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Abstract— This paper addresses the problem of 3D path
following of magnetic helical microswimmers in closed-loop.
An error kinematic model in a local frame with sideslip and
attack angles is used to express the motion of the helical
microswimmer. A new derivation of the chained form with three
inputs and five states is used to linearize the kinematic model in
order to design a decoupled stable control. In experimentation,
the 3D path following is validated using a scaled-up magnetic
helical microswimmer with visual servo control by following
first a spatial straight line, then a helix trajectory and finally
an inclined sinusoidal trajectory. The closed-loop control is also
compared with the open-loop control to illustrate the robustness
and the accuracy of both controllers to the disturbances.

I. INTRODUCTION

Magnetic helical microswimmers present solutions to sev-
eral applications thanks to their microsize which gives them
the possibility of accessing complex environments. Since the
human body is transparent to magnetic fields, they can give
rise to minimally invasive medicine [1] such as targeted drug
delivery [2]. In the industrial area, microswimmers can be
used to sort, assemble and transport microobjects [3].

At low scale, swimming is characterized by low Reynolds
numbers (Re << 1) because viscosity forces dominate over
inertia forces. Consequently, reciprocal movement is not
suitable [4]. Helical microswimmers use a nonreciprocal
motion that consists of combining a corkscrew tail and
a rotating magnetic field in order to transform the rotary
motion into linear motion, like E. coli bacteria.

Most often, the task to be performed by a microswimmer
will be defined as a geometric path to follow, without any
specification of the velocity profile along that task, e.g.
through the drawing by a non-roboticist of a curve in the
workspace. In the mobile robotics community, this is referred
to as path following in opposition to trajectory tracking.
In this work, we focus on path following because it has better
performance with smoother convergence to the path [5].

In the literature, many researchers demonstrated a motion
control of microswimmers in plane and space using open-
loop control. For instance, [6] presented a curved U-turn
trajectory following with gravity compensation in the vertical
plane using a helical swimmer. Navigation in space using
a helical microswimmer was shown in [3] for pick-and-
place tasking. However during disturbances such as boundary
effects [7] or strong flow in blood vessel, the microswimmer
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drifts from the desired path and this results in a non-accurate
motion. To overcome the problem, Xu et al. proposed a
closed-loop control in [9] by following a straight line in
the horizontal plane with an altitude controlled in open-
loop using a scaled-up helical microswimmer. However, the
kinematic model developed in [9] is for planar path following
and is not adapted to following a path in 3D space.

This paper is motivated particularly by the applications
in 3D space for 5-DOF manipulation of biological cells,
for example inside human body where the 3D control in
closed-loop is necessary to bring the swimmer with high
precision to specific locations. Therefore, the contribution
of this paper is to extend the kinematic model in [9] to
a general path following algorithm taking into account the
gravity compensation and lateral disturbances. We model the
microswimmer in a local frame using the Serret-Frenet frame
with sideslip and attack angles. The desired motion will be
expressed in terms of path parameters (curvilinear abscissa,
curvature, torsion . . . ). A new derivation of the chained form
with five states and three inputs will be used to linearize
the model in order to design a decoupled stable controller.
Thus, the kinematic model in [9] will become a subset of
our general form model.

This approach is validated in experiments using a scaled-
up helical microswimmer (SHM) by following curves with
different curvatures and inclinations. The lateral displace-
ments caused mainly by boundary effects [7] and thermal
noises [10] are considered as disturbances. Moreover, the
apparent weight which is defined as the resultant of the
gravity and buoyancy forces is nonzero, thus creates a
downward drift [6]. The closed-loop control aims to correct
the drifting errors. In order to illustrate its accuracy and
robustness to these disturbances, the closed-loop control is
compared with the open-loop control.

This paper is organized as follows: section II describes the
3D error kinematic model of the helical swimmer using the
Serret-Frenet frame with sideslip and attack angles. Then,
section III shows the conversion of the kinematic model into
the chained form and the control law that allows the 3D
path following. Section IV presents the magnetic manipu-
lation system used to steer the helical swimmer wirelessly.
Section V shows the results obtained by applying the 3D
visual servo control on the prototype.

II. 3D KINEMATIC MODEL OF THE HELICAL SWIMMER

To control the helical swimmer, an error kinematic model
with the Serret-Frenet frame associated to the reference path
is used to express the desired motion in terms of the path
parameters. Besides, helical swimmers can be considered as



autonomous vehicles with nonholonomic constraints, since
they advance in the direction of their axis by converting the
rotary motion into linear motion.

