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Abstract

This paper is focused on the design and modeling of a new micro and nano force sensor using magnetic springs. The force sensitive
part is a macroscopic horizontal rigid platform used as a floating seismic mass. This platform presents a naturally stable equilibrium
state for its six degrees of freedom (dof) thanks to the combination of upthrust buoyancy and magnetic forces. This force sensor
allows the measurement of the external horizontal force and the vertical torque applied to the platform. Thanks to the magnetic
springs configuration used, the seismic mass presents a 0.02 N/m horizontal mechanical stiffness (similar to the stiffness of a thin
AFM micro-cantilever). The measurement range typically varies between ± 50 µN . The resolution depends on the displacement
sensors used to measure the seismic mass displacement and on the environmental conditions (ground, liquid and air vibrations).
In steady state, this displacement is proportional to the applied force. Resolution of less than 10 nN can be reached with the use
of an anti-vibration table.

Key words: micro and nano force sensor, passive measurement, sensor calibration, magnetic spring, upthrust buoyancy.
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Fig. 1. Passive force estimation.

1. Introduction

The nano and micro force measurement field is an emer-
gent market with a large potential growth. Are concerned
by this market nanomaterial companies, micromechanical
and micro engineering business, the numerous firms using
micro encapsulation, research laboratories in the field of
micro and nano advanced technologies and finally the more
restricted market of biomedical research which needs to
characterize responses of living cells to mechanical stimuli.

Micro and nano force sensors design is constrained by
the fact that only force effects can be directly measured.

Email address: jabadie@femto-st.fr (A. Cherry, J. Abadie and

E. Piat).
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Fig. 2. Nanoforce sensor based on passive diamagnetic levitation.
The graphite plates produce repulsive forces that stabilize the glass
tube along y direction.

Because of this, a force sensitive part is needed to observe
these effects. This sensitive part acts as a transducer that
converts the applied force F into a displacement (see fig-
ure 1). This displacement is measured with an appropri-
ate displacement sensor. To estimate the input force F , it
is necessary to do a deconvolution or to use an Unknown
Input Observer (UIO) that calculates an estimation F̂ of
that force. Most of the transducers that have a large band-
width are associated with a very simple deconvolution law
because designers assume that the force estimation F̂ is
proportional to the measured displacement.
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Because force effects can be measured in many different
ways, micro and nano force sensor designs are numerous.
The majority is based on monolithic elastic microstructures
which are generally microcantilevers [1] coupled or not
with mechanical deformation amplifier: AFM based micro-
force sensors using two or four quadrants photodectectors
[2] or interferometry principle [3], piezoresistive microforce
sensors which use the variation of the piezoresistive layer
resistance when a force is applied [4], capacitive microforce
sensors which make use of changes in capacitance between
two metal plates when their distance change during force
application [5], piezoelectric microforce sensors which gen-
erate a voltage when they are stressed by a force [6], etc.
Because maximum deformations of monolithic microstruc-
tures are usually low, these sensors are mostly limited in
range of force measurement but have a large bandwidth.
A few sensors can exhibit larger deformations or displace-
ments. For instance, the maximum deformation of the
nanoforce sensor presented in [7] is several dozen microme-
ters thanks to a special compliant mechanical design with a
very low stiffness. Another sensor using a seismic mass, and
which greatly inspired the theorical study presented here,
is based on passive diamagnetic levitation [8]. The seismic
mass is a ten centimeters long levitating glass capillary
tube (like a micropipet) on which two small magnets (less
than 1 mm3) are stuck (see figure 2). To levitate passively,
the capillary tube mass must be less than 100 milligrams.
This levitating part is used as a one direction force sens-
ing device (along its longitudinal axis x). This sensor is
characterized by a second order linear force-displacement
dynamic (badly damped) which remains linear on very
long displacements (±1.5 mm) and thus can measure a
wide range of microforces. The longitudinal displacement
x of the levitating part is measured with a confocal chro-
matic sensor on the rear deflector (see figure 2). This
displacement is proportional to the force F extx applied
when steady-state is reached. The stiffness is adjustable
with typical value equal to 0.01 N.m−1 and a bandwidth
of a few hertz. The resolution depends on the seismic mass
displacement resolution and on noises induced by environ-
mental conditions (ground and air vibrations). Resolution
of 1 nN is easily reached with an anti-vibration table and a
CL2 confocal chromatic sensor (distributed by STIL SA).

