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Abstract

Polynomials are mathematical algebraic structures that play a great role in

science and engineering. Finding the roots of high degree polynomials is com-

putationally demanding. In this paper, we present the results of a parallel

implementation of the Ehrlich-Aberth algorithm for the root finding problem

for high degree polynomials on GPUs using CUDA and on multi-core processors

using OpenMP. The main result we achieved is to solve high degree polynomi-

als (up to 1,000,000) efficiently. We also compare the Ehrlich-Aberth method

and the Durand-Kerner one on both full and sparse polynomials. Accordingly,

our second result is that the first method is much faster and more efficient.

Last, but not least, an original proof of the convergence of the asynchronous

implementation for the EA method is produced.

Keywords: Polynomial root finding, Iterative methods, Ehrlich-Aberth,

Durand-Kerner, GPU

1. The problem of finding the roots of a polynomial

Polynomials are mathematical algebraic structures used in science and engi-

neering to capture physical phenomena and to express any outcome in the form

of a function of some unknown variables. Formally speaking, a polynomial p(x)
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of degree n having n coefficients in the complex plane C is :

p(x) =

n∑
i=0

aix
i, a0 6= 0. (1)

The root finding problem consists in finding all the n values of the variable

x for which p(x) is nullified. Such values are called zeros of p. If zeros are

αi, i=1,...,n, the p(x) can be written as :

p(x) = an

n∏
i=1

(x− αi), an 6= 0. (2)

The problem of finding a root is equivalent to that of solving a fixed-point

problem. To observe this, consider the fixed-point problem of finding the n-5

dimensional vector X such that :

X = g(X)

where g : Cn −→ Cn. We can easily rewrite this fixed-point problem as a root-

finding problem by setting f(X) = X − g(X) and likewise we can recast the

root-finding problem into a fixed-point problem by setting :10

g(X) = f(X)−X.

It is often impossible to solve such nonlinear equation root-finding problems

analytically. When this occurs, we turn to numerical methods to approximate

the solution. Generally speaking, algorithms for solving problems can be divided

into two main groups: direct methods and iterative methods.15

Direct methods only exist for n ≤ 4, solved in closed form by G. Cardano [1]

in the mid-16th century. However, N. H. Abel [2] in the early 19th century

proved that polynomials of degree five or more could not, in general, be solved

by direct methods. Since then, mathematicians have focused on numerical (it-

erative) methods such as the famous Newton [3], and the Graeffe one [4].20

Later on, with the advent of electronic computers, other methods have been

developed such as Jenkins-Traub [5], Larkin [6], Muller [7], and several others

2



for the simultaneous approximation of all the roots, starting with the Durand-

Kerner (DK) method [8, 9]:

DK : zk+1
i = zki −

p(zki )∏
i6=j(z

k
i − zkj )

, i = 1, ..., n, (3)

where zki is the ith root of the polynomial p at the iteration k.

This formula was mentioned for the first time by Weiestrass [10] as part of

the fundamental theorem of Algebra and was rediscovered by Ilieff [11], Do-

cev [12], Durand [8], and Kerner [9]. Another method, discovered by Borsch-

Supan [13], and also described and brought in the following form by Ehrlich [14]

and Aberth [15], uses a different iteration formula given as:

EA : zk+1
i = zki −

1
p′(zki )

p(zki )
−
∑
i 6=j

1
(zki −zkj )

, i = 1, ..., n, (4)

where p′(z) is the polynomial derivative of p evaluated in the point z.

Aberth, Ehrlich, and Farmer-Loizou [16] have proven that the Ehrlich-Aberth

method (EA) has a cubic order of convergence for simple roots whereas the

Durand-Kerner has a quadratic order of convergence. Moreover, the conver-25

gence time of iterative methods drastically increases like the degrees of high

polynomials, while it is expected that the parallelization of these algorithms

will reduce the execution times.

Many authors have dealt with the parallelization of simultaneous methods,

i.e., that find all the zeros simultaneously. Freeman [17] implemented and com-30

pared DK, EA, and another method of the fourth order proposed by Farmer

and Loizou [16], on an 8-processor linear chain, for polynomials of degree 8.

The third method often diverges, but the first two methods have a speed-up

factor equal to 5.5. Later, Freeman and Bane [18] considered asynchronous al-

gorithms, in which each processor continues to update its approximations even35

though the latest values of other roots have not yet been received from the

other processors. In contrast, synchronous algorithms wait for the computation

of all roots at a given iterations before making a new one. Couturier et al. [19]

proposed two methods of parallelization for a shared memory architecture and

3



for a distributed memory one. They were able to compute the roots of sparse40

polynomials of degree 10,000 in 430 seconds with only 8 personal computers

and 2 communications per iteration. Compared to sequential implementations

where it takes up to 3,300 seconds to obtain the same results, the authors’ work

experiment shows an interesting speedup.

To our knowledge, no other work has been published regarding the paral-45

lelization of this method or other ones before the emergence of the Compute

Unified Device Architecture (CUDA) [20], a parallel computing platform and

a programming model invented by NVIDIA. The computing power of GPUs

(Graphics Processing Units) has exceeded that of CPUs. However, CUDA

adopts a totally new computing architecture to use the hardware resources pro-50

vided by a GPU in order to offer a stronger computing ability to the massive

data computing. First, Ghidouche et al. [21] proposed an implementation of

the Durand-Kerner method for sparse polynomials on GPU. Their main result

shows that a parallel CUDA implementation is much faster than the sequential

implementation on a single CPU.55

In this paper, we report on our ongoing research aiming at proposing, im-

plementing, and improving the EA iterative function and the implementation

of the Ehrlich-Aberth method to solve high degree polynomials accurately and

rapidly on GPUs. The main contributions of this research work are:

• An adaptation of the exponential logarithm to improve the classical Ehrlich-60

Aberth iterative method, in order to be able to solve sparse and full poly-

nomials of high degree.

