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Abstract—This paper introduces a day-ahead energy man-
agement algorithm for the coordination of smart homes with
renewable energy sources and energy storage systems in neigh-
borhood areas. The aim of this study is to establish a day-ahead
decentralized coordination method with appliance scheduling and
energy sharing (among smart homes) to minimize the electricity
bills of consumers under dynamic pricing. The energy sharing
algorithm focuses on increasing the utilization of renewable
sources by controlling storage units. A multi-agent system is used
to model entities (smart homes, aggregator and utility) as agents
and the optimization problem is solved in a decentralized manner
by home agents with a genetic algorithm. The performance of the
coordination algorithm is evaluated annually with and without
considering forecasting errors.

Index Terms—demand response, energy management, neigh-
borhood coordination, multi-agent systems, smart grid.

NOMENCLATURE

Sets and Indexes
L, l Set of communication time intevals, period index
T, t Set of actual time intervals, period index
U, u Set of users, user index
X, x Set of controllable appliances, appliance index
Y, y Set of schiftable appliances, appliance index
Z, z Set of battery control time intervals, period index
cd Appliance index of dish washer
k Iteration index
tp Previous iteration in actual time period index
wm Appliance index of washing machine

Parameters and Constants
ε Incident cost of last iteration
εe Minimum cost deviation for convergence
κ, θ Shape and scale parameter of Gamma noise
µ, σ Mean and standard deviation of Gaussian noise
4l Time step of communicated data
4t Time step of actual data
kmax Maximum iteration limit
kmin Minimum iteration limit
L Communication interval
T Dayahead simulation length
U Total user number
Z Battery control interval

Consumption Parameters
εdy Duration length error of non-controllable appliance
εsy Start time error of non-controllable appliance
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dey Duration of non-controllable appliance with error
dy Operation duration of controllable appliance
rsx, r

e
x Operation start and end time of controllable appliance

rsy, r
e
y Operation start time of non-controllable appliance

rs,ey Start time of non-controllable appliance with error
tsx, t

e
x Preferred start and end time of controllable appliance

Xu Total number of controllable appliances
Yu Total number of non-controllable appliances

Generation Parameters
εg PV generation prediction error parameter
GSTC Irradiance at STC
Ns

u, N
p
u Serial and parallel connected PV module numbers

P pv
u Power rate of PV module at STC

Storage Parameters
ηcu, η

d
u Battery charging/discharging efficiencies

ρcu, ρ
d
u Battery max. injected (charge/discharge) power limits

Ebat
u Battery capacity

SOCmax
u Maximum battery SOC

SOCmin
u Minimum battery SOC
Variables

G(κ, θ) Gamma distribution
N (µ, σ2) Normal distribution
G(t) Irradiance value

Smart Home Variables (t-domain)
γbu(z) Binary variables of battery control inputs
ωx
u(t) Binary variables of controllable appliance
ωy
u(t) Binary variables of non-controllable appliance
C∗

u Electricity cost at best iteration
Ck

u Electricity cost at iteration k
Cu Electricity cost of smart home
Ge

u(t) Irradiance value with prediction error
P b
u(t) Battery charging/discharging power
P c
u(t) Total consumption power of smart home
P g
u (t) Generation power of PV system
P I
u (t) Battery injected power
Pn
u (t) Net power of smart home withou sold battery power
P s
u(t) Sold battery power of smart home
P x
u (t) Consumption power of controllable appliance
P y
u (t) Consumption power of non-controllable appliance
P s,d
u (t) Decided sold battery power of smart home
Rn

u(t) Aggregated net power except user u
Rs

u(t) Aggregated sold battery power except user u
SOCu(t) Battery SOC value

Aggregator Variables (t-domain)
λ(t,Pa(t)) Neighborhood electricity price
Q(t,Pa(t)) Dynamic part of electricity price
a(t), b(t), c(t) Dynamic price coefficients
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d(t) TOU price structure
Pa(t) Aggregated net power with sold power
Pn(t) Aggregated net power without sold battery power
Ps(t) Aggregated sold battery power
Ps,d(t) Decided aggregated sold battery power

Smart Home Variables (l-domain)
P̂n
u (l) Net power of smart home
P̂ s
u(l) Sold battery power of smart home
R̂n

u(l) Aggregated net power except user u
R̂s

u(l) Aggregated sold power by battery except user u
Aggregator Variables (l-domain)

λ̂(l, P̂a(l)) Neighborhood electricity price
d̂(l) TOU price structure
P̂a(l) Aggregated net power with sold power
P̂n(l) Aggregated net power without sold power
P̂s(l) Aggregated sold battery power

I. INTRODUCTION

RAPID developments in information and communication
technology (ICT) have enabled the current electricity

infrastructure to become more modern and smarter, through
improved sensoring, monitoring and automation capabilities.
This in turn facilitates improving energy efficiency for a better
utilization of resources, at all levels of the network, including
the residential sector. With the implementation of advanced
metering infrastructure (AMI), end-users in smart homes are
changing from a passive role to an active one, by becoming
active participants [1]. Smart homes are small energy systems,
which may be equipped with local generation, storage and/or
loads. Their inhabitants are usually modeled as self-interested
players with communication and control abilities aiming to
increase their social benefits (e.g., reducing their bills).