This paper deals with the design and the modeling of a
new micro and nano force sensor mostly inspired by the
micro and nano force sensor using diamagnetic levitation
previously described. The new sensor is based on the same
magnetic spring principle. The main difference is the re-
placement of diamagnetic effects by upthrust buoyancy.
The role of the magnetic spring and the upthrust buoyancy
is first presented and explained on a simplified mechanism,
the Magnetic Spring Floating Mechanism (MSFM). Then
the MSFM is modeled in order to analyze the stability in
the different directions. Because one MSFM is not opti-
mized for force sensing, a sensitive platform including two
MSFM is presented. The platform is parameterized, mod-

Fig. 3. (a) Side view: buoyancy tank (b) Top view.

eled and optimized for measuring the two components of an
horizontal input force and a vertical input torque. The de-
sign is ended by the modeling and the optimization of the
configuration of the sensors used to measure the displace-
ment of the sensitive platform. A linear model is presented
and compared to the physical model of the optimized plat-
form. The linear model is used to define the important pa-
rameters of the sensor. The experimental setup is then pre-
sented. The calibration process is performed on the exper-
imental setup in order to determine the parameters of the
sensor. These parameters are then used to calculate an es-
timation of the input force and torque. Finally the sensor
is experimentally tested and two potential applications are
given.

2. The Magnetic Spring Floating Mechanism

The force sensor presented in this paper is based on the
use of magnetic springs and upthrust buoyancy. Repulsive
upthrust buoyancy, instead of repulsive diamagnetic effects,
offers the possibility to support heavier seismic mass if nec-
essary. It also allows an easy exploitation of three degrees
of freedom (dof) in the liquid surface plane. The Magnetic
Spring Floating Mechanism (MSFM) is the starting point
for the design of our sensor. This MSFM is composed of
a permanent magnet M fixed in a float (see figure 3). M
floats at the surface of a liquid. It is under the influence of
two fixed magnets p placed below and above the liquid sur-
face. Magnets p (5×5 mm) are placed such that their north
and south poles are in opposite directions. The distance be-
tween the two magnets p influences the value of magnetic
forces applied on the floating magnet M . The magnets p
and M are made of NdFeB and the floating magnet M has
a radius of 2 mm and a height of 2.5 mm. With such a con-
figuration, the floating part is stable in the plan (xOy) (see
section 2.5) thanks to the magnetic forces generated by the
magnetic device [9]. The upthrust buoyancy acting against
the gravity provides a stability along z axis in the reference
frame R shown in figure 3 (see section 2.4). The upthrust
buoyancy has no action in the plan (xOy). Both upthrust
buoyancy and magnetic forces provide stability around x,

2

ha
l-0

05
94

35
6,

 v
er

si
on

 1
 - 

19
 M

ay
 2

01
1



y and z.

2.1. Static modeling of the MSFM

In this section, only the principle of force measurement
according to x direction is presented. The center of gravity
Gf of the floating magnet M is supposed belonging to the
plan (xOy). At the equilibrium state position, four external
forces described below are applied on the floating magnet
M .
The top magnet p applies an attractive force, called F att,
on M . The bottom magnet p applies also an attractive
force called F ′att on M obtained symmetrically to the plan
(xOy). We note Fmag the vectorial sum of F att and F ′att.
The third force is the upthrust buoyancy called F b applied
by the liquid along z at the center of gravity of the float
which is supposed to be superimposed to Gf . The fourth
force P , also acting along z, is the total weight of the float.
When an unknown external force F ext is applied at the cen-
ter of gravity Gf of M , the new stable equilibrium state is
obtained applying the principle of static at the float center
of gravity Gf (xGf

, yGf
, zGf

):

Fmag + F ext + P + F b = 0 (1)
with:

Fmag = F att + F ′att and F b + P = 0 (2)

The external force F ext is now assumed to be applied
only in the plan (xOy). The components along z of F att

and F ′att cancel each other. Equation (1) projected in the
plan (xOy) gives the vectorial equation:

F ext = −Fmag.