• A parallel implementation of Ehrlich-Aberth method on GPU for sparse

and full polynomials of high degree up to 1, 000, 000. This parallel imple-

mentation finds roots quite rapidly.65

• An original proof of the convergence of the asynchronous implementation

for the EA method.

The article is organized as follows. Initially, we recall the Ehrlich-Aberth
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method in Section 2. Improvements for the Ehrlich-Aberth method are proposed

in Section 3. Our convergence proof of the EA asynchronous method is presented70

in Section 4. Research works related to the implementation of simultaneous

methods using a parallel approach are presented in Section 5. In Section 6,

we propose a parallel implementation of the Ehrlich-Aberth method on GPU

and we discuss it. Section 7 presents and investigates our implementation and

experimental study results. Section 8 presents a data analysis collected in the75

experiments. Finally, Section 9 concludes this article and gives some hints for

future research directions in this topic.

2. The Ehrlich-Aberth method

It is a cubically convergent iterative method to find zeros of polynomials as

proposed by O. Aberth [15] whose iterative function is:

EA2 : zk+1
i = zki −

p(zki )

p′(zki )

1− p(zki )

p′(zki )

∑j=n
j=1,j 6=i

1
(zki −zkj )

, i = 1, ...., n (5)

It can be noticed that this equation is equivalent to Eq. 4, but we prefer the

latter one, because we can use it to improve the Ehrlich-Aberth method and80

find the roots of high degree polynomials. More details are given in Section 3.

As for any iterative method, a convergence criterion must be checked after

each iteration to decide whether to perform another step or to terminate the

computations. When the termination happens, it means that the roots are

sufficiently stable, i.e., very close to the actual zeros. In the following, we85

consider that the method converges sufficiently when:

∀i ∈ [1, n];

∣∣∣∣∣zki − zk−1i

zki

∣∣∣∣∣ < ξ (6)

where |.| stands for the absolute value and ξ is the error threshold.

The definition of a polynomial p(z) is done by setting each of the n complex

coefficients ai. According to the sparse or full setting, some or all of the coef-

ficients are set deterministically and not randomly so as to have reproducible90

and comparable results. More details are given in the Experiments section.
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Finally, as for any iterative method, we need to choose n initial guess points

z0i , i = 1, ..., n. The initial guess is very important since the number of steps

needed by the iterative method to reach a given approximation strongly depends

on it. In [15] the Ehrlich-Aberth iteration is started by selecting n equi-spaced95

points on a circle of center 0 and radius σ, where σ is an upper bound to the

moduli of the zeros. Later, Bini et al. [22] improved this choice by selecting

complex numbers along different circles which relies on the result of [23]:

σ =
u+ v

2
;u =

∑n
i=1 ui

n.maxni=1ui
; v =

∑n−1
i=0 vi

n.minn−1i=0 vi
; (7)

where:

ui = 2.|ai|
1
i ; vi =

|anai |
1

n−i

2
. (8)

We build on this latter work and adopt it for the starting zeros for our imple-

mentation.100

3. Improving the Ehrlich-Aberth method for high degree polynomials

with the exp-log formulation

With high degree polynomials, the Ehrlich-Aberth method implementation

suffers from overflow problems. This situation occurs, for instance, in the case

where a polynomial, having positive coefficients and a large degree, is computed105

at a point ξ where |ξ| > 1 (|ξ| stands for the complex modulus of ξ). Indeed,

the limited number in the mantissa of floating point representations makes the

computation of p(z) wrong when z is large. For example (1050) + 1 + (−1050)

will give the wrong result of 0 instead of 1. Consequently, one cannot compute

the roots for high degree polynomials. This problem was discussed earlier in [24]110

for the Durand-Kerner method. The authors proposed to use the logarithm and

the exponential of a complex in order to compute the power at a high exponent.

We noticed also that floats are exploited rapidly, when the arithmetic operations

are performed by a processor which has the following characteristics:

• Float: real in the [−3.40282e+38,+3.40282e+38] interval. The mantissa115

contains 6 decimal numbers.
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• Double: real in the [−1.79769e + 308,+1.79769e + 308] interval. The

mantissa contains 15 decimal numbers.

• Long Double: real in the [−1.18973e+ 4932,+1.18973e+ 4932] interval.

The mantissa contains 33 decimal numbers.120

Using the logarithm (Eq. 9) and the exponential (Eq. 10) operators, we

can replace any multiplications and divisions with additions and subtractions.

Consequently, computations manipulate lower absolute values and the roots for

large polynomial degrees can be looked for successfully [24].

∀(x, y) ∈ R∗2; ln(x+ i.y) = ln(x2 + y2)2 + i. arcsin(y
√
x2 + y2)]−π,π[ (9)

∀(x, y) ∈ R∗2; exp(x+ i.y) = exp(x). exp(i.y) (10)

= exp(x). cos(y) + i. exp(x). sin(y) (11)

Applying this solution to the iteration function Eq. 5 of Ehrlich-Aberth125

method, we obtain the following iteration function with exponential and loga-

rithm:

EA.EL : zk+1
i = zki − exp

(
ln
(
p(zki )

)
− ln

(
p′(zki )

)
− ln

(
1−Q(zki )

))
, (12)

where:

Q(zki ) = exp

ln(p(zki ))− ln(p′(zki )) + ln

 n∑
i 6=j

1

zki − zkj

 i = 1, ..., n, (13)

This solution is applied when the root excepts the circle unit, represented

by the radius R evaluated in C language as :

R = exp(log(DBL MAX)/(2 ∗ n)); (14)

where DBL_MAX stands for the maximum representable double value.