Demand response (DR) is a popular technology to control
household electricity consumption, by altering and/or curtail-
ing appliance consumption. Loads are usually shifted from on-
peak to off-peak price periods and/or curtailed, sometimes with
a time-varying price structure [2], [3]. DR encourages cus-
tomers to reduce their load during periods of critical network
congestion, when energy is more expensive, or to shift it to off-
peak periods, in exchange for a rebate on their electricity bill.
In this respect, smart homes have drawn significant attention
by providing additional flexibility to the grid through DR
programs [4]. However, DR typically only focuses on load
adjustment, and neglects efficient renewable energy sources
(RES) and energy storage systems (ESS) utilization. In a
residential community of smart homes, adequate strategies
combining DR with ESS and RES management could provide
benefits for their owners, but also to service providers and
utilities.

However, even if load management algorithms with RES
and ESS were used in smart homes, uncoordinated decision-
making would limit the overall performance of the proposed
algorithms. For instance, unexpected issues in the distribution
grid may arise, such as rebound peaks, overloading, or con-
tingencies [5], [6], [7]. Hence a coordination mechanism is
necessary so smart homes can adjust their electricity profile
without negative side-effects.

Coordinated energy management in the smart grid is studied
in either centralized or decentralized manners. With cen-
tralized coordination, decision-making is performed by one
superior entity which can be an aggregator [8] or the utility [9].
Centralized coordination proposes effective results, however
it requires detailed information about homes, which is not
practical [10] and also tends to cause a heavy computation
burden [11]. Moreover, users are not comfortable with the idea
of seeing their appliances controlled by someone else.

On the other hand, with decentralized coordination, users
are independent decision-makers who control their own elec-
tricity profile under the influence of a central entity and/or
other users. In [12], a game-theoretic approach is used for the
decentralized control of smart homes to reduce the peak-to-
average ratio (PAR) of an area while decreasing the electricity
bill of users, with dynamic pricing. While users aim to reduce
their electricity bill by scheduling their own appliances, they
also enable decreasing the PAR value of the area. However,
users are assumed to communicate directly with each other,
which may lead to privacy issues. In [13], three decentralized
algorithms are discussed and use a game theoretic approach:
i) with a central entity, ii) without a central entity with
synchronous decision-making iii) without central entity with
asynchronous decision-making. In the first method, users
communicate with the central unit to gather the aggregated
profile. In the synchronous method, users update their profiles
simultaneously, while they use a different step size in the
asynchronous model. In all models, dynamic pricing is used
to reduce the PAR of the area and users’ bills.

In [14], the decentralized control problem is solved using
a Vickrey-Clarke-Groves mechanism. The properties of the
proposed method are compared with two other methods: i)
a competitive equilibrium problem where users are fixed
price takers, and ii) a game of Nash equilibrium problem
where users are price anticipative, and the effect of other
users consumption is considered in the price. In the proposed
model, users take into account the utility function of others
to represent the level of user satisfaction while trying to
maximize their own benefit. By this way, the presented method
proposes better results compared to the other cases. However,
this study requires detailed data sharing between users, which
also leads to privacy concerns.

Other studies additionally consider RES and ESS in smart
homes. In [15], a decentralized online algorithm which takes
into account the uncertainty on renewable generation, con-
sumption and cost is modeled to reduce the electricity cost
of smart homes. However, the algorithm does not consider
two-way electricity transfers between smart homes and the
grid. Thus the study only focuses on better utilizing home
generation with self-consumption. In [16], an agent-based
electricity trading algorithm with residential RES and ESS is
studied. For home decision-making, home agents decide to
buy/sell electricity to the grid, charge/discharge the battery or
ignore the low priority loads to maximize their outcome. To
influence the home agents, two price rates are defined: one
for buying and one for selling energy to the grid. However,
although the battery is used and energy trading is established,
only instant residual RES generation is used for trading and



IEEE TRANSACTIONS ON SMART GRID 3

the ESS is deployed only for self-consumption.
Lastly, in our previous study [17], we introduced a coordi-

nated energy management algorithm using time-of-use (TOU)
pricing and a feed-in-tariff (FIT) with a constant incentive
for increasing self-consumption in the neighborhood. By using
TOU, FIT and the incentive, the final area electricity price was
lower than the grid price, which favored energy trading inside
the neighborhood. With this algorithm, home batteries were
also able to provide energy for neighborhood consumption.
However the effect of the aggregated profile on the area
electricity price was not studied. Moreover, the algorithm
relied on an externally-funded incentive and FIT.

Although these studies proposed various coordination mech-
anisms with a focus on different aspects, they do not consider
energy sharing through RES generation and battery use in a
decentralized manner. In this paper, we introduce a decen-
tralized coordination method to reduce the electricity bills of
the users by increasing local renewable energy utilization in
the neighborhood with a dynamic price model. We consider
a scenario where RES and ESS are owned by the users and
renewable generation is shared among neighbors, instead of
being fed back to the grid. By this way, users can help decrease
carbon emissions, as well as their electricity consumption
costs, and PAR of the area can also be decreased. Two
decentralized coordination models are presented, group-based
and turn-based. Both rely on an architecture based on the
multi-agent systems (MAS) concept, which enables dynamic
interactions among competitive and cooperative entities to
achieve predefined objectives [18]. The predefined program
(optimization problem) is formulated and solved by all home
agents using the same genetic algorithm (GA). In the literature,
various methods are used to solve similar optimization prob-
lems, such as linear programming [19], approximate dynamic
programming [20], mixed integer nonlinear programming [21]
and also other heuristic methods such as particle swarm
optimization [22]. However, we prefer to use GA for solving
this optimization problem due to the ability to find near-
optimal solutions within acceptable computation times, as well
as the flexibility of the algorithm to a wide variety of problems.

