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Abstract

The conditions for existence of solutions and stability, asymptotic and exponential, of a large class of boundary controlled systems
on a 1D spatial domain subject to nonlinear dynamic boundary actuation are given. The consideration of such class of control
systems is motivated by the use of actuators and sensors with nonlinear behavior in many engineering applications. These nonlin-
earities are usually associated to large deformations or the use of smart materials such as piezo actuators and memory shape alloys.
Including them in the controller model results in passive dynamic controllers with nonlinear potential energy function and/or non-
linear damping forces. First it is shown that under very natural assumptions the solutions of the partial differential equation with
the nonlinear dynamic boundary conditions exist globally. Secondly, when energy dissipation is present in the controller, then it
globally asymptotically stabilizes the partial differential equation. Finally, it is shown that assuming some additional conditions
on the interconnection and on the passivity properties of the controller (consistent with physical applications) global exponential
stability of the closed-loop system is achieved.
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1. Introduction

In many physical processes the effects produced by dis-
tributed phenomena cannot be neglected. This is for instance
the case for transmission lines, flexible beams and plates, tubu-
lar and nuclear fusion reactors and wave propagation to cite a
few. These processes are hence modelled using partial differ-
ential equations (PDE) in which state variables and parameters
are time and spatial dependent. In many relevant applications
the measurement and the actuation occurs on the spatial bound-
ary of the system, hence what the controller actually imposes
through the physical actuators are time varying boundary con-
ditions. Formally this class of control systems are called bound-
ary control systems (BCS).

In engineering applications BCS are often controlled using
localized actuators which exhibit nonlinear behavior. These
nonlinearities are for example related to large deformations of
compliant structures (nonlinear springs) in mechanical systems
or hysteresis behaviour of ferro and piezo electrical materials
in electro mechanical systems. This is for instance the case
of silicon made nanotweezers built up from beams which are
controlled using electrostatic comb drives and attached through
nonlinear silicon made suspensions (thin beams) (Boudaoud
et al., 2012), nonlinear fluid structure interaction, such as in
distributed control of vibro-acoustic systems through nonlinear
loudspeakers (Collet et al., 2009) or the stability characteriza-
tion of biomechanical processes such as the blood flow dynam-
ics in bio-prosthetic heart valves (Borazjani, 2013) or the vocal

cords dynamics (Ishizaka & Flanagan, 1972). The nonlinear
components are generally associated to nonlinear constitutive
laws of the driving forces, usually present in a potential energy
term and to nonlinear damping phenomena related to nonlinear
resistors and dampers, respectively.

In the linear case the existence of solutions, the stability and
the design of stabilizing controllers can be tackled using lin-
ear semigroup theory and the associated abstract formulation
based on unbounded input/output mappings (Curtain & Zwart,
1995). When asymptotic or exponential stability is concerned,
the main difficulty remains in finding the appropriate Lyapunov
function candidate to prove the stability. It is usually done on a
case by case basis using physical considerations depending on
the application field. When characterizing exponential stabil-
ity, contrary to asymptotic stability, the conditions insuring the
exponential convergence are quite rigid as the controller has
to damp infinitely high frequency as well as all low frequency
modes.

In the last decade an approach based on the extension of
the Hamiltonian formulation to open distributed parameter sys-
tems (van der Schaft & Maschke, 2002) has been developed for
modeling and control. It has been shown that distributed port-
Hamiltonian systems encompass a large class of physical sys-
tems, including mechanical, electrical, electro-mechanical, hy-
draulic and chemical systems to mention some. See Duindam
et al. (2009) for an extensive exposition and a large list of refer-
ences. Regarding the extension of the Hamiltonian formulation
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to stabilizing control of BCS, in the 1D linear case it gave rise
to the definition of boundary control port-Hamiltonian systems
(BC-PHS) (Le Gorrec et al., 2004) and allowed to parametrize,
by using simple matrix conditions, the boundary conditions that
define a well-posed problem (Le Gorrec et al., 2005). Different
variations around these first results can be found in (Villegas,
2007) and in (Jacob & Zwart, 2012). Well-posedness and sta-
bility have been investigated in open-loop and for static bound-
ary feedback control in (Zwart et al., 2010) and (Villegas et al.,
2005; Villegas et al., 2009) respectively, and linear dynamic
boundary control has been studied in (Macchelli et al., 2017;
Ramirez et al., 2014; Augner & Jacob, 2014; Villegas, 2007).