7



4. Asynchronous convergence proof for the Ehrlich-Aberth method130

Let us introduce the fixed point application T associated to the Ehrlich-

Aberth method, as follows:

∀i ∈ {1, . . . , n}, Ti(zk) = zki −
p(zki )

p′(zki )

1− p(zki )

p′(zki )

∑j=n
j=1,j 6=i

1
(zki −zkj )

.

Let us denote by ||z|| = max1≤i≤n |zi| on Cn, and z∗ the roots vector of the

polynomial p. Let us first establish the following lemma [24].

Lemma 1 In case of single roots, the fixed point application T associated to the

Ehrlich-Aberth method is a contraction for ||.||, at least in a close neighborhood

of z∗.135

Proof In case of single roots, we can establish at least a quadratic convergence.

Indeed, let us consider z ∈ Cn, then we have:

Ti(z)− Ti(z∗) = Ti(z)− z∗i

= zi − z∗i −

p(zki )

p′(zki )

1− p(zki )

p′(zki )

∑j=n
j=1,j 6=i

1

(zki − zkj )

= zi − z∗i −
1

p′(zki )

p(zki )
−
∑j=n
j=1,j 6=i

1

(zki − zkj )

.

We now define

f(x) =
p(x)∏n

j=0; j 6=k(x− zj)
,

which is such that:

p′(x)

p(x)
−
∑n
j=0; j 6=k

1

x− zj
=

d

dx

(
ln |p(x)| −

∑n
j=0; j 6=k ln |x− zj |

)
=

d

dx
ln |f(x)|

=
f ′(x)

f(x)
.

8



Then

Ti(z)− Ti(z∗) = zi − z∗i −
f(zi)

f ′(zi)

=
f ′(zi)(zi − z∗i )− f(zi)

f ′(zi)

=
f ′(zi)(zi − z∗i )− (f(zi)− f(z∗i ))

f ′(zi)

By using the second order Taylor polynomial for f , we have

|f ′(zi)(zi − z∗i )− (f(zi)− f(z∗i )) | ≤ γi|zi − z∗i |2,

where γi = maxz∈Uz∗
i

|f ′′(z)|
2

, in a given neighborhood Uz∗i of z∗. Let γ be the

minimum of these γi, 1 ≤ i ≤ n. Additionally, f being a polynomial, this is the

case too for f ′, and as we can consider that p has at least one root, then f ′ has

a finite number of roots. As a consequence, we can find an open ball centered

on z∗ of radius ri and a constant ρi > 0 such that, for zi in Bi(z∗i , ri) ∩Uz∗i , we

have ρi ≤ |f ′(zi)|. On this ball, we thus have:

|Ti(z)− z∗i | ≤
γ

ρi
|zi − z∗i |2,

and so, for all z in B(z∗, r)∩Π1≤i≤nUz∗i , r = min1≤i≤n ri, and for ρ = max1≤i≤n ρi,

we have:

||T (z)− z∗|| ≤ γ

ρ
||z − z∗||2,

and the fixed point application will be a contraction mapping if

γ

ρ
||z − z∗|| ≤ 1⇔ ||z − z∗|| ≤ ρ

γ
.

As a conclusion, T is a contraction mapping in the open ball B(z∗,
ρ

γ
) intersected

by the neighborhood Π1≤i≤nUz∗i of z∗.

We can now deduce that:

Theorem 1 All asynchronous algorithms associated to the fixed point applica-

tion T defined previously, and starting at a sufficiently low distance to z∗, will140

converge to the roots of the polynomial p in the single roots case.

Proof Due to Lemma 1, the conditions for asynchronous convergence of fun-

damental theorem presented page 329 in [25] are satisfied.

9



5. Implementation of simultaneous methods in a parallel computer

The main problem of simultaneous methods is that the time needed for145

convergence is increased when the degree of the polynomial is increased. The

parallelization of these algorithms is expected to improve the convergence time.

Authors usually adopt one of the two following approaches to parallelize root

finding algorithms. The first approach aims at reducing the total number of

iterations as in Miranker [26, 27], Schedler [28], and Winograd [29]. The second150

approach aims at reducing the computation time per iteration, as reported, e.g.,

in [30, 31, 32, 33].

There are many schemes for the simultaneous approximation of all roots of a

given polynomial. Several works on different methods and issues of root finding

have been reported in [34, 35, 36, 37, 38]. However, the Durand-Kerner and155

the Ehrlich-Aberth methods are the most practical choices among them [39].

These two methods have been extensively studied for parallelization due to

their intrinsic parallelism, i.e., the computations involved in both methods have

some inherent parallelism that can be suitably exploited by SIMD machines.

Moreover, they have a fast rate of convergence (quadratic for the Durand-Kerner160

and cubic for the Ehrlich-Aberth). Various parallel algorithms reported for

these methods can be found in [40, 17, 18, 41, 32]. Freeman and Bane [18]

presented two parallel algorithms on a local memory MIMD computer with

the compute-to communication time ratio O(n). However, their algorithms

require each processor to communicate its current approximation to all other165

processors at the end of each iteration (synchronous). Therefore they cause

a high degree of memory conflict. Recently the author in [31] proposed two

versions of parallel algorithm for the Durand-Kerner method, and the Ehrlich-

Aberth method on a model of Optoelectronic Transpose Interconnection System

(OTIS). The algorithms are mapped on an OTIS-2D torus using N processors.170

This solution needs N processors to compute N roots, which is not practical to

find roots of high degree polynomials.

