carl Zeiss
Auriga 60 FE-SEM: a) image in focus, b) out of focus. Images
were coloured manually.

It is important to notice the relation between autofocus and
depth estimation using defocus information. Actually these
tasks are the same. Yet, the goal of autofocus is to adapt the
value of focal distance in the range determined by the depth of
field while depth estimation aims for precise value with smallest
possible error. The algorithm presented below is initially devel-
oped for keeping object in focus, however, it allows to estimate
the depth coordinate precisely enough for such applications as
automatic manipulation, assembly, etc.

When working with autofocus algorithms, it is important to
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Figure 2: Left: sharpness function for a pollen grain of daisy flower (Bellis Perrenis). Middle: image ROIs for points in sharpness
function. Right: in-focus image that corresponds to point 3 on sharpness function. Magnification: ×1000.

give a definition of an in-focus image. It can be defined as fol-
lows: any change of focal distance, or working distance in case
of SEM, will not give a sharper image than the in-focus image.
Many works are devoted to the modelling of defocus and, as a
result, it is often represented as a convolution of in-focus image
with a blur function [18]:

I = I′ ∗ h (1)

where I′ denotes the in-focus image, h is a blur function that
depends on the focal distance, I is the observed defocused im-
age. The goal of autofocus is to find the focal distance that
minimizes the blur in the image and leads to I = I′.

At this point an important question arises: how can the level
of blur be measured. There exist many different techniques
based on statistical information, image gradient, Fourier or
wavelet transforms. The dependence of image sharpness from
the depth variation or equivalently from focal distance variation
is called sharpness function. It has a special form characterized
by the presence of maximum in the point where image is in
focus. Depending on the object form, the function may have
several maxima if object parts are located at different distances
from the visual sensor. A very extensive comparative study of
focus measure operators for general scenes was realized by Per-
tuz et al. in [19]. As for microscopy domain, one can refer to
the study made by Rudnaya et al. [3]. After evaluating several
sharpness functions, the normalized variance was selected:

S (I) =
1

MN
1
µ

∑
M

∑
N

(I(u, v) − µ)2 (2)

where S (I) is a sharpness of image I, µ is the mean of intensity
values, M and N are image width and height, respectively. An
example of sharpness function as well as some images at dif-
ferent defocus values are presented in Fig. 2. The object is a
pollen grain of daisy flower (Bellis Perennis).

It is important to notice that there exist two different classes
of autofocusing tasks. Firstly, many works deal with situation
where I′ = I′const which occurs only when the object is not
moving. Autofocus in such case is referred as static. As the
sharpness is a function of the working distance, autofocus may

be considered as a problem of optimization: the search for the
peak of sharpness along the optical axis. When the object is not
moving, this function is constant and the desired image I′ stays
the same. Besides the simple method of sweeping all possible
values of working distance and choosing the one with the best
sharpness score, two main types of static autofocus can be dis-
tinguished. They differ on whether the model is used explicitly
or not. In the first type, a fitting method is used to estimate
the peak: Nicolls et al. [20] assumed a Gaussian model and
used two algebraic equations from three measurements, Wu et
al. [2] assumed a quasi-Gaussian model and used least squares
fitting from five measurements, Rudnaya et al. [21] assumed
a quadratic model and used ordinary least squares fitting from
three measurement. These methods are not adapted for high
level of image noise as they highly rely on the model estimated
from training data. In paper [22], coarse-to-fine hill climbing
method is used to obtain the initial guess of peak, then, robust
least squares fitting, support vector machines, allows accurate
estimation of the peak. Although these methods have a good
level of precision, their main drawback is the execution speed.
In the second case, where there is no training data, the peak is
estimated directly: in several works, coarse-to-fine hill climb-
ing method [23, 24, 25] or Fibonacci search ([26]) were used.
These methods are fast enough but lack of accuracy.