In this paper the results on existence of solution and stabili-
sation of linear dynamic boundary control of BC-PHS are gen-
eralized to the case of nonlinear boundary control. This class of
systems is of real practical interest since the controllers are of-
ten implemented with actuators and sensors with nonlinear be-
havior, due for instance to large deformations, the use of smart
materials or saturation phenomena. The same kind of prob-
lem has already been studied in (Miletić et al., 2016) and in
(Augner, 2016) from a theoretical point of view. In (Miletić
et al., 2016) LaSalle’s invariance principle is used and precom-
pactness of trajectories is established but asymptotic stability
was only shown for a dense set of initial conditions. In Augner
(2016) nonlinear contraction semigroups are used leading to
quite strong assumptions on the class of considered nonlineari-
ties. This approach differs from the methods that we use in this
paper, which are based on nontrivial extensions of the asymp-
totic and exponential stability results presented in Zwart et al.
(2016) and Ramirez et al. (2014), respectively, allowing to deal
with very large class of nonlinearities. More precisely, a general
class of passive boundary controllers, with nonlinear potential
energy function and damping matrix is considered. This class
of controllers encompasses mechanical, electrical and electro-
mechanical systems among others. First it is shown that un-
der natural assumptions on the nonlinear potential function and
damping matrix the solutions of the PDE with this class of non-
linear dynamic boundary conditions exist globally. Then, it is
shown that the most general form of this class of passive con-
trollers globally asymptotically stabilizes the closed loop sys-
tem (PDE + nonlinear ODE). Finally, it is shown that by re-
stricting the nonlinear potential energy to functions with quasi
quadratic bound and a full rank condition on the feedthrough
term of the controller global exponential stability is achieved.
The first part of this work, dealing with asymptotic stability,
has been illustrated on the particular example of pure nonlinear
damper in Zwart et al. (2016).

The paper is organized as follows. In Section 2 the definition
and main properties of the considered class of PDE and non-
linear dynamic boundary controller are given. The existence
and the uniqueness of the solutions of the PDE are established
in Section 3. The asymptotic stability is studied in Section 4
while the exponential stability is addressed in Section 5. Fi-
nally some concluding remarks and comments to future work
are given in Section 6.

2. Port-Hamiltonian systems with nonlinear boundary con-
trol

Throughout this article we assume that our distributed pa-
rameter system is modeled by a PDE of the following form

∂x
∂t

(t, ζ) = P1
∂

∂ζ
(H(ζ)x(t, ζ)) + (P0 −G0)H(ζ)x(t, ζ), (1)

with ζ ∈ (a, b), P1 ∈ Mn(R)1 a nonsingular symmetric matrix,
P0 = −P>0 ∈ Mn(R), G0 ∈ Mn(R) with G0 ≥ 0 and x tak-
ing values in Rn. Furthermore, H(·) ∈ L∞((a, b); Mn(R)) is a
bounded and measurable, matrix-valued function satisfying for
almost all ζ ∈ (a, b), H(ζ) = H(ζ)> and H(ζ) > mI, with m
independent from ζ.

For simplicityH(ζ)x(t, ζ) will be denoted by (H x)(t, ζ). For
the above PDE we assume that some boundary conditions are
homogeneous, whereas others are controlled. Thus we consider
two matrices WB,1 and WB,2 of appropriate sizes such that

u(t) = WB,1

[
(H x)(t, b)
(H x)(t, a)

]
(2)

and

0 = WB,2

[
(H x)(t, b)
(H x)(t, a)

]
. (3)

Furthermore, the boundary output is given by

y(t) = WC

[
(H x)(t, b)
(H x)(t, a)

]
. (4)

To study the existence and uniqueness of solution to the
above controlled PDE, we follow the semigroup theory, see
also (Le Gorrec et al. (2005); Jacob & Zwart (2012)). There-
fore we define the state space X = L2((a, b);Rn) with inner
product 〈x1, x2〉H = 〈x1,H x2〉 and norm ‖x‖H =

√
〈x, x〉H .