The key contributions of this paper are summarized as
follows:

1) The impact of sequence (group-based vs. turn-based) on
coordination is analyzed, by comparing the performance
of two decentralized approaches (group-based and turn-
based ) with annual simulations. All smart homes (with
and without RES and/or ESS) achieve savings, as does
the utility in terms of lower peak demand.

2) In addition to costs and PAR, three different metrics
(SR-01 to SR-03) are introduced. The algorithms pro-
vide better results compared to a base case, even when
considering uncertainty on consumption and renewable
generation.

3) Three data profile time resolutions are used the opti-
mization problem to enable detailed modeling, reduce the
computational burden, or ensure the privacy of the users.

4) The proportional source matching method is created to
eliminate mismatches occurring in real-time, after the
day-ahead optimization.

The rest of the paper is organized as follows: the system
model is presented in Section II and the problem formulation is
given in Section III. The developed coordination mechanisms
are described in Section IV. Results are given in Section V
and discussed in Section VI. The paper is concluded in Section
VII.

II. SYSTEM MODEL

We consider an electricity network with one utility company
connected to a set of smart homes by an AMI and through an
aggregator. The aggregator is a third-party entity that is able to
provide ancillary services to the utility, and can play a role in
coordinating smart homes for better energy management [23].
In this study, the aggregator receives electricity profiles data
(i.e., the home net power profile Pn

u (t) and the home sold
battery power profile P s

u(t), described in Section III) from the
smart homes, determines the aggregated neighborhood profile
and dynamic price, and then sends them back to the smart
homes.

A. Home Energy System

In the following, we consider smart homes which can
consume, generate and/or store electric energy while being
connected to the grid. Through AMI, smart homes communi-
cate with other entities and control their own electricity profile.
In this study, we assume that each user is equipped with a
smart meter and a controller, and only communicates with the
aggregator (and not with other users) due to privacy concerns.

Depending on their controllability, 13 types of appliances
are modeled in two groups: controllable and non-controllable
appliances. In this study, the washing machine, the clothes
dryer and the dish washer are considered controllable, while
others (TV, computer, coffee maker, etc.) are assumed to
be non-controllable appliances. While other loads may be
controlled, these three are the most commonly used in the
literature for creating realistic control scenarios [24]. The oper-
ation of appliances is defined by binary variables ωu,t ∈ {0, 1}
at ∀t ∈ T (0 for off, 1 for running) as:

ωx
u(t) =

{
1 : t ∈ [rsx, r

e
x]

0 : t ∈ T− [rsx, r
e
x ]

}
, ∀x ∈ X (1)

ωy
u(t) =

{
1 : t ∈ [rsy, r

e
y]

0 : t ∈ T−
[
rsy, r

e
y

]} , ∀y ∈ Y (2)

We assume that the consumption power of the appliances is
fixed during the working period of appliances, thus the smart
home consumption is formulated by:

P c
u(t) =

Xu∑
x=1

P x
u (t) · ωx

u(t) +

Yu∑
y=1

P y
u (t) · ωy

u(t) (3)

In this study, to increase diversity among the consumption
profiles of smart homes, loads are modeled according to
a probabilistic model. According to the consumption rates
shown in Table I, the number of electricity appliances is de-
termined probabilistically for each smart home. For example,
a smart home with a high energy consumption is more likely
to be equipped with more than one TV than a low-rated smart
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TABLE I
PENETRATION LEVEL OF HOME RESOURCES AND PV MODULE

PARAMETER.

Consumption Rate PV Ns
u Np

u Ppv
u Battery

Very Low (10%) 30% 1–4 1–4 160–200 20%
Low (30%) 40% 2–5 1–4 160–200 30%
Medium (25%) 50% 2–5 2–5 180–200 40%
High (25%) 60% 3–6 2–5 220–240 50%
Very High (10%) 70% 3–6 3–6 220–240 60%

home. Parameter values in Tables I are arbitrarily defined to
reflect a realistic case.

Additionally, end-users have only one from each type of
controllable appliance. The number of appliances, power rates,
and operation duration are given in Table II. For realistic cases,
we assume that some appliances can be used more than once
(’Multiple’), such as lights. When an appliance is turned on,
it is used at the minimum for the duration given in Table II.
After that, it can be used for at least the same duration, or be
turned off.

Photovoltaic (PV) systems are considered as the only RES in
smart homes. The power produced by a PV array is formulated
as:

P g
u (t) = Ns

u ·Np
u · P pv

u · (G(t)/GSTC) (4)

The number of modules and their rated power are also
determined probabilistically. The corresponding probabilities
are given in Table I. We assume that smart homes with a high
consumption rate are more willing to install PV with a high
rated power.

To store the surplus energy generated by PV panels in the
smart homes, a battery is used as an ESS. Battery power is
impacted by charging (P b

u(t) > 0) and discharging (P b
u(t) ≤

0) efficiencies and operated between minimum and maximum
state-of-charge (SOC) levels.

P b
u(t) =

{
P I
u (t) · ηcu : P I

u (t) > 0
P I
u (t)/ηdu : P I

u (t) ≤ 0

}
ρdu/η

d
u ≤ P b

u(t) ≤ ρcu · ηcu
(5)

TABLE II
SMART HOME APPLIANCE DATA.

Appliance Amount Power (W) Duration (min.)