Finding polynomial roots rapidly and accurately is the main objective of
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our work. With the advent of CUDA (Compute Unified Device Architecture),

finding the roots of polynomials receives a new attention because of the new175

possibilities to solve higher degree polynomials in less time. In [21] we already

proposed the first implementation of a root finding method on GPUs, that of

the Durand-Kerner method. Their main result shows that a parallel CUDA

implementation is 10 times faster than the sequential one, on a single CPU and

for high degree polynomials of 48,000.180

6. Implementation of the Ehrlich-Aberth method on GPU

In the following, we describe the parallel implementation on GPU of the

Ehrlich-Aberth method, to find the roots of high degree polynomials. But first,

we need to present the hardware architecture of GPUs and their programming

model. Then, we show the main features of our GPU implementation.185

6.1. Background on the GPU architecture

A GPU can be viewed as an accelerator for the data-parallel and inten-

sive arithmetic computations. It draws its computing performances from the

massive parallelism of its hardware and software architecture. Indeed, a GPU

is composed of hundreds of Streaming Processors (SPs) organized in several190

blocks called Streaming Multiprocessors (SMs). It also has a memory hierarchy.

A private read-write local memory per SP, fast shared memory and read-only

constant and texture caches per SM, and a read-write global memory shared

by all its SPs [20]. On a CPU equipped with a GPU, all the data-parallel and

intensive functions of an application running on the CPU are off-loaded onto the195

GPU in order to accelerate their computations. A similar data-parallel func-

tion is executed on a GPU as a kernel by thousands or even millions of parallel

threads, grouped together in a grid of thread blocks. Therefore, each SM of the

GPU executes one or more thread blocks in a SIMD fashion (Single Instruction,

Multiple Data) and in turn each SP of a GPU SM runs one or more threads200

within a block in SIMT fashion (Single Instruction, Multiple threads). With
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the SIMT model, at any given clock cycle, the parallel threads execute the same

instruction of a kernel, but each of them operates on different data. GPUs only

work on data filled in their global memories and the final results of their kernel

executions must be communicated to their CPUs.205

6.2. Background on the CUDA Programming Model

CUDA, an acronym for Compute Unified Device Architecture, is a parallel

computing architecture developed by NVIDIA [20] for GPUs. The unit of ex-

ecution in CUDA is called a thread. Each thread executes the same kernel by

running on the streaming processors in parallel. In CUDA, a group of threads210

that are executed together is called a thread block, and the computational grid

consists of a grid of thread blocks. Each GPU multiprocessor executes one or

more thread blocks in SIMD fashion and in turn each core of the multiprocessor

executes one or more threads within a block. Additionally, threads in the same

thread block may use shared memory and coordinate their execution through215

synchronization points. In contrast, within a grid of thread blocks, there is no

synchronization at all between blocks. The GPU only works on data filled in the

global memory and the final results of the kernel executions must be transferred

out of the GPU. In the GPU, the global memory has lower bandwidth than the

shared memory associated to each multiprocessor. Thus, as a rule of thumb,220

with CUDA programming, it was long thought necessary to design carefully the

arrangement of the thread blocks in order to ensure a low latency and a proper

use of the shared memory, but this has been recently downplayed. As for the

global memory accesses, it should be minimized.

6.3. Parallel implementation with CUDA225

In Algorithm 1 we show the key points for finding roots with the Ehrlich-

Aberth method on GPU. P , P
′
, and Z stand for the polynomial to solve, the

derivative of P , and the root’s solution vector, respectively.

After the initialization step, all data of the root finding problem must be copied230
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Algorithm 1: CUDA Algorithm to find roots with the Ehrlich-Aberth

method

Input: Z0 (Initial roots vector), ε (Error tolerance threshold), P

(Polynomial to solve), P
′

(Derivative of P), n (Polynomial

degree), Error (Maximum value of stop condition)

Output: Z (Solution roots vector), ZPrev (Previous solution roots

vector)

1 Initialization of the parameters of roots finding problem (P , P
′
, Z0);

2 Allocate and copy initial data to the GPU global memory;

3 while Error > ε do

4 ZPrev = save(Z);

5 Z = Update(P, P
′
, Z);

6 ∆Z = Test Converge(Z,ZPrev);

7 Error = Max(∆Z);

8 end

9 Copy results from GPU memory to CPU memory;

13



from the CPU memory to the GPU global memory, because a GPU can only

access and work on data present in its memories. Next, the algorithm uses an

iterative method for finding roots, defined in the function Update() (in Algo-

rithm 1, line 5). The iterative method used in this algorithm is the Ehrlich-

Aberth method corresponding to Eq. 4. Before each iteration, the previous vec-235

tor solution ZPrev is saved using the Save() function (line 4. in Algorithm 1)

because it is needed to measure the convergence of roots after each iteration

(line 7). The iterative function terminates its computations when the error tol-

erance threshold ε has been reached, and/or all the roots have converged, which

is checked in the function Test Converge() in (Algorithm 1, line 6). Finally,240

the solution of the root finding problem is copied back from the GPU global

memory to the CPU memory. All the data-parallel arithmetic operations inside

the main loop (while(...) do) are executed as kernels by the GPU.

The Ehrlich-Aberth is based on arithmetic vector operations that are easy to

implement on parallel computers and, thus, on GPU. Indeed, the GPU executes245

the vector operations as kernels and the CPU executes the sequential operations,

launches the kernels, and supplies the GPU with data.