Note that due to the assumptions onH this is a norm on X and
equivalent to the L2 norm. Hence X is a Hilbert space. The
reason for selecting this space is that ‖ · ‖2

H
is related to the en-

ergy function of the system, i.e., the total energy of the system
equals E = 1

2 ‖x‖
2
H

. The Sobolev space of order p is denoted by
Hp((a, b),Rn).

Associated to the (homogeneous) PDE, i.e., to the case u(t) =

0, we define the operator Ax = P1
d
dζ (H x) + (P0 −G0)H x with

domain

D(A) =

{
H x ∈ H1((a, b);Rn)

∣∣∣∣ [(H x)(b)
(H x)(a)

]
∈ ker WB

}
,

where WB =
[

WB,1
WB,2

]
. For the rest of the paper we make the

following hypothesis.

Assumption 1. For the operator A and the pde (1)–(4) the fol-
lowing hold:

1. The matrix WB is an n × 2n matrix of full rank;
2. For x0 ∈ D(A) we have 〈Ax0, x0〉H ≤ 0.

1 Mn(R) denote the space of real n × n matrices
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3. The number of inputs and outputs are the same, k, and for
classical solutions of (1)–(4) there holds Ė(t) ≤ u(t)>y(t)
with E(t) = 1

2 ‖x(t)‖2
H

.

It follows from Assumption 1, points 1 and 2, that the sys-
tem (1)–(4) is a boundary control system (see Le Gorrec et al.
(2005); Jacob & Zwart (2012); Jacob et al. (2015)), and so for
u ∈ C2([0,∞);Rk), H x(0) ∈ H1((a, b);Rn), satisfying (2) and
(3) (for t = 0), there exists a unique classical solution to (1)–(4),
(Jacob & Zwart, 2012, Theorem 11.2). Thus for this dense (in
X) set of initial conditions and inputs, point 3 of Assumption 1
makes sense. We remark that the internal damping operator G0
will hardly play a role in the proof of the existence of solutions.
In Jacob et al. (2015) it is shown that item 2 of Assumption
1 implies that the same inequality holds with G0 = 0. When
stability is concerned, the worst case scenario corresponds to
G0 = 0, being the case G0 > 0 less restrictive.

There is a special class of systems for which Assumption 1
is directly satisfied. If k = n and if WB = WB,1 and WC satisfy

WBΣ̃W>B = WCΣ̃W>C = 0 WBΣ̃W>C = WCΣ̃W>B = I

with Σ̃ =

[
P−1

1 0
0 −P−1

1

]
, the change of energy of the system be-

comes (Le Gorrec et al., 2005; Jacob & Zwart, 2012)

Ė(t) = u>(t)y(t) − 〈G0(H x)(t, ·), x(t, ·)〉H .

Since the input and output act and sense at the boundary
of the spatial domain, in the absence of internal dissipation
(G0 = 0) the system only exchanges energy with the environ-
ment through the boundaries. In this case the BCS fullfils

Ė(t) = u>(t)y(t). (5)

Consider that the BCS is interconnected through its bound-
ary with a nonlinear finite dimensional controller in a power
preserving way i.e.,

u = r − yc,

y = uc,
(6)

with uc ∈ Rk, yc ∈ Rk the input and output of the controller,
respectively, and r ∈ Rk the new input of the closed loop sys-
tem. The feedback is illustrated in Figure 1. In what follows we
consider the regulation problem and for a sake of clarity focus
on r = 0.