Under the previous assumption, the determination of the
external force F ext in the plan (xOy) is conditioned by the
determination of the magnetic force Fmag applied on Gf .

2.2. Evaluation of Fmag

The magnetic field produced at a point T by a permanent
magnet modeled by a surface distribution of loads is given
by [10]:

Bmag(T ) =
∫∫

S+

J

4π
AT

|AT |
dS+

+
∫∫

S−

−J
4π

BT

|BT |
dS−

(3)

where A and B are two points belonging to the two charged
surfaces of the magnet S+ and S−.

The determination of the field componentsBx(T ),By(T )
and Bz(T ) at the point T can be done by the calculation
of the equation (3) along x, y and z. The magnetic force
applied on the magnet M is given by [8]:

Fmag =
∫
V

∇Bmag(T ) ·mM · dv (4)
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Fig. 4. Magnetic force along x produced by the 2 permanent magnets

p when z = 0 and y = 0.

where Bmag(T ) is the field produced by both magnets p
at a point T inside the magnet M . V is the volume of the
magnet M andmM its magnetization. This magnetization
is 8.89× 104 A ·m−1 in this study.

Figure 4 presents the evaluation of the magnetic force
Fmagx along x when z = 0 and y = 0. In this configura-
tion, Fmagy and Fmagz are null. The derivative of this curve
gives the magnetic stiffness Kx

m = dFx/dx along x. On this
curve, the point S corresponds to the equilibrium point of
the float when F extx is null. S is the origin of reference frame
R. In our design ‖LS‖=11.7 mm with L the center of up-
per and lower magnets p. In case of small displacements
around S, Fmagx is assumed linear in displacement:

Fmagx = Kx
m · x (5)

Thus, the determination of Fmagx is possible with only the
knowledge of the floating magnet position x. This stiffness
depends on the distance between the top and the bottom
magnets p and on the magnetic characterizations of mag-
nets p and M .

2.3. Dynamic study of the MSFM

The dynamic equilibrium along x is given by the follow-
ing equation:

F extx + Fmagx + F fx + F px = mẍ (6)

in which F extx is the external force applied on the floating
magnet M along x. Fmagx is given by equation (5) in case
of small displacements around S. F fx is the viscous friction
force between the float and the liquid (atmosphere influence
is neglected). Like for the magnetic force, in case of small
velocities it is possible to write:

F fx = Kx
f · ẋ (7)

in which Kx
f is the viscous damping coefficient. Finally, F px

is the total perturbation force, like capillary force (which
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Fig. 5. Evolution of the total force according to z

disappears in case of symmetric meniscus) and like the de-
layed return wave of water generated by the displacement
of the float and reflected on the edges of the container. Ac-
cording to the reference frame R, the equation (6) becomes
finally:

F extx + F px = mẍ+Kx
f ẋ+Kx

mx (8)

2.4. Stability of the float along z

Passive levitation is commonly unstable. This result was
shown theoretically for electrostatic case by Earnshaw in
1842 [11] and for both electrostatic and magnetic cases by
Braunbek [12]. Because of this, a small permanent magnet
M in levitation between two fixed cubic magnets p cannot
be in a stable equilibrium. A slight upward displacement
of M results in a greater attraction of the magnetic force
F att and M continues to rise until it reaches the upper
magnet. Any slight downward displacement of M results
in a greater attraction magnetic force F ′att and M contin-
ues to fall until it reaches the lower magnet.

Like in diamagnetic levitation, it is possible to passively
stabilize the unstable equilibrium state of M with an ad-
ditive repulsive force. Repulsive upthrust buoyancy can be
used instead of diamagnetic effects when the sensitive part
mass becomes greater than several hundred of milligrams.
Figure 5 shows the evolution of the sum of the forces applied
on the floating part along z excepted the weight. These
forces are the magnetic forces (F attz + F ′attz ) applied by
top and bottom magnets p on M and the upthrust buoy-
ancy F b applied by the water on the float. The zoomed-
figure (on the right) shows the evolution between 7.5 mm
and 10 mm. We note a specific position A where F b = mg.
At this point, the weight is completely compensated by the
total external force applied on the floating part. A slight
upward displacement of M results in a external force lower
than the weight (see figure 5) and thus the floating part
comes back to A. Any slight downward displacement of M
results in an external force higher than the weight and thus

−4 −3 −2 −1 0 1 2 3 4

x 10
−3

−3

−2

−1

0

1

2

3
x 10

−3

x(m)

y(
m

)

(R) ~x

S

~y

Fig. 6. Field of magnetic forces in the plan (xOy).

the floating part also comes back to A. Thus, the point A
is a stable equilibrium point according to z.