In order to implement the iterative Ehrlich-Aberth method in CUDA, it is

possible to use the Jacobi scheme or the Gauss-Seidel one. With the Jacobi

iteration, at iteration k + 1 we need all the previous values zki to compute the250

new values zk+1
i , that is :

EAJ : zk+1
i = zki −

p(zki )

p′(zki )

1− p(zki )

p′(zki )

∑j=n
j=1,j 6=i

1
(zki −zkj )

, i = 1, ...., n. (15)

With the Gauss-Seidel iteration, we have:

EAGS : zk+1
i = zki −

p(zki )

p′(zki )

1− p(zki )

p′(zki )
(
∑i−1
j=1

1

zki −z
k+1
j

+
∑j=n
j=i+1

1
(zki −zkj )

)
, i = 1, ...., n

(16)

Using Eq. 16 to update the vector solution Z, we expect the Gauss-Seidel

iteration to converge faster because, just as any Jacobi algorithm (for solving
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linear systems of equations), it uses the freshest computed roots zk+1
i . Following255

the proof presented in 4, we specify that we have implemented the asynchronous

version of Ehrlich-Aberth method using Eq. 16.

Algorithm 2 shows the key points of the ”Update” iterative function of Al-

gorithm 1 line 4, implemented as a kernel.

Algorithm 2: Update kernel for the iterative function

if (‖Z‖ <= R) then

kernel Classical update(Z,P, P
′
);

else

kernel update ExpoLog(Z,P, P
′
);

260

Experimentally speaking, overflows are frequent if we try to solve a high

degree polynomial with the classical Ehrlich-Aberth method as we explained

before. To avoid this problem, we check if the modulus of the roots is greater

than the circle (R), in this case the kernel_update_ExpoLog() is called and

the EA.EL function Eq. 12 is used (with Eq. 9 and Eq. 10), in order to take into265

account the limited capacity of floats represented in processors. If the modulus

of the root is not greater then the classical form of the EA function (Eq. 5)

is executed. We should notice here that we used the cuda cuDoubleComplex

native type already available in CUDA.

The last kernel Test Converge() in Algorithm 1, line 6, checks the conver-270

gence of the roots after each update of zk, according to formula Eq. 6. Here

again, we used two functions of the CUBLAS Library (CUDA Basic Linear Al-

gebra Subroutines): cublasGetVector to transfer the Error vector from host

to device and cublasIdamax() to compute the maximum of the Error vector

in Algorithm 1 line 7.275

Listing 1 shows a simplified version of the second kernel code (some parame-

ters in the kernels have been simplified in order to increase the readability). As

can be seen, this kernel calls other multiple kernels. All the kernels for complex

numbers and kernels for the evaluation of a polynomial are not detailed.
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Listing 1: Kernels to update the roots

// c l a s s i c a l v e r s i on o f the Ehr l ich−Aberth method280

d e v i c e

cuDoubleComplex Class i ca l update EA ( i n t i , cuDoubleComplex ∗Z , polynomial P,

polynomial Pu){

cuDoubleComplex r e s u l t ;285

cuDoubleComplex C, F , Fp ;

i n t j ;

cuDoubleComplex sum ;

cuDoubleComplex un ;

290

// eva luate the polynomial

F = Fonction (Z [ i ] ,P ) ;

// eva luate the d e r i v a t i v e o f the polynomial .

Fp=FonctionD (Z [ i ] , Pu ) ;

295

sum . x=0;sum . y=0;

un . x=1;un . y=0;

C=cuCdiv (F , Fp ) ; //P( z )/P’ ( z )

// f o r a l l roots , compute the sum300

// f o r the Ehrl ich−Aberth i t e r a t i o n

f o r ( j=0 ; j<P. PolyDegre ; j++ )

{

i f ( i != j )

{305

sum=cuCadd (sum , cuCdiv (un , cuCsub (Z [ i ] , Z [ j ] ) ) ) ;

}

}

sum=cuCdiv (C, cuCsub (un , cuCmul (C, sum ) ) ) ; //C/(1−Csum)

r e s u l t=cuCsub (Z [ i ] , sum ) ;310

r e turn ( r e s u l t ) ;

}

//Exp−Log ve r s i o n o f the Ehr l ich−Aberth method315

d e v i c e
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cuDoubleComplex ExpoLog update EA ( i n t i , cuDoubleComplex ∗Z , polynomial P,

polynomial Pu) {

cuDoubleComplex r e s u l t ;320

cuDoubleComplex F, Fp ;

cuDoubleComplex one , denominator , sum ;

i n t j ;

one . x=1;one . y=0;

sum . x=0;325

sum . y=0;

// eva luate the polynomial with

// the Exp−Log ve r s i on

Fp = LogFonctionD (Z [ i ] ,P ) ;330

// eva luate the d e r i v a t i v e o f the polynomial

// with the Exp−Log ve r s i on

F = LogFonction (Z [ i ] , Pu ) ;

cuDoubleComplex FdivFp=cuCsub (F , Fp ) ;335

// f o r a l l roots , compute the sum

// f o r the Ehrl ich−Aberth i t e r a t i o n

f o r ( j=0 ; j<P. degrePolynome ; j++ )

{340

i f ( i != j )

{

sum=cuCadd (sum , cuCdiv (un , cuCsub (Z [ i ] , Z [ j ] ) ) ) ;

}

}345

// then terminate the computation

// o f the Ehr l ich−Aberth method

denominator=cuCln ( cuCsub (un , cuCexp ( cuCadd ( FdivFp , cuCln (sum ) ) ) ) ) ;

r e s u l t=cuCsub ( FdivFp , denominator ) ;350

r e s u l t=cuCsub (Z [ i ] , cuCexp ( r e s ) ) ;

r e turn r e s u l t ;
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}355

// k e r n e l s to update a root i

g l o b a l

void update EA ( i n t s i z e , cuDoubleComplex ∗Z , polynomial P, polynomial Pu ,

i n t ∗ f i n i s h e d , double MaxRadius ) {360

i n t i= blockIdx . x∗blockDim . x+ threadIdx . x ;

i f ( i<s i z e ) {

// i f the root needs to be updated

i f ( ! f i n i s h e d [ i ] ) {

// accord ing to the module o f the root365

i f ( cuCmodule (Z [ i ])<=maxRadius )