Definition 2. Consider a nonlinear control system given by the
following state space representation

v̇1 = K2v2

v̇2 = − ∂P
∂v1

(v1)> − R(K2v2) + Bcuc

yc = B>c K2v2 + S cuc

(7)

where v1 ∈ Rnc , v2 ∈ Rnc , form the components of the state
vector, Bc ∈ Mk,nc (R), K2 ∈ Mnc (R), K2 = K>2 , K2 > 0, S c ∈

Mk(R) with S c = S >c and S c ≥ 0. Furthermore, ∂P
∂v1

is the
(Fréchet) derivative of the scalar-valued function P : Rnc 7→

[0,∞), i.e., ∂P
∂v1

: Rnc 7→ M1,nc (R). We assume that R and ∂P
∂v1

BC-PHS

Nonlinear ODE

-
y

ucyc

ur

Figure 1: Power preserving interconnection

are locally Lipschitz continuous functions. The Hamiltonian
(energy) associated to this system is given by

Ec(v1, v2) = P(v1) +
1
2

v>2 K2v2. (8)

All along this paper we use the term controller to refer to
the ensemble controller - sensors - actuators. In this context,
the above class of nonlinear controllers encompasses for exam-
ple mechanical actuators with nonlinear stiffness and/or damp-
ing, mechanical systems with saturations and electrical com-
ponents with nonlinear capacitance. These type of models are
frequently encountered in micro-mechanical systems, such as
micro-grippers and controlled flexible structures, or fluid struc-
ture interaction processes.

Since the nonlinear terms in the differential equation (7) are
locally Lipschitz continuous, it possesses for every initial con-
dition a unique (local) solution. Furthermore, the change of
energy along solutions satisfies

Ėc(t) = uc(t)>yc(t) − v2(t)>K2R(K2v2(t)) − uc(t)>S cuc(t). (9)

For the two systems being interconnected in the power pre-
serving manner (6), the closed-loop energy function Etot is
given by

Etot(t) = E(t) + Ec(t). (10)

The closed-loop system obtained by applying (6) can be writ-
ten as the abstract nonlinear differential equation

˙̃x = Ãx̃ + B̃ f (x̃) (11)

where

x̃ =

 x
v1
v2

 ,
the linear part equals

Ãx̃ =


P1

d
dζ (H x) + (P0 −G0)H x

K2v2

−Iv1 + BcWC

[
(H x)(b)
(H x)(a)

]


with domain

D(Ã) =

{
H x ∈ H1(a, b;Rn), v1, v2 ∈ Rnc

∣∣∣∣(H x)(b)
(H x)(a)

v2

 ∈ ker W̃D

 ,
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with

W̃D =

[
WB,1 + S cWC B>c K2

WB,2 0

]
,

B̃ =
[
0 0 I

]>
, and

f (x̃) = v1 −
∂P

∂v1
(v1)> − R(K2v2). (12)

As state space we choose X̃ = X×Rnc×Rnc with inner product
〈x̃1, x̃2〉X̃ = 〈x1,H x2〉+ 〈v11 , v12〉+ 〈v21 ,K2v22〉 and norm ‖x̃‖2 =

〈x̃, x̃〉X̃ . Using similar arguments as in Ramirez et al. (2014) and
in (Villegas, 2007, Chapter 5) the following is quickly shown.

Lemma 3. The linear operator Ã with its domain generates a
contraction semigroup on X̃. Moreover, Ã has a compact resol-
vent.

3. Existence of solutions

In this section it is shown that the closed-loop system is well
posed, i.e., that the closed-loop solutions exist locally. Under
some mild assumptions on the nonlinear potential energy func-
tion and damping matrix of the controller we show the global
existence of the solutions.

Assumption 4. The potential energy function P has a unique
minimum at v1 = 0, i.e., P(v1) > P(0) = 0 for v1 , 0. Fur-
thermore, P is radially unbounded. Thus if ‖v1‖ → ∞, then
P(v1)→ ∞.

That R represents damping is assumed next.

Assumption 5. The function R is a function of v2 and for all v2
it satisfies

v>2 K2R(K2v2) ≥ 0.

Remark 6. Notice that since K2 = K>2 > 0, Assumption 5 is
equivalent to

ṽ>2 R(ṽ2) ≥ 0, for all ṽ2.