Second, autofocus on the object that is in motion, dynamic
autofocus, where I′ varies in time, I′ = I′(t). Previously men-
tioned methods can not be applied in this case as the in-focus
image is not constant. It also implies that dynamic autofocus
represents the continuous search for maximum value of sharp-
ness. This process is equivalent to estimate the depth coordinate
using defocus information. In recent work [27], Marturi et al.
proposed a method of depth estimation in SEM which is based
on visual servoing of focus. The object is moving gradually: the
motion is stopped when the object is out of depth of field which
reactivates the autofocusing task. When the autofocus is done,
the object is allowed to continue its motion. Thus, this scheme
allows to keep the object in focus at some discrete positions but
not during the whole operation procedure. It can also be seen
as static autofocus at discrete intervals of time. Another solu-
tion to dynamic autofocus is presented by Le Cui et al. in [28].
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Figure 3: Principle of focusing in SEM.

Authors work on three-dimensional tracking inside SEM and
the problem of keeping object in focus is also treated as the
problem of depth estimation. The relation between the image
gradient and depth variation is approximated with quadratic ra-
tional function. The coefficients of this function are determined
by fitting the training data which implies preliminary scanning
of the scene (taking images at different sample positions) before
the movement can be started. The parameters are then updated
using the particle filter during the operation which allows to re-
cover the depth coordinate.

This paper presents a method of keeping object in focus on-
line, during its movement, both in translation and rotation. It
corresponds to the situation where neither in-focus image nor
blur function are constant. The proposed method, being based
on online stochastic optimization, has the following advantages
compared to literature solutions:

• absence of calibration step, no model is used, i.e. there is
no need for training data, no focus sweeping of the scene;

• the algorithm is invariant to the object structure which is
directly derived from the previous point;

• no scanning procedure during operation, only two images
are used to estimate best focus position (depth variation);

• being robust to noise, it allows to work with high frame
rate (approximately 5 Hz) that is confirmed by experi-
ments;

• adaptive to the variation of object speed.

The remainder of the paper is organized as follows: Section 2
presents the experimental setup as well as the analysis of SEM
image and its dependence on the frame rate. Influence of ob-
ject movement is also demonstrated. Section 3 describes two
main parts of the algorithm: first-order derivative approxima-
tion and optimization for non-stationary sharpness function, i.e.

that vary in time. Experimental results showing the algorithm
performance in different conditions are presented and analyzed
in Section 4.

2. Imaging conditions in SEM

The experimental setup of this paper consists of a Carl Zeiss
Auriga 60 FE-SEM along with the computer and the control
software written in C++. Auriga has Schottly field emission
Gemini electron column that converges the beam towards the
sample surface (Fig. 3). The distance between the focus plane
i.e. the point of convergence and the lower pole of the objective
lens defines the working distance that represents the equivalent
of focal distance for SEM. When the sample is located at the
focus plane, the image sharpness reaches its maximum (peak).
The distance around the peak, where the image remains sharp,
is called the depth of field. It should be emphasized that the
process of image formation in SEM is different from classical
cameras: the image is obtained by scanning the surface using
an electron beam, thus, only one pixel is acquired at a time. As
it will be shown further, the time of image acquisition (cycle
time) influences greatly its quality. SEM Zeiss Auriga 60 has
a special parameter (ScanSpeed) that defines the frame rate. It
varies from 1 to 16: the lower the number the bigger the frame
rate is. For an image with size of 1024× 768 pixels, ScanSpeed
1 and 8 correspond to a frame rate of 17.54 Hz and 0.1 Hz,
respectively.

2.1. Frame rate influence on image noise

As it was mentioned previously, the goal of this work is to be
capable to maintain an object in focus inside SEM during oper-
ation, i.e. while object is moving. Thus, the frequency of image
acquisition needs to be much higher than for classical visualiza-
tion tasks. Yet, smaller cycle time (bigger frame rate) leads to
decreasing image quality. In order to demonstrate the relation
between frame rate and image noise the following experiment
was conducted: several images were acquired at different frame
rates while measuring the sharpness. On every image, there is
a region corresponding to the background that is completely
out of depth of field (upper left corner 50 × 50 pixels, Fig. 4).
Therefore, the standard deviation of intensity values in this re-
gion should be close to zero and then reflects the amplitude of
noise in the whole image. It is confirmed by experimental re-
sults (Fig. 4, Table 1): with increasing frame rate, the noise
amplitude grows. For instance, with acquisition frequency of
approximately 4.5 Hz (cycle time of 220 ms), the standard de-
viation of intensity values is 34.67, which is about 13% of the
maximal value (255). Another way to show the influence of
scanning speed on image is to make images of static scene with
different frame rates. The resulting variations of sharpness are
shown in Fig. 5: bigger cycle time gives smaller oscillations of
sharpness value. These results show the complexity of sharp-
ness estimation in the case of high frame rate which should
be taken into account by the algorithm. For the remainder of
this paper, we will work with ScanSpeed2 that corresponds to
4.5 Hz.
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Figure 4: Influence of frame rate on image quality. Images
represent the region of interest of 50 × 50 pixels from original
frames acquired at different frame rates.

