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Abstract:
A system’s degradation behavior is often correlated with internal and external covariates which
are usually difficult to access owing to expensive measurement cost. This paper presents a
Particle Filtering based multi-level prognostics approach to predict the Remaining Useful Life
of a system based on its State of Health degradation estimation with online inspections of
covariates. A degrading system is simulated with covariates at different level. By investigating
the covariate online, the degradation estimation shows a better prediction and lower cost than
the estimation without inspection.
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1. INTRODUCTION

To achieve successful commercialization, products must
meet three important criteria: minimum cost, adequate
performance and demonstrable durability. Durability as-
sessment directly addresses all these three segments
(Carlsson et al., 2004). A recent dynamic approach to
manage the life duration of a system is Prognostics and
Health Management (PHM). It enables the reliability eval-
uation of a system in its current condition (diagnostics)
and determine the advent of failure (prognostics) and mit-
igate the risk (maintenance) (Ly et al., 2009). An accurate
prediction of Remaining Useful Life (RUL) has become
increasingly important in order to make an appropriate
End of Life (EOL) decision for products or components
(Hua et al., 2015).

Several PHM techniques have been applied on various
systems. Different PHM tools for critical components of
mechanical systems are summarized in Lee et al. (2014).
Zhang and Lee (2011) reviewed various aspects of research
and development works in Li-ion battery PHM. Jouin et al.
(2013) drew a state of the art on PHM for a type of fuel cell
systems. The presented work focuses on prognostics and
is mainly devoted to the prediction of the future evolution
of the degradation process.

Due to the broad nature of the problem, some charac-
teristics of prognostics approaches would be required in
practice (Zio, 2012). The degradation processes in general
change with time, as do the functioning of the system
due to changes in deterioration covariates, i.e. external
operating conditions (e.g. environmental causes, input pro-
files, ...) or internal causes (e.g. modification of a system
parameter, ...). A prognostic tool should be able to adapt

and to accommodate such changes. The main obstacles to
this adaptation are that the covariates effects might not be
directly accessible from the current degradation indicator
and that the link between the degradation process and co-
variates may differ in different cases. If there is a possibility
to gather information on the hidden or “deep” covariates,
it might be interesting to inspect them from time to time to
improve the state of knowledge on the system for a better
prognostics, even though the inspections are very costly.
Understanding how performance parameters are affected
by external covariates (e.g. by time-to-fail analysis) allows
improved design for manufacturers and advanced mainte-
nance for users. The mitigation in the impacts of known
degradation covariates can help to improve the precision
in durability assessment. The aim of this paper is to pro-
pose a multi-level prognostics approach for systems whose
degradation covariates at different levels are accessible.

Section 2 presents the assumptions and the problem formu-
lation. The multi-level estimation and prognosis approach
involving covariates inspection is developped Section 3.
Section 4 presents and discusses the numerical results of
the proposed method on simulated data.

2. PROBLEM FORMULATION

The degradation evolution of a system under operation
may not be well estimated because either external condi-
tions or internal modifications can modify the degradation
behavior: if these deterioration covariates are unknown, it
can be difficult to identify their effect from the observation
of the deterioration alone. Classic Bayesian estimation-
based prognostic methods lack the ability to accommo-
date the unexpected changes in degradation evolution.
A possible solution to this issue could be to investigate



the deterioration covariate through indicators gathered at
other levels of the system and to update the degradation
parameters to adapt the changes in degradation evolution
for a better estimation.

2.1 General Modeling Assumptions

Consider a new system subject to degradation under
operation untill its end of life. Its performance level is
constantly monitored to reveal the degradation of its State
of Health (SOH) (0 ≤ SOH ≤ 100%). Assume that the
evolution of this deterioration (SOH decrease) follows a
process, which can be described by a discrete-time state
transition model :

xk = fk(xk−1, ωk,Θk) (1)

where k is the time step index, x is the system state
representing the system performance, f is the state transi-
tion function (degradation model, e.g. the evolution of the
degradation paths in Fig.1), ω is a Gaussian zero-mean
process noise (variance σ2

ω) and Θ is the vector of the
model parameters (Θ = [θ1, θ2, ...]). The measurement is
given by zk = xk + νk where νk is a zero-mean Gaussian
noise (variance σ2

ν).
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Fig. 1. Degradation path and covariates.

2.2 Effect of the Covariates on the Deterioration

The degradation in the SOH of the system can be due
to its intrinsic imperfection and also, to the effect of
both external or internal degradation covariates. Here we
assume that some covariates, denoted c, can impact the
degradation behavior by affecting the model parameters:

Θk = gk(ck) (2)

where g is the function describing the effect of the degra-
dation covariates on the deterioration model parameters.
Fig.1) shows a typical deterioration path, with the effect
of effect of the covariates.