// s e l e c t s the c l a s s i c l v e r s i o n

Z [ i ] = Class i ca l update EA ( i , Z ,P, Pu ) ;

e l s e

// o f the Exp−Log ve r s i o n370

Z [ i ] = ExpoLog update EA ( i , Z ,P, Pu ) ;

}

}

}

/∗ Function executed en CPU ∗/375

void EA Method( Polynomial P, Polynomial Pu , cuDoubleComplex ∗Z , cuDoubleComplex ∗ZPrev ,

double ∗ f i n i ch ed , double MaxRadius )

{ i n t Threads =256; // s i z e o f Threads b locks

i n t Blocks = (P. degrePolynome + Threads − 1) / Threads ; //number o f thread b locks

//MaxRadius , Polynomial c o e f f i c i e n t s o f P and Pu , f i l l e d in the constant memory380

// vec to r Elements o f Z are f i l l e d in the g l o b a l memory

do {

Save<<<Blocks , Threads>>>(P. degrePolynome , Z , ZPrev ) ;

Update EA<<<Blocks , Threads>>>(P. degrePolynome , Z ,P, Pu , f i n i s h e d , MaxRadius ) ;

Test Convergence EA<<<Blocks , Threads>>>(P. degrePolynome , Z , ZPrev , d Error ) ;385

cublasIdamax ( handle , P . degrePolynome , d Error , 1 , &index ) ;

cublasGetVector (1 , s i z e o f ( double ) , &d Error [ index ] , 1 , &ArretMax , 1 ) ;

} whi le ( ArretMax >= EPSILON ) ;390

}

Each of the Save, Update, and Test Converge kernels is executed by a large
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number of GPU threads such that each thread is in charge of the computation of

one component of the iterate vector Z. To maximize the parallel execution be-

tween the GPU streaming processors, we set the size of a thread block, Threads,

to 256 threads and the number of thread blocks, Blocks, is computed according

to Eq.17 so as to have each GPU thread in charge of one vector element.

Blocks =
N + Threads− 1

Threads
, (17)

It should be noticed that, as blocks of threads are scheduled automatically

by the GPU, we have absolutely no control on the order of the blocks. Conse-

quently, our algorithm is executed with the asynchronous iteration model, where

blocks of roots are updated in a non deterministic way. Another consequence of395

that, is that several executions of our algorithm with the same polynomial do

not necessarily give the same results (but roots have the same accuracy) and the

same number of iterations (even if the variation is not very significant). From

our point of view, our code is quite optimized, it is normal that some kernels

produce branch divergence that cannot be suppressed. For example, to compute400

a root, all the other roots are used. It is clear that the computation of root j is

different from the computation of root j+ 1, because in Eq. 5, there is a sum in

which the current root is excluded. This is a cause of branch divergence. The

other one is due to the fact that a root can use different routines to be updated:

the normal mode or the log-exp mode for the EA method. Finally it should be405

noticed that this code is quite complex and is written in about 2,000 lines of

code.

7. Experimental study

We study two categories of polynomials: sparse polynomials and full ones.

A sparse polynomial is a polynomial for which only some coefficients are not

null. In this paper, we consider sparse polynomials for which the roots are

distributed on 2 distinct circles:

∀α1α2 ∈ C,∀n1, n2 ∈ N∗;P (z) = (zn1 − α1)(zn2 − α2) (18)
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A full polynomial is, in contrast, a polynomial for which all the coefficients are

not null. A full polynomial is defined by:410

∀ai ∈ C, i ∈ N; p(x) =

n∑
i=0

ai.x
i, ai 6= 0 (19)

For our experiments, a machine, composed of 2 CPU Intel Xeon E5-2660

@ 2.20GHz (with 8 cores each), has been used with OpenMP and a machine

composed of one CPU Intel(R) Xeon(R) CPU E5620@2.40GHz, with a NVIDIA

GPU K40 (with 6 GB of RAM) has been used for the GPU computation.

We performed a set of experiments on the parallel algorithms with a bi-CPU415

machine and a single GPU. We measured the execution time and took into ac-

count the polynomial size, the number of threads per block and the degree of

sparsity of polynomials (sparse and full). Firstly, we discuss the performance

behavior of the asynchronous version of Ehrlich-Aberth method implemented

on GPU with CUDA vs. on a multi-core CPU using OpenMP. Then, we study420

the influence of the number of threads per block on the execution time of the

EA method to solve (sparse and full) polynomials. Later, we show the contribu-

tion of the exp-log solution to compute a high degree polynomial with the EA

method. Finally, we compare the performance behaviors of EA method with

the Durand-Kerner (DK) method.425

All experimental results obtained from the simulations are done in double

precision data, the convergence threshold of the methods is set to 10−7. The

initialization values of the vector solution of the EA method are given in Eq 7.

7.1. Execution time of the EA method on a 8-cores dual CPU with OpenMP vs.

on a single Tesla GPU with CUDA430

In the Ehrlich-Aberth method implemented with OpenMP, all the data are

shared with the OpenMP threads. The shared data are the solution vector Z,

the polynomial to solve P , its derivative P ′, and the error vector Error. The

number of cores is fixed or defined by an environment variable: OMP_NUM_THREADS.