Table 1: Characteristics of image acquisition in a Carl Zeiss
Auriga 60 FE-SEM. Values are given for the images size 1024×
768 pixels. Size of region of interest (ROI) is 50 × 50 pixels.

Scan Cycle Frame Standard deviation
speed time, ms rate, Hz of intensity values

in ROIs

1 57 17.54 41.90
2 220 4.55 34.67
3 380 2.63 26.78
5 1400 0.71 13.81
8 10600 0.09 5.08

2.2. Influence of movement on sharpness
Another matter that influences the sharpness function is the

object movement. For instance, in case of pure Z displace-
ment, the form of the sharpness function should not have been
changed. Hence, due to several factors, it is not true. The form
and the value of maximum sharpness score change due to, first
of all, the dependence of the depth of field on the working dis-
tance. Another factor is the change of brightness and contrast
because of the lower electron energy when the object moves
away from the column. This effect is amplified when the ob-
ject performs a movement that is more complex, such as out of
plane rotations, which is illustrated in Fig. 6. This figure repre-
sents four sharpness functions acquired at different orientations
of the pollen grain. The observation is that the maximum value
may be multiplied twice even in case of 5 degrees rotation. The
importance of this remark is crucial because it shows, that, for
dynamic autofocus, one can not use the techniques based on
the error between current and desired sharpness. The desired
sharpness, i.e. the maximum of the curve, is never the same if
object is moving. Due to the fact that the rotation axis was not

Figure 5: Sharpness variation for a static scene at different
frame rates.

Figure 6: Sharpness functions for the same Bellis Perrinis scene
in different orientations. Rotation was performed around hori-
zontal axis of the image. The depth variation is due to misalign-
ment of rotation axis with the object center.

aligned with the center of the pollen grain, the maximums of
sharpness correspond to different values of working distance.

3. Methods

As it was stated previously, the presented approach of dy-
namic autofocus is based on mathematical optimization. Opti-
mization is the process of finding the minimum or maximum of
a function f (θ) by varying its input parameter θ:

min
θ∈R

f (θ) = f (θ∗) (3)

where θ∗ is the value of θ that minimizes f (θ) subject to θ∗ satis-
fying a set of constraints. The function f (θ) is often referred as
objective or loss function; θ is the varying or input parameter.

In the context of the present work, the objective function is
the sharpness function. In our case, the function is changing in
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time, i.e. is non-stationary. The input parameter is the work-
ing distance. The goal of the work is to keep the sharpness in
maximum, thus, continuously update the value of θ, so that:

θn = arg max
θ∈R

fn(θ) = arg min
θ∈R

(− fn(θ)) (4)

where θn is the current value of the working distance that
maximizes the current image sharpness ( fn(θ)). As it was men-
tioned above, the objective function may contain one or several
maxima. However, considering that the starting point of the
dynamic autofocus is a well focused image (not necessary the
best focused one), the function may be considered convex in the
neighborhood of the maximum point. The size of this neighbor-
hood is equal to the current depth of field of the microscope.

The remainder of this section presents the reflections that al-
lowed to choose and adapt the optimization algorithm. There
are two main types of optimization algorithms: deterministic
and stochastic. According to the classification given by Spall
in [29], the deterministic algorithms are characterized by the
fact that the objective function is known (as well as its deriva-
tives) and that this information is used to determine the search
direction at every iteration. In contrast, stochastic optimization
deals with two types of problems: either the algorithm of opti-
mization itself makes a random choice of direction or the func-
tion is not known but only noisy measurements are available,
which is the case of sharpness function.