A classical PF-based prognosis method does not take into
account directly those unexpected impacts when estimat-
ing the deterioration state and predicting the RUL. This
is thus the aim of the multi-level prognosis approach pro-
posed in the next section.

3. MULTI-LEVEL PROGNOSIS APPROACH

It has been proven that Bayesian estimation techniques
provide a framework which can deal with high uncertain-
ties in degradation processes (Vachtsevanos et al., 2006).
Bayesian estimation with particle filters is not limited by
either linearity or Gaussian noise assumption. PF-based
approaches are more and more employed for prognostics
purposes, and are chosen for the degradation path esti-
mation in this study. For a comprehensive description,
the reader is referred to a recent review on PF-based
prognostics in (Jouin et al., 2016).

3.1 Particle Filtering Algorithm

In a PF framework (Arulampalam et al., 2002), the es-
timation of the degradation state is based on its prior
Probability Density Function (PDF) and the degradation
model parameters. The Bayesian update is processed in
a sequential way by propagating particles carrying prob-
abilistic information on the unknown states and model
parameters (SIR filter):

(1) Draw and propagate N particles representing the
system state probability density function (PDF) from
xk−1 to xk by state transition model.

(2) Update the particles weights by calculating the like-
lihood of the online measurement zk given xik, which
quantifies the degree of matching between the estima-
tion and the online measurement

(3) Re-sample the particles (Li et al., 2015) to remove
the particles with small weights compared to a chosen
weight limit, the ones with great weights are dupli-
cated which represent the estimated posterior PDF of
the system state.

(4) From the estimated posterior PDF, the corresponding
model parameters are updated as well.

(5) The posterior PDF built in step (4) is used as the
prior back into step (1). This will be performed until
the online measurement is no longer available.

In the prediction phase, the posterior PDF of the state
and model parameters are used for the estimation of
the future degradation evolution. The RUL PDF can be
obtained when the particles of system state reach the
preset failure threshold by extrapolating the estimated
degradation evolution.

3.2 Inspection of the Covariates

Assuming that the covariates impacts on the degradation
level can be quantified and modeled, two covariates inspec-
tion policies are considered : periodic or online triggered.
The estimated degradation model parameters can be up-
dated after inspection, knowing the value of the covariate
returned by inspection.

• Periodic covariates inspections are performed every τ
time steps;

• Online covariates inspections are triggered online by
the estimation error: the covariates can thus be in-
spected only when it is necessary, i.e. when the deteri-
oration estimation accuracy is no longer satisfactory.
At each timestep k, the estimation error is calculated
online:



ε̂k =

l=k∑
l=k−L

‖zl − x̂l‖

L
(3)

where zl is the online measurement, x̂l is the esti-
mated state and ε̂k is the current estimation error
with a time window of size L. An inspection is trig-
gered whenever ε̂k reaches preset error threshold ET
: ε̂k ≥ ET → inspection

Integrating the inspection procedure into the PF prognosis
algorithm gives (at step k):

(1) Draw particles xik, (i = 1, . . . , N) from the prior
density p(xk|xik−1) (integrating the state transition
model)

(2) Calculate the corresponding weight of each particle:
wik = L(zk|xik) and then normalize the weights: wik =

wik/
N∑
i=1

wik

(3) Re-sampling (Multinomial, Li et al. (2015)):
(a) Calculate the cumulative sum of normalized

weights: {Qjk}Nj=1 = CumulativeSum
[
{wik}Ni=1

]
(b) For i=1,N

• Draw a random value u from the uniform
distribution U(0, 1]
· j=1;
· while Qjk < u ; j = j + 1 ; end

• Assign particles xi∗k = xjk, Θi∗
k = Θj

k
(c) End (for)

(4) State and parameters estimation:
x̂k = MedianV alue

[
{xi∗k }Ni=1

]
Θ̂k = MedianV alue

[
{Θi∗

k }Ni=1

]
(5) Calculate ε̂k

if ε̂k ≥ ET , inspect Θk = gk(ck) and update the
parameters if necessary

(6) Go back to step (1)

3.3 Decision Variables for the Inspections Policies

The covariates inspection policy can be optimally tuned
using one of the decision variables (either the inter-
inspection period τ or the error threshold ET ) to ensure
the best estimation accuracy and to minimize the overall
estimation cost. The estimation cost J in this study is
defined as the combination of two parts: the cost (or
penalty) resulting from the estimation error ε̂, and the
cost of inspections represented by the number of performed
inspections:

J = α · ε̂+ β · EOL
τ

(4)

Two weight coefficients α and β are assigned to each
part. From the estimation accuracy’s point of view, the
more inspections are carried out, the better accuracy can
be achieved. On the other hand, implementing too many
inspections leads to higher costs. The objective here is to
balance the quality of the deterioration estimation and the
number of inspections.