We could use until 16 real cores per node. The gcc 4.4.7 compiler has been used435

20



with the -O3 option to optimize the code. For the GPU implementation, we

fixed the number of threads per blocks to 256, the number of blocks is computed

with Eq 17.
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Figure 1: Execution time of the EA method on a 16 cores-node with OpenMP vs. on a single

GPU K40.

In Figure 1, we report the execution time of the EA method implemented

with OpenMP (with 16 cores) and a GPU K40. We chose different sparse440

polynomials with high degrees ranging from 100,000 to 1,000,000. Firstly, we

can notice that both implementations manage to solve a polynomial of degree

1,000,000. However, it takes about 2,200s for the GPU to solve a one million

degree polynomial whereas the CPU implementation only solves a polynomial

of degree 300,000 during the same period. It should be noticed that both im-445

plementations have approximately the same number of iterations and the same

accuracy.

7.2. Influence of the number of threads on the execution time of different poly-

nomials (sparse and full)

In order to maximize the use of GPU cores (maximize the number of threads450

executed in parallel) according to the execution time consuming, it is interesting
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to see the influence of the number of threads per block on the execution time of

the Ehrlich-Aberth algorithm. For that, we noticed that the maximum number

of threads per block for the Nvidia Tesla K40 GPU is 1,024, so we varied the

number of threads per block from 8 to 1,024. We measured the execution time455

for 10 different sparse and full polynomials of degree 50,000 and of degree 500,000

and the results are presented in Figure 2.
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Figure 2: Influence of the number of threads per block on the execution time on sparse and

full polynomials.

Figure 2 shows that the best execution time for both sparse and full poly-

nomials is obtained when the number of threads per block is between 64 and

256. We also notice that, with small polynomials, the best number of threads460

per block is 64, whereas, for large polynomials, the best number of threads per

block is 256. For this reason, in the following experiments, we set the number

of threads per block to 256.

7.3. Influence of exp-log solution to compute high degree polynomials

In this experiment we report the performance of the exp-log solution de-465

scribed in Section 3 to compute high degree polynomials.
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Figure 3: The impact of exp-log solution to compute high degree polynomials

Figure 3 shows the contribution of the exp-log solution to solve high degree

polynomials. We report the execution time of the Ehrlich-Aberth method using

the exp-log solution and the execution time of the classical version of the Ehrlich-

Aberth method, with full and sparse polynomials. We can first see that the470

execution times for both (classical, exp-log) versions of the EA algorithm are the

same with full polynomials of degree less than 4,000 and with sparse polynomials

less than 150,000. We also clearly show that the classical version (without exp-

log) of Ehrlich-Aberth algorithm does not converge after these degrees either

with sparse or full polynomials. This is due to the limited capacity of double475

numbers manipulated by processors. However, the new version of the Ehrlich-

Aberth algorithm with the exp-log solution converges and can accurately solves

high degree polynomials.

7.4. Comparison of the Durand-Kerner and the Ehrlich-Aberth methods

In this part, we compare the Durand-Kerner and the Ehrlich-Aberth meth-480

ods on a GPU. We measure the execution times, the number of iterations, and

take into account the polynomials size for both sparse and full polynomials.
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7.4.1. The execution time of the DK and EA methods on a GPU

In this experiment, we report the execution times of the EA method and

the DK method on GPU, for both (sparse and full) polynomials root of degrees485

ranging from 100,000 to 1,000,000.

We recall that DK and EA methods have, in theory, respectively quadratic and

cubic convergence orders in case of simple zeros. The DK method follows the

same steps as the EA method, except for the iterative function of DK which is

given in Eq. 3.490
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Figure 4: Execution times of the Durand-Kerner and the Ehrlich-Aberth methods on GPU

In Figure 4, we can notice that EA converges indeed more rapidly than DK

for both sparse and full polynomials. In addition to its cubic convergence order,

the derivative of the polynomial to solve P called in the iterative function of EA,

makes it faster to converge to the roots solution even if the computation P ′ takes

more time. Specifically with full polynomials, DK cannot compute polynomials495

upper than a degree of 5000. This reduces the computational capabilities of

the DK method, unlike the method of EA, which has proven its efficiency to

compute polynomials of 1, 000, 000 degree.
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7.4.2. On the number of iterations needed for the EA and the DK methods to

converge500

In this experiment, we report the number of iterations needed to converge

for both the EA and DK methods with sparse polynomial degrees ranging from

1, 000 to 1, 000, 000.
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Figure 5: The number of iterations needed to converge for the EA and the DK methods

Figure 5 shows that the number of iterations of DK is of order 100 while EA

is of order 10. Indeed the computation of the derivative of P in the iterative505

function (Eq. 5) executed by EA allows the algorithm to converge faster. On

the contrary, the DK operator (Eq. 3) needs low operations and consequently

low execution times per iteration, but it needs more iterations to converge.

8. Further Data Analysis

Expressing the evolution of execution time as a mathematical function is510

a very appealing method in order both to analyze and understand any imple-

mentation and to compare it to other implementations or other methods. In

our case, however, finding an analytic formula proved to be neither trivial nor

straightforward and still constitutes an open problem. That is why we adopted
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a curve fitting approach in order to have a better insight on the performance515

of our implementation, especially its speed-up and scalability with respect to

execution times. Furthermore, the advantage of such a mathematical formula-

tion of execution times is that it can be used to predict the execution times of

very large polynomials degrees still not subject to experiments. In this section,

we compute and discuss the curve fitting of EA execution time on a 16-core520

CPU and on the K40 GPU for sparse polynomials. But the approach can be

easily applied to full polynomials as well. We first explain our methodology.