Another criterion that allows to differentiate optimization al-
gorithms is whether they use only function evaluations, first or-
der derivative (gradients) or second order derivative (Hessians).
For the algorithms that belong to the first group, most of them,
such as Golden-section search [30], are based on the reduction
of the interval that contains the maximum. They are not suit-
able for our application because the objective function is not
stationary. The second group contains the approaches based on
derivative. In autofocus problem, neither the sharpness function
nor its derivatives are available. The only possible solution is
to use the approximations which is not readily apparent for the
unknown function in the case where only noisy measurements
can be obtained. The approach allowing to approximate the
first order derivative is presented in Section 3.1. The presence
of noise makes irrelevant the idea to use second-order approx-
imation: apart from the fact that it requires more images for
one Hessian estimation, from the experiments presented above,
its value would likely be unusable due to the high noise level
at high frame rate. All these factors confine the choice of the
optimization algorithms to the first-order methods. The most
used of them is the gradient descent or ascent in our case (the
difference consists only in the movement direction). More-
over, there exist several solutions allowing to improve its per-
formance. Among them are Momentum [31], AdaGrad [32],
RMSProp [33], Adam [34]. Having different properties and pa-
rameters, they are analyzed in Section 3.2. The last one is then
adapted for the task of dynamic autofocus.

3.1. Derivative approximation for non-stationary function
This section shows how the first-order derivative of the sharp-

ness function is approximated. When the derivative of the func-
tion is not known, it is possible to approximate it using directly

moving up

moving down

Sharpness measures:
1)

2) tn+2 tn+1 tn

tn tn+1 tn+2

WD

WD

n

n

Figure 7: Derivative approximation. When using the same or-
der (first +∆θ, then −∆θ), the derivative sign is false when the
object is moving down.

its values in different points. The approximations that are usu-
ally used for stationary functions are Forward Euler, Backward
Euler and Centered difference. These approximations, while
being equivalent in continuous case, lead to different results in
the discrete one. Hence, using decomposition in Taylor series, it
can be demonstrated that the centered difference gives the best
approximation in terms of truncation error. It represents the er-
ror between the actual derivative value and its approximation.
It is also important to notice that in all cases only two measure-
ments are needed, i.e. two images taken at different values of
working distance. Thus, the centered difference approximation
is beneficial. It has the following form:

f ′(θn) =
f (θn + ∆θ) − f (θn − ∆θ)

2∆θ
(5)

However, at this step, an important feature of dynamic aut-
ofocus needs to be taken into account: the sharpness function
is non-stationary. For instance, using the formula of centered
difference (Eq. 5), one has to make two estimations of the ob-
jective function. It means that the delay between two measure-
ments is equal at least to the acquisition time of one image.
Thus, depending on the moving direction, the order of measure-
ments, f (θ + ∆θ) and then f (θ − ∆θ) or vice versa, can greatly
influence the value of the approximated derivative. This aspect
is illustrated in Fig. 7. The three sharpness curves correspond
to different positions of an object in time. At time moment tn
the value of working distance was equal to θn. In order to ap-
proximate the derivative at this point, two measures are needed:
at points θn +∆θ and θn−∆θ. Assuming that they are performed
at time moments tn+1 and tn+2 respectively, one can get the esti-
mate of the derivative. It should be noted that the most impor-
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tant part in derivative approximation is its sign and not the am-
plitude because the error in the amplitude can be compensated
during optimization. However, the estimate of the derivative
would correspond to the point where the object was two images
ago while the decision about the update of working distance
should be taken at instant tn+2. Getting back to Fig. 7, one can
remark that in the upper case, when the object is moving up, the
sign of approximated gradient is negative ( fθ+∆θ < fθ−∆θ) that
corresponds to the actual slope of sharpness function at tn+2.
However, when object is moving down (Fig. 7, lower panel), it
is no longer true, thus, the update of working distance would be
done in false direction. To tackle this issue, we propose to use a
random variable, d = ±1, that will determine the order of func-
tion evaluations, or simply the sign of ∆θ. The value of this vari-
able is generated with Bernoulli probability distribution. This
approach was also used in SPSA algorithm (Simultaneous Per-
turbation for Stochastic Approximation) introduced for the first
time in [35]. However, authors work with multivariable sta-
tionary functions and use the random variable vector to disturb
all gradient directions at the same time: it allows to reduce the
number of function evaluations which makes the optimization
more efficient. In this paper, being applied to a non-stationary
function, it allows to be independent of the direction change of
the function variation. It should also be noted that for small
displacement speeds, when the speed tends to zero, the order
of function evaluations will not change the sign of the gradient.
To summarize, the final expression for the first order derivative
of the sharpness function has the following form:

f ′(θn) =
f (θn + d∆θ) − f (θn − d∆θ)

2d∆θ
(6)

where the evaluation of f (θi + d∆θ) is performed first and then
f (θi − d∆θ).