2.5. Stability of the float in the plan (xOy)

Figure 6 shows the field of magnetic force Fmag, in the
plane (xOy), applied by the magnets p on the float. The
point S is the stable equilibrium position of the magnet M .
At this point, the magnetic force generated by p is null. This
stability in the horizontal plan makes possible to extend
the floating-magnetic principle described in section 2.1 to
measure the components (F extx ,F exty , ζext) of an external
force. The new external force sensitive element is a floating
platform. The platform mass is suspended against gravity
by the combined upthrust buoyancy of floats placed at its
corners.

3. Seismic platform analysis

Practically, a horizontal force applied on the edge of the
float will produce an unexpected rotation of the float. This
rotation makes the MSFM unuseable for microforce sens-
ing. No significant magnetic torque holds the float to a de-
fined rotation angle. To avoid this rotation, a design includ-
ing two MSFM associated with a bigger float is studied.

3.1. Optimization of the platform configuration

Figure 7 represents a parameterized configuration of one
MSFM. The float is replaced by a platform. Magnet M is
placed at a corner. There is only one couple of magnets p
oriented with an angle α and generating a force Fmag on
the magnet M . The shape of the platform is undefined at
this step.

Let R1 be the reference frame of (S,x1,y1) with S the
stable equilibrium position of M . The platform is moving
freely according to a fixed reference frame R0(O,x0,y0).

4
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Fig. 7. Platform with a parametrized MSFM (top view)

Let Rp(G,xp,yp) be a reference frame related to the plat-
form with :

G =

X
Y


/R0

and (x0,xp) = ψ

X and Y are the coordinates ofG in the reference frameR0.
When the platform is on its initial position, both reference
frames R0 and Rp are superimposed. M and S are also
superimposed in this case.

3.2. Change of reference frame

The reference frame change for a point M belonging to
the platform, in the general case, is done by the following
transformation:

M/R1
= P10[(P0p ·M/Rp

) +G/R0 − S/R0 ] (9)

P01 and P0p are the crossing matrices from R1 to R0 and
from Rp to R0:

P10 = [P01]−1 =

 cosα sinα

−sinα cosα

 , P0p =

 cosψ sinψ

−sinψ cosψ


where α is the angle formed by the two reference axes x1

and x0 and ψ is the angle formed by the two reference axes
xp and x0.

The reference frame change for the magnetic force Fmag,
under the same conditions, is done by the following trans-
formation:

Fmag/R0
= P01 · Fmag/R1

(10)

3.3. Analytical expression of Fmag

The knowledge of analytical expression of the magnetic
force Fmag is necessary to build the future dynamic model
of the platform. This calculation is done in reference frame
R0. Figure 6 shows that iso-forces are elliptic in the imme-
diate proximity of point S. This allows to write :

Fig. 8. Magnetic force Fmag
x along y and for different values of x.

Fmag/R1
=

 Fmagx

Fmagy


/R1

=

Kx
m 0

0 Ky
m

 x
y


/R1

(11)

with Kx
m and Ky

m the magnetic stiffness along x and y.

The more M is faraway from S, the less equation (11) is
correct. Figure 8 shows the component Fmagx along y for
different values of x. If the model (11) was always correct,
Fmagx should be independent of y, which is not the case
on the figure. Nevertheless, smaller is the external force,
smaller is the displacement d in figure 8 and better is the
model (11). Thus, the relative error induced by this model
(compared to the external force) is coherent with the ex-
ternal force to be measured.