The fitting has been carried out using Gnu Octave Mathematical Software and

consisted in finding the coefficients a, b, c of a quadratic polynomial ax2 +bx+c

that best fits on a set of what we call fitting data. For both CPU and GPU525

execution times, we divided the set of experimental data into two distinct sub-

sets: the fitting data and the validation data. We then looked for the the best

fit (actually the coefficients) using the fitting data and we assessed the quality

of the fitting function both internally to the fitting data and externally with re-

spect to the validation data by producing the relative error between the actual530

experimental result and the output of the fitting function for each validation

point.

8.1. Execution times of the EA method on the CPU

Figure 6 shows the EA OpenMP execution times on the 16-core CPU for

sparse polynomial’s degrees ranging from 100K to 1M. Fitting data is repre-535

sented by red points in the figure, validation data in blue and the computed

fitting function is sketched in black. Table 3 shows the actual values of a, b and

c. The fitting function has a goodness measure SSE1 value of 1.6 × 10−5 and

R Square2 value of 0, 99, meaning that the fit explains 99% of the total varia-

tion in the fitting data on average. Additionally, we show in Table 1 the actual540

execution times for validation data and the predicted results of the fitting func-

1Sum of Squares Due to Error.
2R-square is the square of the correlation between the response values and the predicted

response values for the fitting data.
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Figure 6: Fitting data, validation data and fitting function in seconds of the OpenMP execu-

tion time of EA on the 16-core CPU

tion for each validation point and associated relative error. We can see that the

error is generally around 10%, larger errors stem from bias in the measurement

of experimental times because, from one experiment to another and depending

on various parameters on the machine, the execution times can slightly vary.545

For larger degrees, the prediction seems even better which can be interpreted as

the higher the degree is, the better the function can predict the execution times

which are dominated by computations rather than communications (memory

access).

8.2. Execution times of the EA method on GPU550

Similarly to Figure 6, Figure 7 shows the EA execution times on the K40

GPU for fitting data, validation data and the fitting function whose coefficients

are shown in the second raw of Table 3. With respect to fitting data, we have

(R Square=0.9538) SSE value of 1.38× 10−8 and the fitting method can accu-

rately predict the execution times for large polynomial’s degrees with an average555

relative error of 4.32 × 10−2. With respect to validation data (cf Table 2), we
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Degree /Time (s) Measured Predicted Relative Error (%)

600,000 7,914.1 7,999.40 13.81

700,000 10,442.97 10,887 15.29

800,000 13,794.50 14,337 3.93

900,000 18,630.70 18,265 9.82

1,000,000 24,255.70 22,671 6.53

Table 1: EA 16-core CPU measured execution time, predicted execution times according to

the fitting function and actual relative error for each validation point (the lesser is better)

Figure 7: Fitting data, validation data and fitting function in seconds of the CUDA execution

time of EA on the K-40 GPU
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Degree/Execution time (s) Measured Fitted Relative Error (%)

600,000 549.70 633.70 15.28

700,000 864.21 890.15 3.00

800,000 1,214.82 1,190.87 1.90

900,000 1,553.08 1,535.87 1.10

1,000,000 1,915.6 1,925.15 0.498

Table 2: EA K40 GPU measured execution times, predicted execution times according to the

fitting function and actual relative errors for each validation point (the lesser is better).

Time on / Coefficients a b c

16-cores CPU 2.40 10−8 −13.15 10−4 106.54

K40 GPU 2.20 10−9 −3.135 10−4 24.83

Table 3: The coefficients of EA-CPU and EA-GPU fitted quadratic execution time

can see that the fit is around 5% at most, far from the actual experimental re-

sults. For a large degree of 1.e6, the prediction is almost as precise as the actual

experimental results. In our opinion, the higher the degree is, the higher the

computation times, compared to communication/synchronization times, are.560

Finally, based on the actual coefficients in Table 3 and limited by the mem-

ory size of the GPU device, one could envision that the speed-up of our GPU

implementation is upper bounded by acpu/agpu ≈ 11 for higher polynomial

degrees.

Nota bene : we conducted a similar study for the full polynomial setting, the565

execution times are also quadratic in the size of the problem. We determined

the following coefficients for the K40 GPU: a = 2.8105 10−9, b = 7.4163 10−4

and c = −36.7. Comparing the sparse to the full setting execution times on the

G40 GPU, the evolution of the two curves indicates that, subject to the memory

limit of the device, on the long run (for larger degrees), the full polynomials need570

about 27.75% more time than the sparse polynomial which is the limit when
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n→∞ of the division of the two respective quadratic equations.

9. Conclusion and perspectives

In this paper we have presented the parallel implementation of the Ehrlich-

Aberth method on GPU for the polynomial root finding problem. Moreover, we575

have improved the classical Ehrlich-Aberth method which suffers from overflow

problems, the exp-log solution applied to the iterative function allowed us to

successfully solve high degree polynomials. We also have proved the convergence

of the parallel Ehrlich-method with asynchronous iterations. the results show

Then, we have described the parallel implementation of our modified EA on580

GPU. We have performed many experiments with the Ehrlich-Aberth method in

a 16 cores node and a single GPU. These experiments highlight that this method

is more efficient in GPU than all the other implementations. The improvement

with the exponential logarithm solution allowed us to solve sparse and full high

degree polynomials up to 1,000,000 degree. Hence, it may be possible to consider585

using polynomial root finding methods in other numerical applications on GPU.

In future works, we plan to investigate the possibility of using several mul-

tiple GPUs simultaneously, either with a multi-GPU machine or with a cluster

of GPUs. It may also be interesting to study the implementation of other root

finding polynomial methods on GPU.590
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höheren graden als dem vierten allgemein aufzulösen, J. reine angew, Math
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