Finally, some remarks need to be added about the value of
∆θ. The goal of the present work is to keep an arbitrary object
in focus during its movement. It means that, while estimating
the derivative, the object must also stay in focus. Thus, the
values of the working distance θ ± ∆θ should lie in the depth of
field, i.e. the value of ∆θ must be at least twice less than the
depth of field.

3.2. Proposed algorithm

The most common first order algorithm allowing to find the
minimum of a function is the gradient descent. In the present
work, the objective function has only one input parameter, thus,
it is more correct to speak about derivative. However, all the al-
gorithms presented below are also true for a multivariable case.
Therefore, to simplify the notations, the approximation of the
first order derivative taken with the negative sign (as we look
for the maximum) will be denoted as ĝ and referred as gradient:

ĝ = − f ′(θn) (7)

The update rule of the gradient descent algorithm is the fol-
lowing:

θn+2 = θn − αĝ (8)

where α denotes the gain or learning rate. Its value determines
how important is the update in one iteration. In the context of
the present work, θn+2 represents the estimate of the working
distance that would give the best value of image sharpness. As
the evaluation of ĝ takes two images, the time elapsed between
θn+2 and θn is twice the time of one image acquisition, that
is why at odd time moments (tn+1, tn+3, tn+5) the update is not
performed. In general, gradient descent achieves good results
when the objective function in not corrupted by noise, which is
not true for SEM images sharpness. When there is an important
change in the gradient value, which is chaotic due to noise, the
algorithm will change dramatically the value of working dis-
tance and lose the focus. Another drawback of gradient descent
consists in high dependence on the value of α. If the gain is
too low, the convergence speed will also be low. In the case
of autofocus it would greatly limit the maximum displacement
speed. In contrast, if the gain is too high, the algorithm may
suffer from oscillations about the maximum value. Therefore,
several techniques were proposed in the literature to improve
the performance of gradient descent.

Momentum. The first method is based on the following idea:
if the sign of gradient does not change for a certain amount of
time, i.e. the update direction stays the same, the update in this
direction can be accelerated. It gives the following update rule:

mn+2 ← µmn − αĝ
θn+2 ← θn + mn+2

(9)

where m is a first moment variable. Thus, instead of integrat-
ing the gradient, the velocity is integrated. The acceleration
depends on the factor µ ∈ (0, 1). Its typical value is 0.9. This
algorithm allows to improve the convergence speed and pre-
vents the value of θ from chaotic jumps. However, it is not
suitable for non-stationary functions. Assuming that the object
is moving in one direction for some time and then changes it,
the algorithm would not be able to respond quickly, thus, the
focus would be lost.

AdaGrad. In this case the learning rate is adaptive. It scales
the current value of gradient according to the history of squared
gradient values for previous iterations:

vn+2 ← vn + ĝ2

θn+2 ← θn − α
ĝ

√
vn+2+ε

(10)

where ε is a small constant (typical 10−8) allowing to avoid di-
vision by zero at first iterations, v is a second moment variable.
Despite the robustness of this algorithm, it is also not adapted
for non-stationary functions: the history of gradient is stored
for the whole time of optimization. As a result, it has the same
drawback as Momentum, impossibility to quickly respond at
the change of movement direction.

RMSProp. The idea proposed here is not to store all values
of the gradient but use the exponentially weighted moving av-
erage:

vn+2 ← βvn + (1 − β)ĝ2

θn+2 ← θn − α
ĝ

√
vn+2+ε

(11)

where 0 ≤ β < 1 is the parameter that determines how many
previous gradients would be taken into account and with which
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weight factor. For instance, if β = 0 only the current estimate
of the gradient will be used, and the algorithm will perform the
update in its direction by the value of α. It is worth to note that
RMSProp is invariant to the scale of the gradient, as in previous
example when β = 0. In practice, the value of β is taken equal
to 0.9 or 0.99. This is the first algorithm that has the neces-
sary properties for non-stationary functions: filtering of chaotic
jumps in the gradient values, robustness and quick response on
function variations (if the value of β is chosen correctly).