Theorem 7. The system (11) satisfying Assumption 1 with the
nonlinear term (12) satisfying Assumptions 4 and 5 possesses
for every initial condition a unique mild solution which is uni-
formly bounded. Furthermore,

Etot(t) ≤ Etot(0)−
∫ t

0

[
(H x)(τ, b)
(H x)(τ, a)

]>
W>C S cWC

[
(H x)(τ, b)
(H x)(τ, a)

]
dτ

−

∫ t

0
v>2 (τ)K2R(K2v2(τ))dτ. (13)

Proof. Since f is a locally Lipschitz continuous function on
X̃, and since B̃ is a bounded linear mapping, it follows from
e.g. (Pazy, 1983, Chapter 6, Theorem 1.4) that for every initial
condition, the closed-loop equation possesses a unique mild so-
lution on some time interval [0, tmax). If the initial condition
is in the domain of Ã, then this mild solution is classical, see
(Zheng, 2004, Theorem 2.5.4).

Consider the total energy Etot of the system as given in (10),
then along classical solutions it holds

Ėtot(t) = Ė(t) + Ėc(t)
≤ u(t)>y(t) + uc(t)>yc(t) − v2(t)>K2R(K2(v2(t))
− y(t)S cy(t),

(14)

where we have used (5), (9) and (6). Integrating this expression
and using (4) we obtain (13). Since the domain of Ã forms a
dense set of the state space X̃, and since the solution depends
continuously on the initial condition, see (Zheng, 2004, Theo-
rem 2.5.1 and 2.5.4), we see that the above equality holds for
all initial conditions. So (13) is shown.

From the uniform boundedness of Etot(t), we see that E(t),
P(v1(t)) and v2(t)>K2v2(t) are uniformly bounded. Since K2 >
0, we have that ‖v2(t)‖ is bounded. Furthermore, since

√
2E(t)

equals the norm, see Assumption 1, the norm of the state x is
uniformly bounded. To conclude about the norm of the first
state of the finite dimensional controller, ‖v1‖

2, we observe that
by Assumption 4 we have thatP(v1(t)) bounded implies ‖v1(t)‖2

bounded as well. Now (Pazy, 1983, Chapter 6, Theorem 1.4)
gives that tmax = ∞, and so we have global existence and the
solution is uniformly bounded.

4. Asymptotic stability

In the previous section we have shown that under mild con-
ditions we have global existence of solutions. To prove asymp-
totic stability we need to impose a stronger condition on the
damping term R.

Assumption 8. For the damping we assume that there exist
positive constants δ, α, γ such that ṽ>2 R(ṽ2) ≥ α‖ṽ2‖

2 when
‖ṽ2‖ < δ and ṽ>2 R(ṽ2) ≥ γ when ‖ṽ2‖ ≥ δ (sector condition
near the origin).

For mechanical systems this means that for small velocities the
damping acts linearly and for large velocity the damping force
cannot go to zero. Hence it allows for saturation of the damping
force.

For asymptotic stability we also need that the derivative of
the potential energy, i.e., the force, is differentiable and its
derivative is bounded on bounded sets.

Assumption 9. Define the function g1 : Rnc → Rnc as g1(v1) =
dP
dv1

(v1)>. We assume that dg1
dv1

exists and maps bounded sets on
bounded sets.

Note that if dg1
dv1

is (locally) Lipschitz continuous, then the as-
sumption is satisfied.

Theorem 10. Consider the closed-loop system (11) and as-
sume that zero is the only equilibrium point of this equation
for which v2 = 0. If the system Σ(Ã, B̃, B̃∗, 0) is approximately
controllable or approximately observable on infinite time, and
Assumptions 1, 4, 5, 8, and 9 hold, then the system is globally
asymptotically stable.
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Before we prove this result we make some remarks. The
five references to previous assumptions are generally satisfied,
in the sense that they are in accordance with common physi-
cal nonlinearities known in the field of mechanical and electro-
mechanical systems. Hence they will pose no real restrictions
on the class of systems considered. The observability assump-
tion will strongly depend on the system at hand. Given our sys-
tem this condition can be rewritten as: The only mild solution
of