The kinematics of the helical swimmer with nonholonomic
constraints are developed using an absolute global frame
U = { x y z } with origin O and a moving body frame
Bh = { xB yB zB} attached to the body of the swimmer lo-
cated at G the center of mass of the swimmer. The movement
of the swimmer is characterized by the inclination angle θi
and the direction angle θd . The first angle is formed between
the horizontal plane xOy and the axis of the swimmer and
the second angle is built between the x axis and the axis of
the swimmer projected in the horizontal plane xOy.

In order to compensate the weight of the swimmer and
lateral deviations mentioned above, the so-called wind frame
W= { xw yw zw } is introduced [11]. The xw axis is aligned
with the total linear velocity v of the helical swimmer as
shown in Fig. 1. The frame W is obtained by rotating the
Bh frame around yB through the attack angle α , then around
zB through the sideslip angle β .

The path to be followed is denoted by C (s) which is
described with the curvilinear coordinate s, the curvature and
torsion of the path respectively c and τ .

F = { xF yF zF } is the Serret-Frenet frame that moves
along the path C (s). xF and yF are respectively the tangent
and the normal to the path while zF represents the binormal
to the path and is given by the cross product of xF and yF.
F is characterized by the reference direction angle θdc and
the reference inclination angle θic

The goal of path following is to drive the linear distance
and orientation errors to zero. For that purpose, the following
state vector is defined:

q =


s
dy
θde
dz
θie

=


s
dy

θd−β −θdc
dz

θi−α−θic

 (1)

where dy and dz represent respectively the vertical and
horizontal distances between the swimmer center of mass G
and the point S closest to the path while θde and θie represent
respectively the direction and inclination angles errors.

The control inputs are the total linear velocity v for driving
and the angular velocities Ωy and Ωz for steering:

m =

 v
Ωy
Ωz

 (2)

As the propulsion of the helical swimmer is external, the
angular velocity Ωx along the swimmer axis is not con-
sidered. In addition, the error in roll does not perturb the
path following [12]. The number of inputs is less than the
number of degrees of freedom, which is a characteristic of
a nonholonomic system.

The position UGW of the helical swimmer in the global
frame U can be expressed as shown in Fig. 1 by:

UGW = USF + URF
FGW (3)

Fig. 1: 3D Path following of the helical swimmer.

where URF is the rotation matrix from F to U and USF is the
closest point on the path expressed in the global frame U.
Differentiating (3) with respect to the time and expressing it
in the Serret-Frenet frame gives:

FRW
WvW = FvF + FĠW + F

ωF × FGW (4)

where FRW is the rotation matrix from W to B using Euler
angles characterized by θde and θie while FvF and FωF are the
linear and angular velocities of frame F expressed in itself.

The relative angular velocity between the Serret-Frenet
frame F and W, expressed in frame W is given by:

W
ω

r
W,F = W

ωW − W
ωF (5)

Following [12] and using (4) and (5), the 3D error kine-
matic model of the helical swimmer can be expressed as:

ṡ =
v Cθde Cθie

1− c dy

ḋy = v Sθde Cθie + τ dz ṡ

ḋz = −v Sθie− τ dy ṡ

θ̇ie = Ωy Cβ −Ωz Sβ Sα− α̇ Cβ + τ ṡ Sθde

θ̇de = Ωz
Cα

Cθie
+ β̇

Cθie
− τ ṡ T θie Cθde− c ṡ

(6)

For ease of notation, we defined C· = cos(·), S· = sin(·)
and T · = tan(·). To check the validity of this model, we
calculated the projection of these equations in the horizontal
plane setting the variables dz, τ , α , θie and Ωy to zero, which
gave us the kinematic model used by Xu in [9] and Samson
in [13] for the planar path following of mobile robots.

III. CHAINED FORM AND CONTROL LAW

A. Chained form

The total linear velocity v of the helical swimmer is
not aligned with the propulsion velocity vp because of the
weight and lateral disturbances [6]. Therefore, to drive the
microswimmer to the path, the total linear velocity v should
be aligned with the tangent of the reference path. In other
words, the distances dy and dz and the orientations θde and
θie must be servoed to zero. For that purpose, a stable control
law is necessary:

(v, Ωy, Ωz) = f (dy, dz, θie, θde) (7)



The kinematic model of the helical swimmer formed by (6) is
nonlinear. In order to control this kind of system, a solution
consists in linearizing it around the equilibrium dy = dz =
θde = θie = 0. Samson has established an approach to convert
the models of planar mobile robots (unicycle, car-like, with
trailers) into linear models using a chained form with two
inputs and three states [13]. The conversion of multi-inputs
nonholonomic systems into the chained form is presented
in [14] for the fire truck example. Inspired by [13], [14]
and [15], we propose converting the kinematic model of the
helical swimmer into the following chained form with three
inputs and five states:

ẋ1 = u1, ẋ2 = x3 u1, ẋ3 = u2,
ẋ4 = x5 u1, ẋ5 = u3

(8)

where x = (x1,x2,x3,x4,x5)
T is the state vector and u =

(u1,u2,u3)
T is the input vector. The transformations of (6)

into the chained form are defined as:

x1 = s
x2 = dy
x3 = (1− c dy) T θde + τ dz
x4 = dz

x5 = (c dy−1) T θie C(θde)
−1− τ dy

(9)

and,
u1 = ṡ

u2 = γ21 Ωz + γ22

u3 = γ31 Ωy + γ32 Ωz + γ33

(10)

where γ21, γ22, γ31, γ32 and γ33 are scalars and are given in
the Appendix.

Therefore, the derivative of xi=1,..5 with respect to the
curvilinear abscissa s defines a system independent of the
total linear velocity v of the helical swimmer as follows:

x′1 = 1, x′2 = x3, x′3 = u12

x′4 = x5, x′5 = u13
(11)

with: x′3 =
ẋ3
ṡ = u2

u1

de f
= u12 and x′5 =

ẋ5
ṡ = u3

u1

de f
= u13.

The model (11) is clearly linear and time invariant (LTI) and
depends on the auxiliary control inputs u12 and u13.

B. Control

To reach and pursue the path, a simple state feedback
control law is used as follows:{

u12 =−kd1 x2− kt1 x3
u13 =−kd2 x4− kt2 x5

(12)

where kt1, kd1, kt2 and kd2 are the control gains and are
strictly positive. The closed-loop performance can be ad-
justed using these parameters.

Replacing (8) in (12) gives two decoupled 1-dimensional
2nd order systems:{

x′′2 + kt1 x′2 + kd1 x2 = 0

x′′4 + kt2 x′4 + kd2 x4 = 0
(13)

that independently converge to zero under appropriate gain
tuning.

Finally, using (9) leads to the convergence of the distances
dy and dz and the orientations θie and θde to zero. Thus, a
spatial path following is achieved.

C. Actuation

By knowing the position of the helical swimmer G and the
path parameters (curvilinear abscissa, curvature and torsion),
the control law on the steering angular velocities Ωy and Ωz
is computed using (10) and the new control (12) as follows:{

Ωz = (u2− γ22) γ
−1
21

Ωy =
(

u3− γ33− γ32 γ
−1
21 (u2− γ22)

)
γ
−1
31

(14)

with

u2 = u1 u12

= ṡ
(
−kd1 dy− kt1 (τ dz +(1− c dy)T θde)

)
and

u3 = u1 u13

= ṡ
(
−kd2 dz + kt1 (τ dy− (c dy−1)C(θde)

−1 T θie)
)

where ṡ is given in (6). The controller is asymptotically stable
when u1 = ṡ, the velocity along the path, is constant. In
addition, the path following and the total linear velocity are
decoupled, which is suitable for low Reynolds number en-
vironments in order to overcome obstacles and disturbances
with more accuracy [9].
As far as we know, the control law for 3D path following
of a helical swimmer in closed-loop is proposed for the first
time.

IV. MAGNETIC MANIPULATION SYSTEM

The proposed control law for 3D path following was ex-
perimentally tested using a scaled-up helical microswimmer
(SHM) with 14 mm length and 1 mm in diameter. The
use of the SHM facilitates the observation using regular
optical devices. In addition, the fabrication in large scale
is easier using a 3D printer. It also highlights the ability of
compensating drift (the weight, microfluidic flow at lower
scale).

In order to actuate the SHM wirelessly in space, a non
contact magnetic system composed of three pairs of coils in
Helmholtz configuration is used to generate a uniform rotat-
ing magnetic field in the center of the workspace (Fig. 2).
The magnetic torque T applied on the helical swimmer is
given by:

T = M×B (15)

where M is the magnetic moment of the SHM and B
the magnetic field. The magnetic torque tends to align the
magnetic moment with the applied magnetic field. Therefore,
with a rotating magnetic field and a helical tail, the SHM can
advance by converting its self-rotation into linear motion.