Adam. This recently introduced method stands for adaptive
moment estimation. In addition to store the exponentially mov-
ing average of squared gradients like RMSProp, it also stores
the exponentially moving average of the gradient itself:

mn+2 ← β1mn + (1 − β1)ĝ
vn+2 ← β1vn + (1 − β2)ĝ2

θn+2 ← θn − α
mn+2√
vn+2+ε

(12)

The update rule is very similar to RMSProp, however, not the
noisy gradient estimate ĝ is used, but its averaged value m. It
allows better filtering of the gradient while keeping the func-
tionality needed for non-stationary function optimization. Typ-
ical values of parameters are: β1 = 0.9, β2 = 0.99, ε = 10−8. It
is this algorithm that was used for the experiments.

The final algorithm for dynamic autofocus is represented in
Algorithm 1. It should be noted that during operation, actual
working distance is never equal to θ. Instead, the algorithm
sets the working distance to θ±∆θ to continuously estimate the
derivative. In other words the actual value of working distance
oscillates around the best focus position, which is updated every
two images.

4. Results and discussion

The validation of the presented theoretical aspects was con-
firmed by three groups experiments: translation along Z axis
(optical axis of the camera), translation along Z axis with vary-
ing parameters (optimization, speed, magnification), and rota-
tional movement. The object used is a pollen grain of daisy
flower that will be further referred as Bellis Perennis. The ob-
ject is mounted on the robot (6 degrees of freedom) installed
inside the SEM. For the rotational movement, additionally to
the Bellis Perennis, the algorithm was tested on a scene with
different objects including pollen grains: Pollen Grains. Both
objects were coated with a layer of gold. The equipment used
is a SEM Carl Zeiss AURIGA 60. The following parameters
were constant for all of the experiments: acceleration voltage 3
kV, aperture size 30 µm. The frame rate was also constant, with
the value of 4.5 Hz, that corresponds to ScanSpeed2.

Before starting the description of the experiments, it is im-
portant to give some information about the initialization of the
algorithm. Three values are to be defined: m0, v0 and θ0. The
values of m0 and v0 are equal to zero. As a drawback, it leads
to the fact that the values of mn and vn are biased towards zero
at the initial steps as mentioned in [34]. It can be seen from
the experiments that there are some oscillations at the first 5-15

Algorithm 1 Dynamic autofocus in SEM

1: step← 1
2: α← 0.004 . optimization parameters
3: β1 ← 0.6
4: β2 ← 0.6
5: ∆θ ← 10−6

6: ε← 10−8

7: m← 0
8: v← 0
9: θ ← θ0 . initial working distance

10: d ← 1 . evaluation direction
11: set working distance θ = θ + d∆θ
12: while autofocus activated do
13: acquire image In

14: get sharpness score s← S (In) (Eq. 2)
15: if step = 1 then
16: evaluate f (θ + d∆θ) = s
17: set working distance θ = θ − d∆θ
18: step← 2
19: else
20: evaluate f (θ − d∆θ) = s
21: estimate gradient ĝ (Eq. 6, 7)
22: m← β1m + (1 − β1)ĝ
23: v← β2v + (1 − β2)ĝ2

24: θ ← θ − α m
√

v+ε

25: d ← rand(−1, 1)
26: set working distance θ = θ + d∆θ
27: step← 1
28: end if
29: end while

frames in the values of estimated depth that disappear after-
ward (Fig. 8). Thus, we consider that it would be a good idea to
activate the dynamic autofocus several images before the move-
ment starts as it was done is one of the experiments. Another
important variable is θ0. The dynamic autofocus represents the
tracking of the best sharpness position. A good choice would be
a value of θ0 that is close to the peak, i.e. in the depth of field. If
the value is chosen far from maximum, the algorithm may catch
up with the best focus value, but the convergence speed needs
to be bigger than the movement speed. In addition, a different
set of parameters should be used and nothing can guarantee that
this set will still be optimal when the maximum will have been
reached.