4. APPLICATION & NUMERICAL EXPERIMENTS

4.1 Deterioration Simulation

The degradation paths are simulated using an exponential
state transition function described in (An et al., 2013),
with zero-mean Gaussian process noise (variance σ2

ω):

xk = xk−1 · exp(−b(ck) ·∆t) + ωk (5)

The initial state value x0 is equal to 100% of SOH. The
presence of covariate c (Fig.1) impacts the degradation
behavior, which is represented by the change in trend
parameter b in (5):

b(ck) =

{
b0, if ck = 0

b0 · (1 + 3ck), else
(6)

The covariate c is generated by a 2-level Markov process:
c = 0 and c = 1 (Fig.2). The initial value is b0 = 10−3.
The form and values in (6) are set to locate the degradation
path (Fig.3) in a specific scale (y-axis: SOH from 0% to
100%; x-axis: time from 0h to 1000h). An additive zero-
mean Gaussian measurement noise is added to xk to give
zk.
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Fig. 2. 2-level Markov covariate evolution.

4.2 Estimation without Inspection

First, a PF estimation is applied without any inspection
on covariate c.
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Fig. 3. Estimation without inspection.

Fig.3 shows the degradation estimation by a classic PF
without inspection. The PF filter does not adapt rapidly to
the sudden changes due to covariate changes. Fig.4 shows
the average error corresponding to the estimation without
inspection, that reaches a maximum around 10%.
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Fig. 4. Estimation error without inspection.

4.3 Estimation with Periodic Inspection of the Covariate

A deterioration estimation procedure with periodic inspec-
tion of the covariate is considered here. The inspection
period τ is optimally tuned to minimize the criterion
cost J combing the estimation accuracy and inspection
costs introduced in Section 3.3. Assuming the cost of
estimation (un-)accuracy is more important than the cost
of inspection action, we chose for example α = 10AC/ε,
β = 1AC/inspection and EOL = 1000h in Eq. (4). To de-
termine the optimal inspection period, 50 different values
of τ are tested from 10h to 500h.
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Fig. 5. Cost curve for estimation with periodic inspection.

Fig.5 shows the cost curve of different inspection periods
τ and a minimum cost for τ∗ ' 100h.
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Fig. 6. Estimation with periodic covariate inspection.
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Fig. 7. Periodic inspection for covariates.
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Fig. 8. Estimation error with periodic inspection.

Fig.6 shows the estimation for the optimal period. It
can be seen from Fig.7 that the deterioration estimation
procedure is able to integrate the covariate information
delivered by inspections to adapt the degradation estima-
tion as shown in Fig.6. It can be also noticed that the
state model does not always need to be updated. The
black circles (Fig.6 and Fig.7) without a central cross
(covariate value switch) imply that these inspections are
not necessary since the used covariate value is actually the
same as the true one. Fig.8 shows the estimation error of
periodic inspection which remains at a lower level thanks
to the inspection every 100 hours. Nevertheless, to avoid
unnecessary inspections, a decision has to to be made on
wether to carry out or not the inspection.

4.4 Estimation with Online Triggered Covariate Inspection

Consider now the procedure for the deterioration esti-
mation with online triggered covariate inspection. Three
decision variables have to be tuned for this procedure: i)
the time window size L to filter the estimation error; ii)
the threshold ET on the estimation error to trigger the
inspection; iii) the minimum waiting time τh between two
inspections to avoid unnecessary inspections.

• Window size L: A preliminary sensitivity analysis on
L in Eq. (3) has shown that a window size of L ≥ 50h
does not alter the estimation accuracy nor the number
of inspections. Thus L is set at 50h.

• Error threshold ET : When the estimation error
reaches the threshold ET , a covariate inspection is
triggered to decide whether it is necessary to update
the deterioration model parameters. The estimation
error is calculated as in (3) as the average distance
between estimated value and the observation on a
moving window of size L. In the presented example,
values of ET are tested from 1% to 15%.

• Waiting time τh: Different values of the minimum
waiting time between two inspections τh are tested
from 10h to 500h.