∂x
∂t

(t, ζ) = P1
∂

∂ζ
(H(ζ)x(t, ζ)) + (P0 −G0)H(ζ)x(t, ζ), (15)

satisfying

0 = WB,1

[
(H x)(t, b)
(H x)(t, a)

]
+ S cWC

[
(H x)(t, b)
(H x)(t, a)

]
, (16)

0 = WB,2

[
(H x)(t, b)
(H x)(t, a)

]
(17)

and

BcWC

[
(H x)(t, b)
(H x)(t, a)

]
(18)

constant, is the zero solution. From this it is easy to see that
if the uncontrolled system (1)–(4) is not observable, then so is
the system Σ(Ã, B̃, B̃∗, 0). In general the other implication will
hold as well.

Next we prove Theorem 10.

4.1. Proof of Theorem 10
For the proof of this theorem, we show that all the conditions

of Theorem 22 from Appendix A are satisfied, and so by that
theorem the result follows. For that purpose we consider that
Σ(A, B,C) is in Theorem 22 what is Σ(Ã, B̃, C̃) in what follows.

First by the weighted inner product on X̃ we have that

B̃∗ =
[
0 0 K2

]
.

We define C̃ =
[
0 I 0

]
, and with this we write f of (12) as

f (x̃) = −R(K2v2) + v1 −
∂P

∂v1
(v1)> = f0(B∗ x̃) + g(C̃ x̃). (19)

Secondly we show that f0(B∗ x̃) and B∗ x̃ are square integrable
functions.

Lemma 11. Under the conditions of Theorem 10 the functions
f0(B∗ x̃) and B∗ x̃ are square integrable.

Proof. Since Etot(t) is always positive, we conclude from (13)
that ∫ ∞

0
v2(t)>K2R(K2v2(t))dt < ∞. (20)

Let Ω1 := {t ∈ [0,∞) : ‖K2v2(t)‖ > δ} and Ω2 := {t ∈ [0,∞) |
‖K2v2(t)‖ ≤ δ}. So by the assumptions of R, see Assumption 8,
we obtain ∫

Ω1

v2(t)>K2R(K2v2(t))dt ≥ γµ(Ω1),

and so (20) implies that Ω1 has finite measure. Moreover,

∞ >

∫
Ω2

v2(t)>K2R(K2v2(t))dt ≥ α
∫

Ω2

‖K2v2(t)‖2dt.

Thus ∫ ∞

0
‖K2v2(t)‖2dt =

(∫
Ω1

+

∫
Ω2

)
‖K2v2(t)‖2dt < ∞.

Since K2v2(t) is bounded (see (13)) and R is (locally) Lips-
chitz, we find that R(K2v2(t)) is bounded. Combining this with
the fact that the measure of Ω1 is finite, we have∫

Ω1

‖R(K2v2(s))‖2ds < ∞.

For s ∈ Ω2 we have ‖K2v2(s)‖ ≤ δ and so∫
Ω2

‖R(K2v2(s))‖2ds ≤ L(δ)2
∫

Ω2

‖K2v2(s)‖2ds < ∞,

where L(δ) is the Lipschitz constant for elements in the ball with
radius δ. Combining the above inequalities gives that R(K2v2(·))
and hence f0(K2v2(·)) is a square integrable function.

Since C̃ x̃ = v1, and since v̇1 = K2v2, see (11), we have that v1
is absolutely continuous with a square integrable derivative, see
Lemma 11. Furthermore, by Assumption 9 and (19) we have
that g satisfies the corresponding conditions in Theorem 22.

The final property which we have to show is that the set V ,
see (A.2) contains only zero. The conditions in (A.2) precisely
gives that x∞ is an equilibrium solution on (11) which satisfies
v2 = 0. By assumption, x∞ = 0. Now all conditions of Theorem
22 are satisfied, and so Theorem 10 is shown.