Translation along Z axis. The first experiment consisted
in the object performing a translation along Z axis (along the
optical axis of the camera), Fig. 8. The speed was defined as
a sine function with its maximum of 10µm/s. It allowed to
compare the results of dynamic autofocus with actual displace-
ment which was known from the proprioceptive detectors of
the robot. Results demonstrate that not only the object was cor-
rectly positioned inside the depth of field but it was performed
with high accuracy (for the given example the depth of field
was about 40 µm). The standard deviation of error is about 5
µm while the object dimensions are about 100 µm, magnifica-
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Oscilla�ons due to algorithm stabiliza�on  

Figure 8: Results of dynamic autofocus in SEM. Object is
performing a translation along Z axis, the software adapts the
working distance to keep it in focus. Object: pollen grain Bellis
Perennis. Magnification: ×1000. Maximal speed: 10 µm/s.

tion ×1000. It allowed to confirm the viability of the proposed
approach. The next step was the test that allowed evaluation
of the robustness of the proposed solution. For that, several
experiments were conducted by varying the parameters of the
algorithm: with the best set of parameters, the standard devia-
tion of error is 3.4 µm. In the next paragraphs, the individual
influence of each parameter as well as the choice of its value
are presented.

Varying optimization parameters: α, β1, β2, ∆θ (Fig. 9(a)).
While all optimization parameters were subject to change, the
maximal speed and magnification were held constant: 10 µm/s
and ×1000, respectively. First, the gain, or the learning rate, α
have been varied. If the chosen value is too small, the algorithm
fails to follow the best sharpness position very fast and finally
loses it. In contrast, if the value is too big, one can notice a
high level of oscillations around peak position. Even if it may
be acceptable in some cases, e.g. while oscillations stay in the
depth of field, this behavior is undesirable. Finally, even with
variations of about 50% of α, the error stays in a ±1 µm range,
which is a good result. The intuition behind the choice of the
value of α is the following: with high probability, after two
iterations (derivative estimation) the object should stay in the
region ±α µm. Thus, this parameter relies on the displacement
speed that will be analyzed below.

Second experiment was devoted to variation of parameter β1
that defines how much the current update will depend on the
previous values of gradient. When β1 is equal to zero, the al-
gorithm becomes equivalent to RMSProp and one can observe
oscillations in the value of the error. Bigger values of β1 al-
low to damp these oscillations while keeping high dynamic of
the system, i.e. it correctly reacts to the change of speed direc-
tion. However, if the parameter is close to one, the system loses
this indispensable feature. Thus, the retained value of β1 = 0.6
allows to keep the advantages of momentum method without
losing the possibility to work with non-stationary functions.

Third, as the algorithm depends on the exponentially decay-
ing average, the parameter β2 was analyzed. Its value indicates
how many previous values will be taken into account. The value
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Figure 9: Performance of dynamic autofocus algorithm with
varying: a) optimization parameters, b) speed, c) magnification.
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of zero corresponds to the situation where only the last deriva-
tive approximation is used. As it was mention previously, the
results in this case are unacceptable due to high level of noise
in images. This is also confirmed in Fig. 9(a). In contrast, the
value close to one may give the same consequences as in case
of β1 is close to one, loss of system dynamics. However, if we
are sure that the object has a constant speed, this situation may
be advantageous. In the present case, the speed profile is a sine
function and the values of β2 in the interval of [0.3, 0.9] give
very similar results.

Finally, the impact of ∆θ was identified. In order for object to
stay in focus, the value of ∆θ must be at least twice less than the
depth of field, as it was mentioned in Section 3.1. In SEM, the
depth of field can be estimated using the following expression:

DOF =
2δscreenWD

AM
(13)

with working distance WD, aperture A and δscreen as the image
pixel size. Thus, the value of ∆θ must respect the following
inequality:

∆θ <
DOF

2
=

2δscreenWD
AM

(14)

Yet, we observed that, at least for the SEM used in this work
(Carl Zeiss AURIGA 60), this formula should be used as an
indication and not to obtain a precise value. By experiment,
the better choice of ∆θ would be the value at least four times
smaller than the depth of field.