Lights 2 – 8 25 15 – Multiple
Kettle 0 – 1 450 15 – Multiple
Microwave 0 – 1 800 10 – Multiple
Vacuum Cleaner 0 – 1 700 30 – Single
Television 0 – 3 150 30 – Multiple
Computer 1 – 5 250 30 – Multiple
Iron 0 – 1 650 30 – Single
Hair Dryer 0 – 1 200 10 – Multiple
Coffee Maker 0 – 1 300 10 – Multiple
Toaster 0 – 1 500 10 – Multiple
Washing Machine 0 – 1 800 90 – Single
Clothes Dryer 0 – 1 1000 90 – Single
Dish Washer 0 – 1 850 60 – Single

SOCu(t) = SOCu(t− 1) +
(
P b
u(t) ·∆t

)
/Ebat

u

SOCmin
u ≤ SOCu(t) ≤ SOCmax

u

(6)

As for PV system modeling, the ownership of the battery
system in the smart homes is determined probabilistically, and
according to the probabilities given in Table I. The battery
capacity is related to the installed PV installation capacity.

B. Forecasting Error Model

Forecasting errors are considered for non-controllable ap-
pliances loads and PV generation. Gaussian distributions are
used to model the start time and duration errors of appliance
operation:

rs,ey = rsy + εsy

dey = dy + εdy
(7)

Errors are determined by a Gaussian distribution N (µ, σ2)
[25]. The mean µ is chosen equal to 0, but the standard
deviation σ is assumed variable in terms of minutes according
to the quantity and appliance type.

In this study, we assume that all home agents are forecasting
their generation profiles individually. Prediction errors are thus
different in each smart home, even though they are located
in the same geographical region. To perform forecasting of
irradiance value, the Gamma distribution [26] is used:

Ge
u(t) = G(t)× εg (8)

Errors for generation are determined using gamma noise
with distribution G(κ, θ), where κ = 210 is the shape param-
eter, and θ = 0.005 is the scale parameter.

C. Electricity Cost

This section describes the dynamic pricing scheme used
for billing consumers in the neighborhood. The price is
determined based on two variables: i) a base price at the upper
level of the neighborhood, and ii) the aggregated consumption
fluctuation in the neighborhood. We assume that the utility, at
the upper level, determines the base price for each time slot
(typically hourly). Then, the aggregator agent determines the
dynamic price associated to the base price and the aggregated
consumption of the neighborhood. To model the dynamic part,
a quadratic function is used [27] where the unit price is related
to the aggregated profile:

Q(t,Pa(t)) = a(t) · |Pa(t)|2 + b(t) · |Pa(t)|+ c(t) (9)

with a(t) > 0, and b(t), c(t) ≥ 0. We consider the base
structure to be equal to the French regulated TOU tariff [17],
and merge it with (9):

λ(t,Pa(t)) =

{
d(t)−Q(t,Pa(t)) : Pa(t) ≤ 0
d(t) +Q(t,Pa(t)) : Pa(t) > 0

}
(10)

In this model, the central entity enables users to control
resources not only according to the aggregated profile, but
also according to the base structure due to the connection to
the main grid. Moreover, the presented price model is used as
an FIT, which enables reverse power flow when smart home
generation is higher than consumption.
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III. PROBLEM FORMULATION

In this section, the decentralized optimization problem is
formulated to show how home agents optimize their so-
cial benefits in terms of cost reduction by scheduling their
appliances and controlling ESS. The proposed ESS control
algorithm addresses the energy sharing problem of the smart
home in the neighborhood. Firstly, we assume that users define
a control interval for the scheduling of controllable appliances.
In this interval, home agents pick the most beneficial time for
running appliances during low price hours without reducing
user comfort [28]. The constraint is formulated by:

[rsx, r
e
x] ∈ [tsx, t

e
x] (11)

Secondly, a clothes dryer should logically run after the
washing machine has finished [29]. The operation time of a
clothes dryer should be thus controlled by taking into account
the washing machine operation time as:

rswm < rscd − (rewm − rswm) (12)

tswm < tscd − (rewm − rswm) (13)

Lastly, the battery power is determined for the smart homes
that have one. Home agents can discharge a battery to use
and/or sell energy during on-peak hours to increase their ben-
efit, and reduce the aggregated peak load of the neighborhood.
It should be noted that, in this work, batteries are only allowed
to discharge for selling energy to the neighborhood (and not to
the main grid). Home agents use the aggregated data (Pn(t)
and Ps(t)) with the dynamic price (λ(t,Pa(t))) received from
the aggregator. After home agents receive it, they subtract their
previous electricity profiles from the aggregated profile:

Rn
u(t) = Pn(t)− Pn

u (tp)

Rs
u(t) = Ps(t)− P s

u(tp)
(14)

Then home agents determine P b
u(t) using Rn

u(t) and Rs
u(t)

with (15). However, controlling the battery for each time
interval (T inputs) for the day-ahead optimization (for example
1440 for 1-min. modeling) would cause a significant compu-
tation burden. Therefore, a battery control set Z is defined to
decrease the number of inputs from T to T/Z, and speed-up
the algorithm. For the control of the battery, binary variables
γbu(z) ∈ {0, 1} are defined for logically controlling the battery
charging/discharging operations. P b

u(t) is determined by:

P b
u(t) =
fullcharge : γb

u(z) = 0, P g
u (t) > 0

idle : γb
u(z) = 0, P g

u (t) ≤ 0
charge : γb

u(z) = 1, P g
u (t) ≥ P c

u(t) +Rn
u(t)−Rs

u(t)
discharge : γb

u(z) = 1, P g
u (t) < P c

u(t) +Rn
u(t)−Rs

u(t)


(15)

where fullcharge is charging without using RES
generation for consumption (P b

u(t) = P g
u (t) · ηcu),

idle is waiting (P b
u(t) = 0), charge is first using

generation for consumption then charging with the surplus
generation (P b

u(t) = (P g
u (t)− (P c

u(t) +Rn
u(t)−Rs

u(t))) ·
ηcu), and discharge is discharging (P b

u(t) =
− (P c

u(t)− P g
u (t) +Rn

u(t)−Rs
u(t)) /η

d
u). According to

Fig. 1. Coordination diagram of agents.