According to equations (9), (10) and (11):

Fmag/R0
= P01 ·Km · P10[(P0p ·M/Rp

) +G/R0 − S/R0 ] (12)

thus:
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~Fmag
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Fig. 9. Final magnetic configuration of the platform (top view)

Fmagx /R0 = (sinα ·Kx
m · cosα · xM + sin2α ·Ky

m · yM−
cos2α ·Kx

m · yM + cosα ·Ky
m · sinα · xM )sinψ + (−sin2α

·Ky
m · xM + cos2α ·Kx

m · xM + cosα ·Kx
m · sinα · yM+

sinα ·Ky
m · cosα · yM )cosψ + (sinα ·Kx

m · cosα+ cosα

·Ky
m · sinα)y + (−sin2α ·Ky

m + cos2α ·Kx
m)x+ sin2α

·Ky
m · xM − sinα ·Ky

m · cosα · yM − cos2α ·Kx
m · xM−

cosα ·Kx
m · sinα · yM

Fmagy /R0 = (−sin2α ·Kx
m · xM + sinα ·Ky

m · cosα · yM
+ cosα ·Kx

m · sinα · yM + cos2α ·Ky
m · xM )sinψ + (−

cosα ·Ky
m · sinα · xM − sinα ·Kx

m · cosα · xM − sin2α·
Kx
m · yM + cos2α ·Ky

m · yM )cosψ + (−sinα2 ·Kx
m + cosα2

·Ky
m)y + (−cosα ·Ky

m · sinα− sinα ·Kx
m · cosα)x+ cosα

·Ky
m · sinα · xM − cos2α ·Ky

m · yM + sinα ·Kx
m · cosα·

xM + sin2α ·Kx
m · yM

with:

S/R0
= M/Rp

=

 xM
yM


3.4. Final magnetic configuration of the platform

Figure 9 represents the final magnetic configuration of
the platform. This configuration has been chosen to sim-
plify the non linear expression of the magnetic force Fmag

(given by (12)) and to limitate the coupling between the
various directions of measurement. These simplifications
will be exploited in the linear modeling of the platform dy-
namic. This configuration is based on 2 pairs of fixed cubic
magnets p1 and p2 (5 × 5 mm) and 2 cylindrical moving
magnets M1 and M2 placed at two corners of the platform,
inside a float. Two empty floats are placed at the third and
fourth corners in order to ensure the stability of the square
platform along z axis. The center of gravity G is the center
of [M1M2]. The positions of Si and Mi are :

S1/R0
= M1/Rp

=

 δ
0

 S2/R0
= M2/Rp

=

−δ
0



D2

D1

D3

(Rp)

~xp

~yp

~n1

~n2
~n3

(R0) ~x0

~y0

ψ
P1

~d1

I1

P3
~d3 I3

P2

~d2

I2

sensor 3
l3

Fig. 10. Optimized placement and configuration of the confocal sen-
sors (sensors 1 and 2 are not shown)

3.5. Linear dynamic model of the optimized platform

The floating platform is considered as a rigid body of
mass m with a center of gravity G and having a moment
of inertia tensor J . The linear dynamic model is going to
be established from the differential equations given by the
platform dynamic behavior in the plan (xOy):

Fmagp1 + Fmagp2 + F v/R0
+ F ext/R0

= mG̈/R0
(13)

The perturbation forces are neglected. Fmagp1 is the mag-
netic force applied by p1 onM1, Fmagp1 is the magnetic force
applied by p2 on M2, F v is the viscous friction force be-
tween the float and water and F ext is the external force
applied on the platform. In case of small displacements:

F v = Kv · Ġ =

Kx
v 0

0 Ky
v

 · Ġ (14)

Equation (13) projected onto the x and the y axis gives: mẌ = −2Kx
m ·X −Kx

v · Ẋ + F extx

mŸ = −2Ky
m · Y −Ky

v · Ẏ + F exty

(15)

The dynamic behavior in case of circular movement is
given by:∑

M/G = JΩ̇

⇒ Fmagp1 ∧GM1 + Fmagp2 ∧GM2 + ζv + ζext = JΩ̇
(16)

with Ω the instantaneous rotation vector.