Varying object speed, Fig. 9(b). In this example, once again,
the object had the sine function as speed profile. The maximal
speed for each test was 10, 20 and 40 µm/s, respectively. All
optimization parameters as well as magnification (×1000) were
held constant, only the object speed was subject to change. The
results show that the algorithm performs well when the speed is
multiplied by a factor of two. However, it fails when the speed
has a multiple of four. To overcome this, it is necessary to adapt
the value of the parameter α. In general, the maximum object
speed, for which dynamic autofocus is still viable, is principally
limited by the value of frame rate that was equal to 4.5 Hz in
this experiment.

Varying magnification, Fig. 9(c). In the next experiment,
the algorithm was subject to changing magnification while
the speed was the same. Three different values were tested:
×1000, ×5000, ×10000. The approach presents a high level of
robustness. The value of standard deviations for all three cases
is about 2 µm. For further increasing of magnification, the value
of ∆θ should be adapted as the depth of field becomes smaller
with growing magnification (Eq. 13).

Rotating objects (Fig. 10). The last experiment was con-
ducted to test the performance of the algorithm on rotating ob-
jects. Two scenes were used: Bellis Perennis and Pollen Grains.
Rotation speed was constant and to 0.2 degrees per second.
Magnification was ×500 and ×400, respectively. For the first
object, Bellis Perennis, the total rotation was 15 degrees. The
scene Pollen Grains rotated to approximately 60 degrees. It
should be noted that the center of the scene was not aligned
with the rotational axis of the robot. Thus, when the robot per-
forms the rotational movement, the object rotates but not pre-

cisely about its center. It means that the rotational movement
of one robotic axis results in a more complex movement of the
object, i.e. rotation combined with uncontrollable translations.
That is why, without autofocus, the object goes out of the depth
of field. In contrast, when the dynamic autofocus is activated,
the image stays sharp during the whole movement even when
the scene highly differs from the beginning operation to the end
like in the case of Pollen Grains: at the final frames, after the
rotation of 60 degrees the scene was very different from the ini-
tial one, and only 10% of the image actually contained some
visual information. It demonstrates that the algorithm is not
only invariant to the scene itself but also to its change during
operation.

5. Conclusion

Dynamic autofocus is a very useful feature when working
with SEM. It helps to avoid readjusting of working distance af-
ter every position or orientation change. This feature also finds
its application in micro/nanopositionning as it allows getting
the information about the depth that is hard to retrieve using
classical image processing. This paper presents an autofocus
algorithm for scanning electron microscope that allows dealing
with sample performing a continuous 3D motion at high frame
rate. The complexity of the task was demonstrated through
the tests made on Carl Zeiss Auriga 60 FE-SEM: with grow-
ing frame rate, the level of noise in images becomes bigger that
makes difficult the measure of sharpness. Moreover, sample
displacement results in unknown variations of maximal sharp-
ness, i.e. the sharpness function is non-stationary with respect
to the change of object position or orientation. For instance, in
such conditions, static autofocus techniques are not applicable.

The paper describes an approach based on stochastic opti-
mization of non-stationary sharpness function. An improved
version of gradient descent (ascent) method was used along
with the derivative approximation adapted for a non-stationary
function. The introduction of averaging parameters allowed to
filter the random variations of the gradient because of noise
without loss of dynamic properties. The experiments on the
Carl Zeiss Auriga 60 FE-SEM validated the algorithm. It is
robust to variation of optimization parameters, to those of the
scanning electron microscope, in particular the magnification
and the frame rate, and to those of the sample. The computa-
tional cost of the algorithm is very low: calculation of normal-
ized variance plus several algebraic expressions. The only step
of initialization consists in getting the object in soft focus that
was done manually in all presented experiments. No camera
calibration, intrinsic or extrinsic, is needed. Moreover, the al-
gorithm works under the conditions of high frame rate (5 Hz)
and very noisy images. With optimal parameters, it was possi-
ble to track the object with displacement speed up to 20 µm/s
(at ×1000 magnification) and 0.2 deg/s with a frame rate of 5
Hz and a format of 1024 x 768 pixels.

Further work will consist in combining of the presented ap-
proach with 2D visual servoing for realization of automatic
nanomanipulation and image acquisition inside SEM.
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(a) Bellis Perrenis scene. Rotation speed: 0.2 deg/s. Magnification: ×500.

(b) Pollen grain scene. Rotation speed: 0.2 deg/s. Magnification: ×400.

Figure 10: Dynamic autofocus algorithm on rotating objects in SEM.
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