(15), the battery only discharges when γbu(z) = 1, hence the
sold battery power is calculated with:

P s
u(t) = P b

u(t)− P c
u(t) (16)

By applying the above comparisons, the sold power P s
u(t) ≥

0 by battery discharge (P b
u(t) ≤ 0) is calculated. According to

(15)-(16), if there are home and neighborhood consumption
at the same time when battery discharging is decided, the
discharged power basically is first used for home consumption
and then sold to the neighbors.

After that, home agents determine the net electricity profile
of their smart home with:

Pn
u (t) = P c

u(t)− P g
u (t) + P b

u(t) + P s
u(t) (17)

and optimize the following objective function with the set of
constraints to minimize the daily electricity bill of the users.

min

[
Cu =

T∑
t=1

(Pn
u (t)− P s

u(t)) · λ(t,Pa(t)) · 4t

]
s.t. (1), (2), (5), (6), (11), (12), (13)

(18)

This optimization problem is solved by all home agents
using GA. Note that P s

u(t) is removed in (17) and added in
(18). They are needed separately during the data exchange
described in Section IV. Two time resolutions are used for
solving the optimization problem for two reasons: first, to use
and determine the electricity profiles with a high resolution
with ”t”, and second, to reduce the computation time by
reducing the number of input numbers of the day-ahead
optimization problem with a lower resolution ”z”.

IV. COORDINATION WITH ENERGY SHARING

In this study, we propose two coordination models for
the neighborhood area: group-based and turn-based. In both
models, the same optimization problem is solved and the
same communication principle is used as in Fig. 1, but the
coordination architecture is different.

Before presenting the algorithms, we assume that: i) home
agents do not communicate with each other, ii) the calculated
average data is used to reduce the communication requirements
with communication time set L. In this respect, when a
message is sent, data size is modified as [1× T ]→ [1× T/L]
and reconverted as [1× T/L] → [1× T ] when a message is
received [11].
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A. Group-Based Coordination Model

In this section, the group-based model is described in
Algorithm 1. Firstly, the utility agent sends d̂(l) to the
aggregator agent at the beginning of the day. As the aggregator
agent does not have any information about the home profiles
at k = 1, it sends d̂(l), P̂n(l) = 0 and P̂s(l) = 0 to
the home agents. Home agents receive this data and run the
optimization with (18), all at the same time. After that, they
send the home net power profile P̂n

u (l) and the home sold
power profile by battery discharge P̂ s

u(l) to the aggregator,
which determines the aggregated profile with the dynamic
price and sends them back to the home agents. This process
continues until convergence is reached (see Section IV-C).

Algorithm 1 Group-based coordination model.

1: All users ∀u ∈ U receive λ̂(l, P̂a(l)) = d̂(l), P̂n(l) = 0
and P̂s(l) = 0 from the aggregator agent

2: repeat
3: ∀u ∈ U generate R̂n

u(l) and R̂s
u(l) with (14).

4: ∀u ∈ U converts: Rn
u(t)← R̂n

u(l), R
s
u(t)← R̂s

u(l)
5: ∀u ∈ U solve (18) with (15)-(17).
6: ∀u ∈ U create and send P̂n

u (l) and P̂ s
u(l).

7: The aggregator generates λ̂(l, P̂a(l)), P̂n(l), P̂s(l)
and sends to ∀u ∈ U.

8: The aggregator calculates:
T/L∑
l=1

P̂a(l) · λ̂(l, P̂a(l)) ·4l
9: until Convergence is achieved (in Section IV-C)

As all agents run the optimization simultaneously with
Algorithm 1, Ps(t) may become higher than the aggregated
consumption Pn(t) (which can lead to mismatches) during
the procedure in two times: i) at the end of each iteration,
and ii) when final decisions are converted from the l-domain
to the t-domain. Therefore, for the first case, the aggregator
agent determines the price by comparing P̂s(l) and P̂n(l) in
(19). There is a possibility that home agents can discharge
their battery for neighborhood consumption at the same time
due to simultaneous optimization, which may lead to having
P̂n(l) ≤ P̂s(l) when P̂n(l) > 0.

P̂a(l) =


0 : P̂n(l) > 0, P̂n(l) ≤ P̂s(l)

P̂n(l)− P̂s(l) : P̂n(l) > 0, P̂n(l) > P̂s(l)

P̂n(l) : P̂n(l) ≤ 0

 (19)

For the second case, a method called proportional source
matching (PSM) is applied, where the sold power of home
agents is proportionally determined based according to total
decided sold power after the convergence is reached. If there
is one seller (Ps(t) = P s

u(t)) and the sold battery discharge
power is less than or equal to the aggregated consumption
(Pn(t) ≥ P s

u(t)), no extra calculation is required (P s
u(t) =

P s,d
u (t)). Otherwise, when the number of sellers is higher than

one Ps(t) > P s
u(t) and Ps(t) > Pn(t), then:

P s
u(t) = Pn(t) · (P s,d

u (t)/Ps,d(t)) (20)

If a mismatch occurs between the l-domain and the t-
domain, the aggregator stabilizes the system by determining
P s
u(t) for each user based on the ratio between P s,d

u (t) and
Ps,d(t)).