Fig.9 shows the cost surface for the estimation with online
inspections of a 2-level covariate as a function of two
decision variables, ET and τh. The minimum cost is found
at ET ∗ = 4% and τ∗h = 50h.

Fig.10 shows the estimation for the optimally tuned de-
cision variables. On Fig.12, when the estimation error
reaches ET , inspections on covariate c are triggered and a
correction, i.e. a covariate value switch, can be decided
(Fig.11). The number of unnecessary inspections is re-
duced when compared with periodic inspection, which
permits a lower cost as shown in Tab.1. The results are
the average of 100 estimations.
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Fig. 10. Estimation with online triggered inspection
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Fig. 11. Online inspection for covariates.
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Fig. 12. Estimation error with online triggered covariate
inspection.

Table 1. Estimation cost for different covariate
inspection scheme

Without Periodic Online

MAE(%) 5.91 3.47 3.51
Inspections 0 10 7
Cost (AC) 59.07 44.69 42.27

4.5 RUL Prediction

The PF is used to train the state transition model during
the estimation phase until prediction time tp, then the
particles are propagated through the estimated model,
assuming the covariate remains at its last measured value.
Fig.13 shows the RUL prediction example for tp = 600
hours. The RUL histogram represents the time indexes dis-
tribution of all particles reaching a preset failure threshold.

Fig. 13. Degradation estimation with online inspections
and RUL prediction at tp = 600 hours.

To evaluate the prognostic performance, several RUL
predictions with different process noise levels are made and
assessed using two metrics: Prognostic Horizon (PH) and
α metric, (Saxena et al., 2010).

Prognostic Horizon (PH) The PH is the horizon between
the end of life (EOL) and the first time index i when
predictions satisfy ±α bounds.

PH = EOL− i
i = min{i|RULtrue − α · EOL ≤ RUL(i)

≤ RULtrue + α · EOL}
(7)

The choice of α value depends on the allowable error to
take a corrective action. Here α =0.1 which meets most
prognostic needs in industry fields. The longer is PH, the
better is the score.

α Metric The output of α metric is the percentage of
predictions located in a ±α accuracy zone.

Fig. 14. RUL predictions with online inspections.

Fig.14 shows the predicted RULs with uncertainties at
different prediction times tp ranging from 300h to 740h,
with a step of 10h (i.e. 44 predictions). The PH is
calculated as the time index of first prediction located in
the accuracy zone (grey bounded zone of 2α width). The
performance for those three cases are listed in Tab.2.

Prediction with periodic inspection gives the best prognos-
tics performance thanks to the information delivered by



Table 2. Prognostics performance (σω = 1.2)

Without Periodic Online

PH (h) 40 335 245
α metric (%) 16 82 82

the inspections and associated the model update. Mean-
while, this incurs a higher cost. Online triggered inspec-
tions can provide better predictions than without inspec-
tion and incur a lower cost than periodic inspections.

In this study, it has been found that the estimation error
decreases when the variance of process noise ω used in
the PF filter (i.e. in the importance density p(xk|xik−1))
increases. With a smaller noise, the PF-based estimation is
constrained thus the degradation trend cannot be followed
which leads to a higher error. With a larger noise, the
particles have more freedom to adapt the degradation
changes which reduces the estimation error. From the
estimation accuracy point of view, a better estimation can
be achieved by increasing the process noise.

However, the prognostics approach is devoted to predicting
RUL. Thus the necessity and benefit of inspection should
be also discussed in the view of RUL prediction. In a
numerical experiment, 100 estimations are made with
different σω. It is shown in Fig.15 that, with very small
noise (around 0), the PF-based prognostic approach is
not able to perform a RUL prediction. For a process
noise with a large variance (for σω ≥ 4 in Fig.15), both
predictions without inspection and with online inspections
are the same. It indicates that when the noise is large,
the inspection is no longer activated. The model is thus
not trained by the true state process but by its noise,
which results in inaccurate predictions. On the other hand,
prediction with periodic inspection continues to check
periodically the covariates, which helps the model to learn
the useful information and make predictions at higher
accuracy although being impacted by the noise.
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Fig. 15. Prognostic performances with different σω.

Fig.15 shows that the best prediction performance for
periodic inspection is obtained with σω = 1.2, and with
σω = 1.4 for online inspection.

5. CONCLUSION

The proposed study on a simulated deteriorating system
shows that the multi-level prognostics can be improved

using online inspections. Covariates inspection allows the
PF-based prognostics approach to give better predictions
for RUL at a lower cost. The RUL estimation with multi-
level prognostics for a real system with covariates identifi-
cation will be the subject of future work.
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