The projection of equation (16) onto the z axis, gives:

Jψψ̈ = 2((Kx
m−Ky

m)cosψ−Kx
m) · sinψ · δ2−Krot

v ψ̇+ ζext

For very small ψ sinψ ≈ ψ and cosψ ≈ 1, thus:

Jψψ̈ = −2Ky
mψδ

2 −Krot
v ψ̇ + ζext (17)
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3.6. Measurement of the platform position

The determination of X, Y and ψ is done with three
displacement sensors 1 mounted in an optimized configura-
tion shown in figure 10 (only the third sensor is completely
drawn). These three sensors measure respectively three dis-
tances l1, l2 and l3. To calculate X, Y and ψ each sensor
measurement is modelized:



Pi : origin of measurement

di : light beam direction

Ii : light beam target on the deflector Di

ni : normal to the deflector surface

(18)

In this configuration, di and ni are collinear when the
platform is on its equilibrium position. The distances l1, l2
and l3 measured by the sensors are given by:


l1 = ‖P1I1‖ = −X tanψ + Y + δ tanψ

l2 = ‖P2I2‖ = −X tanψ + Y − δ tanψ

l3 = ‖P3I3‖ = X + Y tanψ − δ tanψ

(19)

with:

P1 =

 δ
0


/R0

, P2 =

−δ
0


/R0

and P3 =

 0

δ


/R0

Inversion of the non linear equations (19) gives:

tanψ =
l1 − l2

2δ
(20)

X =
δ
(
2 δ l1 − 2 δ l2 + 4 δ l3 − l12 + l2

2
)

4 δ2 + l1
2 − 2 l1 l2 + l2

2 (21)

Y =
δ
(
l1

2 − 2 l1 l2 + 2 l1 l3 + l2
2 − 2 l2 l3 + 2 δ l1 + 2 δ l2

)
4 δ2 + l1

2 − 2 l1 l2 + l2
2

(22)

4. Models comparison

This section is devoted to some comparisons between the
linear model (15)(17) versus the physical model (13)(16)
taken as a reference. In the non linear model, magnetic
and electromagnetic forces are computed at each simula-
tion time step with a complete analytical calculation of
magnetic fields in M1 and M2. Influences of all magnets pi
are taken into account. The coupling between the differ-
ent measurement directions is also taken into account in
the mechanical equations (13)(16) which are numerically
solved with a representation using quaternions.

1 Using confocal chromatic principle and designed by STIL SA
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y

Figure 11 shows the step responses in R0 along x and
ψ for a step force F extx = 68 µN . The differences between
linear and non-linear models responses are very small in this
case. The response will be the same along y for a step force
applied to the platform along y. The very small non-linear
response ψ(t) (less than 10−8 rad) is different from zero
only because of numerical computational errors. Figure 12
shows the two models responses along y, for a force ramp
F exty . A small difference between the two models responses
in the transient response can be noted. Figure 13 shows the
step responses along x and ψ, for a big step force F extx equal
to 0.3mN . The large differences are due to the non linearity
of the magnetic force Fmag in case of large displacements
far from the stable equilibrium points Si. The differences
on ψ are still due to numerical computational errors.

5. Experimental setup

The experimental setup is schematized on the figure 14.
The corresponding picture is on the figure 15. It has two
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Fig. 13. Responses along x and ψ of linear (L) and physical (NL)

models for a step force F ext
x = 0.3 mN
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~Fmag
2 ~Fmag

1

S1

deflector D3

M2

p2

p1

p1

z

x

y

Ro

Fig. 14. Diagram of the experimental setup

pairs of fixed magnet p1 (tag 1 ) and p2 (tag 2 ). The two
magnets M1, M2 are stuck on the platform (tag 3 for M2)
which has four floats and three deflectors D1, D2, D3 (tag
4 for D3). A tank is filled of water and placed under the
platform (tag 5 ). The sensitive area is localized in the cen-
ter of the platform (tag 6 ). The three confocal sensors (tag
7 ) are disposed in front of each deflector and measure the
distances l1, l2, l3. Additional coils are fixed on the setup
(tag 8 ). They are used during the calibration process (see
section 6). When supplied with a current, these coils mod-
ify the local magnetic field around the floating magnets
M1 and M2. This produces an electromagnetic excitation
force that move the platform along x, y and around z.

The sensor is designed to measure three components of
both external force and torque which are applied on the
sensitive area: F extx and F exty in the plan (xOy) and torque
ζext around z. With this configuration, the corresponding
displacement X, Y , ψ is deducted from the measurements
given by the three confocal sensors with equations (20-22).
In steady state, the estimation F̂ ext of the applied force
and torque is calculated by :

1
2

3

4

5

6
7

7

7

8

1 cm

Fig. 15. Experimental setup of the force sensor.