B. Turn-Based Coordination Model

In the turn-based model, as for the group-based model,
home agents communicate the average calculated data and do
not exchange messages with each other. Also, the aggregator
agent applies PSM with (20) to cover mismatches between
communication and actual data after the final iteration. A
difference is that home agents communicate and solve the
optimization problem one after another. Hence they do not
need to apply (19) because they are informed of changes
after each home optimization (P̂a(l) = P̂n(l) − P̂s(l)). The
procedure is described in Algorithm 2.

Algorithm 2 Turn-based coordination model.

1: All users ∀u ∈ U receive λ̂(l, P̂a(l)) = d̂(l), P̂n(l) = 0
and P̂s(l) = 0 from the aggregator agent

2: repeat
3: u = 1
4: while u ≤ U do
5: User u generates the perspective data with (14).
6: User u converts: Rn

u(t)← R̂n
u(l), R

s
u(t)← R̂s

u(l)
7: User u solves (18) by using (15)-(17).
8: u creates and sends P̂n

u (l) and P̂ s
u(l).

9: The aggregator generates λ̂(l, P̂a(l)), P̂n(l), P̂s(l)
and sends to u = u+ 1.

10: end while

11: The aggregator calculates:
T/L∑
l=1

P̂a(l) · λ̂(l, P̂a(l)) ·4l
12: until Convergence is achieved (in Section IV-C)

In this model, k is increased after the U -th home agent
optimization. Then, if convergence is not achieved, each user
u ∈ U runs the optimization again.

C. Convergence

For the proposed coordination models, algorithm conver-
gence is determined as follows. The system reaches conver-
gence if the total cost does not fluctuate by more than εe.
Otherwise, iterations continue until the allowed maximum
number iteration is reached. Then, the aggregator agent ends
the process and considers the latest decision of smart homes
at kmax as the final.

Algorithm 3 Convergence of Algorithms 1&2.
1: k ← 1, ε← 0
2: while k ≤ kmax do
3: Apply Algorithm 1||2

4: ε =
U∑

u=1
|(Ck

u − C∗
u)|

5: if k > kmin then
6: if ε < εe then
7: break while;
8: end if
9: end if

10: k ← k + 1
11: end while



IEEE TRANSACTIONS ON SMART GRID 7

Smart Homes

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r 

o
f 

th
e

 A
p

p
lia

n
c
e

s

0

5

10

15

20

25

30
(a)

Non-Controllable Appliances
Controllable Appliances

Smart Homes

0 10 20 30 40 50 60 70 80 90 100

P
V

 i
n

s
ta

lla
ti
o

n
 c

a
p

a
c
it
y
 (

k
W

)

0

2

4

6

8

0

2

4

6
(b)

Smart Homes

0 10 20 30 40 50 60 70 80 90 100

H
o

m
e

 B
a

tt
e

ry
 C

a
p

a
c
it
y
 (

k
W

h
)

0

5

10

15

20

25

30
(c)

Fig. 2. Simulation setup. (a) Controllable and non-controllable appliance numbers, (b) PV capacities, (c) battery capacities in smart homes.

V. SIMULATION RESULTS

In this study, we use one utility company, one aggregator
and U = 100 smart homes. The number of smart appliances
and the installed capacities of PV and battery systems in smart
homes are shown in Fig. 2. The number of PV (48) and battery
(17) are determined probabilistically. An example smart home
profile is given in Fig. 3. The probabilistic model described in
Section II-A is used to determine appliances consumption and
PV generation in smart homes. Solar radiation data is taken
from a weather station located in Belfort, France.
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Fig. 3. Smart home total and controllable appliance consumption profiles
with PV generation.

The controllable appliance consumption and the PV gener-
ation ratio with respect to the total home consumption vary
between 4–7% and 5–89%, respectively. The cause of these
small ratios in the controllable appliance consumption share
is that these appliances are not working every day in a year.
When it is used, a controllable appliance working probability
is decreased for the next day, and vice versa if it is not
used. In this study, 229 controllable appliances are available in
the neighborhood and used 38,349 times in a year (less than
229×365 = 83585). Furthermore, we assume that controllable
appliances can only be scheduled until 1am, because of the
end-users noise preferences.

Lastly, to perform annual simulations, a rolling-horizon
process is included with the optimization algorithm, as in [17].
Home agents thus solve the optimization problem for two days
(T = 2880), and repeat it every day with the first day result
at t = 1440 as the initial step (for the battery SOC) of the
next simulation roll. For communication, home agents send
the average calculated data for each L = 30 minutes. Smart
homes with a battery use a battery control interval of Z = 30
minutes. The same co-simulation platform (MATLAB/JADE)
as in [11] is used.

In the following sections, the performance of the proposed
algorithms is compared with two scenarios: Baseline and Self-
ish Control. In Baseline, smart homes do not communicate
with the aggregator, share energy nor control their appliances.
They are modeled as passive users. In Selfish Control, homes
can control their electricity appliances and batteries according
to TOU without coordination and energy sharing.