The magnetic field can be decomposed into a magnetic
field B⊥ perpendicular to the SHM axis and a magnetic field
B‖ parallel to the SHM axis [8]. The first vector yields the
open-loop self-rotation of the SHM and is given by:

B⊥ = B0 cos(2π f t) ũ+B0 sin(2π f t) ṽ (16)



Fig. 2: Magnetic manipulation system.

where B0 is the magnetic flux density in the center of the
workspace and ũ and ṽ are the basis vectors of the plane
perpendicular to the axis of the SHM.
The second vector yields the steering of the SHM in order
to reach the target orientation and can be expressed as [8]:

B‖ =−sign(B⊥ n∗) λ ‖ n×n∗ ‖ n (17)

where n and n∗ are respectively the real-time and desired
orientations of the SHM and λ is the control gain. The tuning
of this gain is empirical.

The position G and orientations of the swimmer are
reconstructed by stereovision. The SHM axis n is related
to the direction and inclination angles as follows:

n =
[

Sθi Cθi Sθd Cθi Cθd
]T (18)

B‖ is thus the ”actuator” associated to the steering angular
velocities Ωz and Ωy in (14), which are related to the desired
inclination and direction angles as follows:{

θ ∗d (t) = θd(t) + Ωz dt

θ ∗i (t) = θi(t) + Ωy dt
(19)

which is transformed into n∗ and fed into (18).
The total linear velocity of the helical swimmer is defined

as the linear velocity along the xw axis of the wind frame
W which is given as:

v =
1

Cα Cβ
vp (20)

where α and β are respectively the sideslip and attack angles
while vp is the propulsion velocity along the swimmer axis
xB, defined thanks to the so-called propulsion matrix [16].

V. EXPERIMENTAL RESULTS

A. 3D straight line

In this section, the 3D visual servo control developed
above is first tested on the prototype by following a horizon-
tal straight line. In this case, both the torsion and curvature
of the path are zero. The swimmer rotates in synchronization
with the rotating magnetic field at a frequency of f = 3.2 Hz.
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Fig. 3: The 3D straight line following with the control gains
of kt1 = 0.01, kd1 = 0.2, kt2 = 0.2 and kd2 = 0.3.

Fig. 3 depicts the 3D path followed by the SHM. The
reference path is drawn by a red line and the performed
path is in blue. Fig. 4 contains the horizontal and vertical
projections of theses paths.

The SHM is placed at a distance dy = 4.4 mm and
dz = 3 mm from the path with an initial orientation different
from zero in order to see how the SHM reacts to the large
distances. The multimedia attachment Video S1 shows the
top and side views of the straight line following of the
swimmer.
As can be seen in Fig. 3, the swimmer converges first to the
reference path, then pursues the along of the path.
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Fig. 4: The 3D straight line following.

When the swimmer reaches the desired path, the distances dz
and dy are maintained at zero. In the straight line following
realized by Xu in [9], the swimmer regulates the lateral
error to zero while the altitude is controlled in open-loop.
However, using the 3D controller proposed here, both the
altitude error and the lateral error are regulated to zero.

In the next section, a curve with constant curvature and
torsion will be tested.

B. Helix trajectory

A helix trajectory is generated in order to evaluate the
controller and the behavior of the swimmer on this kind of
path. The swimmer was initially placed near the desired path.
Fig. 5 plots the result of the 3D reconstruction by vision of
the SHM position and compares it to the reference path.

It can be noted that the swimmer follows the helix trajec-
tory despite the complexity of the path. The tracked swimmer
path in the horizontal and vertical planes is presented in
Fig. 6. Furthermore, the distance and orientation errors are
given in Fig. 7.



1

0

-1

-2

-3

-4

-10

-15 10

15

20

25

Fig. 5: The 3D reconstruction of the trajectory drawn by
the SHM while following a helix trajectory with the control
gains of kt1 = 0.004, kd1 = 0.05, kt2 = 0.3 and kd2 = 0.09.
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Fig. 6: The helix trajectory following.

The distance error dz is maintained to zero, as well as
the inclination orientation error θie in Fig. 7.b. However, the
distance error dy is also maintained to zero but the direction
orientation error θde is not zero, as shown in Fig. 7.b.
This can be explained by the fact that the environment
presents many lateral disturbances. The closed-loop control
compensates these disturbances by increasing the direction
angle. To estimate the accuracy, we compute the root-mean-

0 50 100 150 200

1.5
1

0.5
0

-0.5
-1

-1.5
-2

2

(a)

50 100 150 2000

1

0

-1

3

2

-2

-3

(b)

Fig. 7: Evolution of the distance errors (a) and the orientation
errors (b) during the helix trajectory following.

square (RMS) and standard deviation (SD) errors (TABLE I).
It can be seen that the accuracy of the path following is
submillimetric (1.4 % of the body length).