F̂ ext = Km · d ⇔

∣∣∣∣∣∣∣∣∣
F̂ extx

F̂ exty

ζ̂ext

∣∣∣∣∣∣∣∣∣ = Km

∣∣∣∣∣∣∣∣∣
X

Y

ψ

∣∣∣∣∣∣∣∣∣ . (23)

Km is the platform magnetic stiffness matrix that has to
be identified. For small displacements of the platform, Km

is independent of d.
Km can be easily deduced from equations (15) and (17)

in steady state:

Km =


2Kx

m 0 0

0 2Ky
m 0

0 0 2δ2 ·Ky
m


6. State model identification and sensor calibration

Generally, calibration is a complex problem for micro
and nano force sensors because of the lack of standard
forces at this scale [13]: no international measurement in-
stitute supports a direct force realization linked to the In-
ternational System of Units (SI) below 1 N, even for static
force. Thus, calibration must be performed using indirect
static or dynamic approaches and care must be taken with
stiffness calculation. Several dynamic calibration methods
have been investigated for force sensors using levitating
mass. These methods are based on particular external force
generation like impact force [14], step force [15] and oscil-
lating force [16]. The chosen calibration approach is based
on a zero input force response (ZIR) and only requires a
pulse current in the magnetic coils to briefly change the
magnetic field and to set the platform into free damped
oscillations with unknown initial conditions. Because the
platform linear model is decoupled, it is possible to gen-
erate successive excitations along the three measurement
directions x, y and ψ and to measure the corresponding
platform ZIR.

The platform model is identified with the experimental
prototype shown in the figure 15 (m=0.004 kg). The lin-
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Fig. 16. Measured and identified zero input response of the platform

along x

Fig. 17. Application of a F ext
y force with a microcapillary effector.

ear model of the platform requires to identify the stiffness
and the damping of the mass. This identification process
is performed using Matlab identification Toolbox (state-
space model identification from ZIR with unknown initial
conditions).

Figure 16 shows the matching (97%) between the non
linear measured zero input response along x and the iden-
tified linear one. Identifications along y and ψ give similar
results. The obtained values are :

Kx
m = 11.82× 10−3 N/m, Kx

v = Ky
v = 1.83× 10−3 N.s/m

Ky
m = 9.46× 10−3 N/m, Krot

v = 4.43× 10−7 N.s/rad

Thus, the identified platform magnetic stiffness matrix is:

Km =


0.0236 0 0

0 0.0189 0

0 0 0.000017
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Fig. 18. Sensor response to a real F ext
y force.
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Fig. 19. Sensor response to a real F ext
y force.

7. Experimental force and torque measurement

In this section, the passive measurements principle (23)
is illustrated in quasi steady-state. In this case, the dy-
namic of the platform is neglected. On the experimental
setup a micro-positioning stage (PI M122) has been added
in order to move a glass micro-pipet along the y direction.
This effector is used to apply a force F exty on the plat-
form. The tip (20 µm in diameter) of the pipet moves to a
contact point localized near the center of the platform as
shown in figure 17. The contact area on the platform is a
stuck glass slide (0.3 mm of thickness) that is parallel to
the xOz plane. The contact point has been chosen as near
as possible of the center of gravity G of the platform. The
figure 18 shows the response of the sensor to this solicita-
tion. The effector initially placed a few micrometers from
the slide is moved against it at a speed of 5 µm/s until
the measured force F exty reach the value of -2.5 µN. After
15 seconds the effector is moved back until the contact
between the effector and the slide is broken (no pull-off
force is measured in this experiment). During the test the
component F extx remains at zero. The measured torque is
smaller than 2−10 N.m (see figure 19). On the torque curve
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the shape of F exty is visible. This phenomenon is due to the
fact that the contact point is not strictly superposed with
G, thus a torque is measured.