A. Daily Analysis without Forecasting Errors

We first run simulations without considering forecasting
errors, on an arbitrarily chosen day (the 153th day) of the
year. Results are summarized in Fig. 4. In Fig. 4(a), the
coordination methods show better performance compared to
the Baseline and Selfish Control methods, both in terms of
costs and peak power demand. Algorithm 2 shows a slightly
better performance, and enables saving 1.65e more compared
to Algorithm 1. Selfish Control seems less effective, because
users are not aware of the aggregated consumption profile, thus
they have the possibility to start their controllable appliances
at the same time, which causes a 2.5% peak and a 16.8%
cost increase in the neighborhood. On the other hand, there
is a significant peak (14%) and cost (20%) reduction with
both Algorithms 1&2 compared to other methods. As it
updates electricity profiles and price after each home agent
optimization, Algorithm 2 shows slightly better results (3.46%
peak, 0.7% cost) than Algorithm 1.

Secondly, energy comparisons are shown in Fig. 4(b). Even
though there is no coordination for Baseline and Selfish
Control, there is shared energy during high PV generation
hours which occurs naturally (physically, if there is enough
load, surplus energy during daylight is used locally inside the
neighborhood instead of being fed back to the main grid).
Also, self-consumption is higher in these two algorithms as
sharing energy by battery discharge is not allowed. Therefore,
batteries are just discharged for the own consumption of the
smart homes. On the other hand, home agents increase energy
sharing and decrease self-consumption by discharging batteries
for the neighborhood with both Algorithms 1&2. These
algorithms achieve decreasing the energy purchased from the
utility. As there is no coordination, home agents discharge their
batteries just for their own consumption, so there is always
more energy left in the batteries, as shown in Fig. 4(c). On the
other hand, with this coordination algorithm, home agents are
able to discharge their batteries for neighborhood consumption
and decrease the energy purchased from the utility.
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Fig. 4. One day simulation results. (a) Neighborhood cost and peak consumption, (b) energy comparison, (c) SOC profile of a smart home with a battery.

TABLE III
DAILY ELECTRIC ENERGY MANAGEMENT WITH (WE) AND WITHOUT

(WOE) FORECASTING ERRORS.

Cost (e) Cost (%) Peak (kW) Peak (%)
WoE WE WoE WE WoE WE WoE WE

Baseline 94 - - - 192 - - -
Selfish 109 110 -16.8 -17.5 197 206 -2.5 -7.6

Algorithm 1 75 78 20.1 16.6 167 171 13.0 10.8
Algorithm 2 74 77 20.8 18.3 160 163 16.4 15.2

However, for Baseline and Selfish Control, the battery
energy saved at the end of the day can still be used for next
day consumption, which introduces a bias in results compar-
ison. On the contrary, batteries can be fully discharged with
Algorithms 1&2 by providing energy to the neighborhood for
increasing self-benefit. To account for this fact, we perform an
annual simulation in Section V-C.

B. Daily Analysis with Forecasting Errors

We now consider the same day, but consider forecasting
errors. The percentage of prediction errors are calculated by
the symmetrical absolute percentage errors [30] for the aggre-
gated consumption (13.84%) and generation profiles (9.52%)
of the neighborhood. The cost and peak consumption results
for both with/without considering forecasting errors are given
in Table III, with absolute and percentage values. Percentages
are calculated with respect to Baseline results.

As expected, forecasting errors negatively impact all algo-
rithms for both cost and peak reduction efficiencies. However,
numerical results show that the proposed algorithms still
provide better performance compared to Baseline due to their
coordination and energy sharing ability.

C. Annual Results

In this section, annual results are determined for both
with/without considering forecasting errors. In Fig. 5, the
neighborhood cost and peak consumption without considering
forecasting errors are given for a year. For all algorithms, the
total peak and cost results exhibit differences due to changes
in PV generation during seasons. Although there is a slight
difference in the cost results, the proposed Algorithms 1&2
provide more benefits in lowering peak consumption during
summer than during winter.

To further analyze the performance of the algorithms,
numerical results are given in Table IV. Although Selfish

Control gives the worst results (−17%) and Algorithms 1&2
give the best results (20%) in one day simulation, Selfish Con-
trol achieves better performance with 0.5% and Algorithms
1&2 provide lower benefits with 2.8 − 3.3% in the annual
simulation. This shows that the saved energy in the battery
is used for next day consumption, as mentioned in Section
V-A; thus Selfish Control shows a slightly better performance
than Baseline in annual simulations. Reasons of the lowered
performance for Algorithms 1&2 include i) not enough PV
generation during the winter season, and ii) batteries are not
allowed to charge from the main grid.

Secondly, we compare the neighborhood average peak
consumption of the algorithms. It can be seen that Selfish
and Algorithms 1&2 lower the peak consumption of the
neighborhood more than Baseline. However, the change for
Selfish Control is insignificant.

Finally, we define three performance metrics to investigate
the success rates (SR) of the algorithms in details:

• SR-01 is the percentage of the smart homes which have
reduced their electricity bills.

• SR-02 is the percentage of the successful days for which
the neighborhood cost has been reduced.

• SR-03 is the percentage of the successful days for which
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Fig. 5. Annual neighborhood (a) peak consumption, (b) cost profiles of the
algorithms without considering forecasting errors.
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TABLE IV
ANNUAL ELECTRIC ENERGY MANAGEMENT WITH (WE) AND WITHOUT (WOE) FORECASTING ERRORS.