TABLE I: The helix trajectory errors.
Errors dy (µm) dz (µm) θde (rad) θie (rad)

RMS 83.4 199 0.349 0.151
SD 82.6 189 0.348 0.117

C. Inclined sinusoidal trajectory

Secondly, the controller was also evaluated in a more
complicated curve with variable curvature and inclination by
following an inclined sinusoidal trajectory. The 3D recon-
struction by vision of the SHM position is given in Fig 8.
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Fig. 8: The 3D reconstruction of the trajectory drawn by the
SHM while following an inclined sinusoidal trajectory with
the control gains of kt1 = 0.04, kd1 = 0.05, kt2 = 0.05 and
kd2 = 0.08.

The tracked swimmer path in the horizontal and vertical
planes is presented in Fig. 9.
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Fig. 9: The tracked SHM path while following an inclined
sinusoidal trajectory.

The multimedia attachment Video S2 shows the top and
side views of the inclined sinusoidal trajectory following of
the SHM. The swimmer follows along the path despite the
succession and complexity of curvatures. The distance RMS
errors during the trajectory following are 178 µm for dy and
396 µm for dz. The path following is still efficient.

In the next section, an experiment demonstrating the effect
of the lateral disturbances and the weight of the SHM in the
path following using the open-loop and closed-loop controls
is presented.

D. Open-loop vs closed-loop

The performance of the 3D control of the SHM depends
on the viscosity of the liquid, which in turn depends on
the temperature and also on the boundary effects caused by
the beaker wall. To illustrate the second effect, an open-
loop control is developed and compared with the closed-loop
control.

The swimmer is placed on the path without initial ori-
entation error. The desired path is along the x axis with
a constant altitude. In the horizontal plane (Fig. 10.a), the
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Fig. 10: Comparison between the open-loop control and the
visual servo control.

SHM advances along the x axis and we observe that using
the open-loop control, the SHM drifts from the reference
path because of lateral disturbances caused mainly by the
boundary effect, the friction between the swimmer and the
substrate, and the imperfection of the system. The error is
not corrected later. On the other hand, the closed loop con-
trol shows better performance despite the disturbances. The
swimmer pursues the path with more precision. The errors
during the closed-loop control are: RMS(dy) = 69.5 µm and
SD(dy) = 69.4 µm.

Concerning the altitude regulation in the vertical plane
(Fig. 10.b), the open loop control presents some overshoot
at the end of the trajectory whereas the closed loop control
regulates the altitude with more precision. The errors are:
RMS(dz) = 198.7 µm and SD(dz) = 182.5 µm. As a con-
clusion, the closed loop control presents better performances
in terms of precision in the presence of disturbances. At
low scales, the proposed approach could be interesting to
overcome the high flow in blood vessels or avoid obstacles
and transport microobjects accurately in lab-on-chips tasks.

VI. CONCLUSIONS

We have introduced a new approach to achieve, for the first
time, a 3D path following of a scaled-up helical microswim-
mer in closed-loop. The kinematic model of the SHM was
expressed in a local frame using the Serret-Frenet frame with
a new chained formulation to realize the control. The method
was validated and analyzed through experimental results by
following different curves (spatial straight line, helix and
inclined sinusoidal trajectories). This work presents a robust
solution to compensate the disturbances such as the boundary
effects which are significant at low scales.

APPENDIX

Here, we define the different parameters used in section III
to compute the inputs u2 and u3 in (10) :

γ21 = (1− c dy) Cα (Cθde)
−2 (Cθie)

−1

γ22 = β̇ (1− c dy) (Cθde)
−2 (Cθie)

−1 +
v

−1+ c dy

(
Cθie(

c(cdy−1)
Cθde

(
C(θde)

2−2
)
+
(

cτ dz +dy
d c
ds

)
Sθde

)
+
(

τ2 dy−dz
d τ

ds

)
Cθde Cθie +2τ(1− c dy)Sθie

)

γ31 = (−1+ cdy)Cβ C(θde)
−1 C(θie)

−2

γ32 = (1− cdy) (Cθde)
−1 (Cθie)

−2
(
Sα Sβ −Cα Sθie T θde

)
γ33 = (1− cdy)

(
α̇ Cβ − β̇ Sθie T θde

)
− vCθie

1− cdy

(
dy Cθde

d τ

ds

−dy T θie
d c
ds

+
(
dz τ +2(1− cdy)T θde

)(
τ Cθde + cT θie

))
γ22 depends on v and β̇ while γ33 depends on v, β̇ and α̇ .
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