5. Exponential stability

In this section we characterize the conditions for exponential
stability of the closed-loop system. Before presenting the main
theorem of this section we derive some input/output properties
of the controller. We shall now consider stronger assumptions
on the finite dimensional control system. Specifically, we shall
consider some quasi-quadratic bounds of the energy related to
the nonlinear potential energy and the dissipation matrix.

Assumption 12. There exist constants δ1, δ2 > 0 such that for
all v1 ∈ Rn holds

vT
1
∂P

∂v1
(v1) ≥ δ1P(v1) ≥ δ2‖v1‖

2.

Assumption 13. There exist constants ε1, ε2 > 0 such that for
all ṽ2 ∈ Rn holds

ṽT
2 R(ṽ2) ≥ ε1‖ṽ2‖

2 ≥ ε2‖R(ṽ2)‖2.

We also need, for the exponential stability proof, assumptions
on the number of actuated inputs and outputs and on the strict
positivity of the feedthrough term of the controller in order to
cope with high frequencies.
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Assumption 14. The k input/output of the system are chosen
such that

‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖H x(t, b)‖2(
or ‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖H x(t, a)‖2

)
Assumption 15. The controller is strictly input passive. The
feedthrough term of the controller is strictly positive i.e. S c > 0.

Assumptions 12 and 13 refer to the class of admissible nonlin-
earities. We observe however that the class of nonlinearities is
still very general and encompasses a large class of nonlinear
mechanical and electro-mechanical actuators, including satura-
tions actuators with saturation. The other assumptions refer to
dissipation properties of the infinite dimensional system and of
the finite dimensional controller. These are standard assump-
tions, and are moreover the same that are required for the expo-
nential stabilization of BC-PHS with linear dynamic boundary
control (Ramirez et al., 2014). The first one comes from the fact
that a part of the boundary port variables of the infinite dimen-
sional system can be set to zero (and hence not used for the in-
terconnection). Hence Assumption 14 imposes that the energy
flowing through any of the boundaries is bounded by the en-
ergy flowing in/out through the inputs/outputs. Assumption 15
on other hand establishes that the finite dimensional controller
is strictly input passive. These assumptions are not necessary
for the asymptotic stability but are necessary for the exponen-
tial stability since the controller has to damp infinitely high fre-
quency as well as all low frequency modes, which represents a
strong constraint from a control perspective.

5.1. Some properties of the controller

The following inequalities for v,w ∈ Rn and α > 0 shall be
used frequently

−α2‖v‖2 −
1
α2 ‖w‖

2 ≤ v>w + w>v

≤ α2‖v‖2 +
1
α2 ‖w‖

2.

(21)

Notice that the previous relations hold since ‖αv ± 1
α

w‖2 ≥ 0.
The following lemmas follow from Definition 2 and Assump-
tion 12.

Lemma 16. For the function

V(v) := Ec + γv>1 v2 = P(v1) +
1
2

v>2 K2v2 + γv>1 v2 (22)

there exists a constant γ0 > 0 and constants 0 < q1 < q2, which
may depend on γ0, such that for all γ ∈ (0, γ0) there holds

q1V ≤ Ec ≤ q2V. (23)

Proof. using (21) the cross term in (22) can be bounded as

γv>1 v2 ≤
1
2

(
γ2‖v1‖

2 + ‖v2‖
2
)
.

Hence

V(v) ≤ P(v1) +
1
2
γ2‖v1‖

2 +
1
2

v>2 K2v2 +
1
2
‖v2‖

2

≤

[
1 +

1
2
γ2 δ1

δ2

]
P(v1) +

1
2

[
1 + ‖K2‖

−1
]

v>2 K2v2,

where we have used Assumption 12 and that K2 > 0. Hence
there exists a q̃1 > 0 such that for all γ ∈ (0, γ0)

V ≤ q̃1Ec.

For the other implication, we use that

γv>1 v2 ≥ −
1
2

(
γ2‖v1‖

2 + ‖v2‖
2
)
.

Similarly, as above we find

V(v) ≥
[
1 −

1
2
γ2 δ1

δ2

]
P(v1) +

1
2

[
1 − ‖K2‖

−1
]

v>2 K2v2,

Hence there exists a q̃2 > 0 such that for all γ ∈ (0, γ0)

V ≤ q̃2Ec.