Cost (1000 x e) Cost (%) Avg. Peak (kW) Peak (%) SR-01 (%) SR-02 (%) SR-03 (%)
WoE WE WoE WE WoE WE WoE WE WoE WE WoE WE WoE WE

Baseline 69.05 - - - 206.0 - - - - - - - - -
Selfish 68.66 68.67 0.56 0.56 202.9 203.0 1.48 1.45 78 80 68.22 66.85 64.11 65.48

Algorithm 1 67.07 67.09 2.86 2.84 190.6 191.0 7.48 7.25 100 100 99.45 98.9 95.34 94.52
Algorithm 2 66.74 66.76 3.35 3.32 180.4 180.7 12.41 12.29 100 100 99.73 99.73 100 100

the neighborhood peak consumption has been reduced.
For SR-01, it can be seen that all smart homes succeed to

decrease their electricity bill with Algorithms 1&2, while with
Selfish Control, around 20 of the smart homes lost money. For
home energy management, all smart homes should earn some
benefit in return for their efforts. Users may otherwise not be
interested in active participation. In this respect, the presented
Algorithms 1&2 show 100% performance with coordination
and energy sharing by battery discharge in the neighborhood.
For SR-02, Algorithms 1&2 reduce the electricity cost almost
all days (∼ 360), while Selfish reaches ∼ 250 days. Lastly,
for SR-03, Algorithm 2 reduces peak consumption all days of
the year while Algorithm 1 decreases it for ∼ 350 days.

Overall, Algorithm 2 gives the best performance in terms
of cost and peak reduction, while Algorithm 1 shows slightly
lower performance. However, Algorithm 2 requires more
computation time (max. 1017 sec.) to coordinate the home
agent strategies compared to Algorithm 1 (max. 50 sec.). Up
to 100 smart homes, Algorithm 2 can solve the coordination
problem in acceptable time limits. However, for larger neigh-
borhoods (such as 1000 smart homes), Algorithm 1 seems
preferable. Lastly, Selfish Control is not an effective method
for scheduling and battery management in the neighborhood.

VI. DISCUSSION

This study has demonstrated that coordination with energy
sharing provides efficient electric energy management of smart
homes, even when considering forecasting errors. However,
several simplifying assumptions were made and challenges
remain. First, an important constraint is the hypothesis that
batteries cannot charge from the grid, hence the cost and peak
consumption reductions cannot be generalized. Therefore, as
there is less solar radiation in winter, the proposed algorithms
have less energy to share in the neighborhood. One can
also mention that numerical results (3.35% cost and 12.41%
average peak reduction) cannot be generalized as is, as they
depend on the market structure, end-users preferences and
irradiance profile, but the presented coordination algorithm
gives promising results on the annual scale (including for
extreme conditions), as shown by the various metrics.

Although the cost savings may seem limited, the potential
savings from the PAR reduction should also be considered,
e.g., through deferring utility investments. An increase in the
penetration rates of PV and batteries, as well as the integration
of electric vehicles with vehicle-to-home technology could
further increase these results. Moreover, the direct cost of the
coordination would be limited in terms of specific required

equipment, hence energy sharing would provide additional
benefits with a potentially short payback time. A detailed
analysis would however be necessary.

Moreover, smart homes only use the dynamic price cal-
culated by the aggregator during the optimization, hence they
cannot anticipate the effect of changing strategies on the price.
The reason is that home agents do not know the parameters
of the pricing scheme, as we assume that the utility and
the aggregator do not want to disclose their profit. As a
consequence, this may lead to a high number of iterations.
In our case, although the number of iterations never exceeded
the maximum limit (20), they tend to be higher on sunny days
due to the increased possibilities for energy sharing.

The possible avenues for further exploration of the studied
topic also include i) considering constraints on the distribution
grid, such as transformer and line capacity, ii) using empirical
data or a dedicated algorithm for forecasting, rather than
using simple Gaussian and Gamma distributions, iii) running
a sensitivity analysis to explore the impact of different PV and
battery sizing values, and iv) considering the capital costs for
PV and battery in a life cycle analysis.

VII. CONCLUSION

This paper has presented an energy management and shar-
ing strategy to reduce the electricity bills of consumers via
coordination of smart homes in a neighborhood. The pro-
posed algorithms aim to utilize neighborhood PV generation
efficiently by scheduling the use of resources (appliances,
batteries) and sharing energy among neighbors. Two types of
coordination methods are presented: group-based and turn-
based. Both models show good performance by reducing
cost and peak load. Between the coordination methods, for
an annual simulation, Algorithm 2 gives the best results
with 3.35% cost and 12.41% average peak reduction, while
Algorithm 1 achieves 2.86%, and 7.48%, compared to a
Baseline scenario.
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University, France. From 2000 to 2002 he has been
engineer at the L2ES Laboratory. He worked on
a prototype of hybrid truck for the French army.
In 2008, he received the Ph.D. degree in Electrical
Engineering from UTBM. Currently he is associate
professor within the Energy Department of UTBM.
He is conducting researches at the FEMTO-ST
laboratory. His research fields are the design and
the energy management of electric vehicles, plug-in

hybrid vehicles and fuel cell systems.
Abdellatif Miraoui (M’07-SM’09) received the
M.Sc. degree from Haute Alsace University, France,
in 1988, and the Ph.D. degree and the Habilitation to
Supervise Research from the University of Franche-
Comte, France, in 1992 and 1999 respectively. He
is the President of Cadi Ayyad University, Morocco.
He has been a Full Professor of electrical engineer-
ing (electrical machines and energy) at the Univer-
sity of Technology of Belfort-Montbéliard, France,
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