After the unloading (contact loss), the displacement of
the platform always comes back to zero. If a static hystere-
sis on the displacement was present, this couldn’t be the
case. The influence of the meniscus evolution between the
water and the floats has not be identified. Meniscus evolu-
tion should generate transient forces and necessarily tran-
sient rotation and translation of the platform. This ques-
tion is open. The resolution in force or torque estimation
depends on the measurement noise of the confocal sensors
but also (and mostly) on the environmental seismic and
acoustic vibrations that generate unwanted displacements
of the platform (see figure 1). The environment where the
experiments are realized is not specially favorable to reach
a low level of noise: the sensor is located on a first floor that
is poorly decoupled from the building vibrations. There is
also heavy building work (building extension under con-
struction). Measurements done during the night are more
representative of the resolution that can be reached. In
these conditions the typical standard deviation obtained is
σF = 3 × 10−9 N for the force and σψ = 2.7× 10−12 N.m
for the torque.

8. Potential applications

This sensor can be used to characterize the mechanical
stiffness of micro-objects like for instance AFM cantilevers.
Like in the previous section, a vertical edge need to be
stuck on the platform near the centre of gravity G. The
tip of the cantilever is moved along x axis in R0 with a
micro-positionning stage (see figure 20) until the contact is
established between the tip and the edge. The tip is then
pushed against the edge in the x direction and thus apply an
external force with a component F extx in R0. If the contact
point is different fromG, a torque ζext around z will be also
measured. These components are measured by the force
sensor. In the same time, the bending δx of the tip along
axis x is measured with a specific displacement sensor L
placed on the positionning stage. The stiffness Kx

object of
the cantilever is then:

Kx
object =

F̂ extx

δx
(24)

Another potential application that needs to be investi-
gated is to use this sensor as a a nanotribometer in order to
characterize the mechanical friction properties of a multi-
asperity contact between two objects. Like previously, the
first object with a planar vertical edge (normal to x axis
in R0) is stuck on the platform near G. The second object
(here spherical) is placed on a micro-positionning stage and
moving along x axis in R0 until the contact is established
between the two objects (see figure 21). The second object
is then pushed against the edge in the x direction and thus

L1L2

L3

x

Ro

y

L

Translation

Edge

Platform

Cantilever

(a)

L1L2

L3

x

Ro

y

L

Measurement

~F ext
x

(b)

Fig. 20. Application of the sensor to stiffness caracterization.

apply to it a force with component F extx that is measured
by the force sensor. The contact point must be adjusted
to have ζext ∼= 0. The displacement in the x direction is
stopped in order to set the normal force F extx to a given
reference value (loading force that should not change). The
micro-positionning stage is then moved forward and back-
ward along the y direction in R0 and the tangential friction
force F exty between the two objects is measured by the force
sensor. Normally the measured torque ζ̂ext around z must
remain close to zero to have a valid friction force measure-
ment. Obviously the last condition will be difficult to hold
with a passive force sensor. An active version of the sensor
that enable to control with coils the position and orienta-
tion of the platform while measuring the external force is
currently under development and should be more appro-
priate for this.

9. Conclusion

A dynamic modeling and identification of a micro and
nano force sensor designed to measure planar force and ver-
tical torque has been presented. This sensor is based on
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Fig. 21. Application of the sensor to tribology.

a seismic mass sensitive to external forces. This mass is a
floating platform naturally stable in the space thanks to
passive magnetic springs and upthrust buoyancy. The me-
chanical stiffness of the developed experimental prototype
is about 0.0236 N.m−1 along x and 0.0189 N.m−1 along y.
Two models describing the platform dynamic have been de-
veloped. First, a physical model used as a reference model
and secondly, a simplified linear model whose performances
have been compared to the non-linear model. The linear
model identification shows that the dynamic behavior of
the prototype sensor is closed to the behavior expected. The
absence of dry friction in the measurement directions asso-
ciated with a low stiffness makes the sensor highly sensitive
(resolution equal to a dozen of nanonewton). In the other
spatial directions or orientations, micro forces or torques
measurement is not possible because of the high stiffness
caused by the upthrust buoyancy. Nevertheless, the model
developed in this article doesn’t take into account the effect
of reflected delayed liquid wave generated by the platform
displacements. The future work will consist in improving
the capabilities of the sensor by choosing a deconvolution
law which will take into account the dynamic of the plat-

form, in order to estimate correctly slowly varying force
and torque.
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