Combining these results gives (23).

Lemma 17. There exist positive constants κ2, κ4 and κ3 such
that for all τ > 0 the energy of (7) satisfies:

Ec(τ) ≤ κ1(τ)Ec(0) + κ3

∫ τ

0
‖uc(t)‖2dt (24)

where κ1(τ) = κ4e−κ2τ. Furthermore, there exist positive con-
stants ξ1 and ξ2 such for all τ > 0 the energy of (7) satisfies∫ τ

0
Ec(t)dt ≤ ξ1Ec(0) + ξ2

∫ τ

0
‖uc(t)‖2dt (25)

Proof. Consider the function V from Lemma 16, where we
assume that γ ∈ (0, γ0). Taking the time derivative of V and
using that K2 = K>2 , one has

V̇ =
∂P

∂v1

>

v̇1 + v>2 K>2 v̇2 + γv̇>1 v2 + γv>1 v̇2

=
∂P

∂v1

>

K2v2 + v>2 K2

(
−
∂P

∂v1
− R(K2v2) + Bcuc

)
+ γv>2 K2v2 + γv>1

(
−
∂P

∂v1
− R(K2v2) + Bcuc

)
= − vT

2 K2R(K2v2) + vT
2 K2Bcuc + γvT

2 K2v2

− γvT
1
∂P

∂v1
− γvT

1 R(K2v2) + γvT
1 Bcuc
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Using (21), Assumption 12 and Assumption 13

V̇ ≤ − ε1 ‖K2v2‖
2 +

α2
1

2
‖K2v2‖

2 +
1

2α2
1

‖Bcuc‖
2

+ γv>2 K2v2 − γδ1P(v1)

+ γ
α2

2

2
‖v1‖

2 + γ
1

2α2
2

‖R(K2v2)‖2

+ γ
α2

3

2
‖v1‖

2 + γ
1

2α2
3

‖Bcuc‖
2

≤

−ε1 +
α2

1

2
+ γ

∥∥∥K−1
2

∥∥∥ +
γε1

2α2
2

 ‖K2v2‖
2

+

−γδ1 + γ

(
α2

2 + α2
3

)
2

δ1

δ2

P(v1)

+

 1
2α2

1

+
γ

2α2
3

 ‖Bcuc‖
2 .

Considering α1, α2, α3 � 1, and γ � 1 the following inequality
holds

V̇ ≤ −κ2V + κ3 ‖uc‖
2 (26)

where κ2, κ3 are two positive constants. This implies that

d
dt

(
eκ2tV

)
≤ κ3eκ2t‖uc(t)‖2. (27)

Integrating this relation over t ∈ [0, τ] and rearranging terms

V(τ) ≤ e−κ2τV(0) +

∫ τ

0
κ3eκ2(t−τ)‖uc(t)‖2dt. (28)

Using Lemma A.6.6 from (Curtain & Zwart, 1995, p. 638), we
have that

∫ τ

0 κ3eκ2(t−τ)‖uc(t)‖2dt ≤ κ3
∫ τ

0 ‖uc(t)‖2dt. Using once
more the inequality (23), inequality (24) follows. For (25), in-
tegrate (26), to obtain

V(τ) − V(0) ≤ −κ2

∫ τ

0
V(t)dt + κ3

∫ τ

0
‖uc(t)‖2dt

⇒ κ2

∫ τ

0
V(t)dt ≤ V(0) − V(τ) + κ3

∫ τ

0
‖uc(t)‖2dt

⇒

∫ τ

0
V(t)dt ≤ 1

κ2
V(0) +

κ3
κ2

∫ τ

0
‖uc(t)‖2dt.

(29)

By (23), inequality (25) follows.

5.2. Exponential stability of the closed-loop system
Following (Villegas et al., 2009; Ramirez et al., 2014), the

objective is to interconnect (7) at the boundaries with (1), as
shown in Figure 1, such that the closed-loop system is expo-
nentially stable. In Ramirez et al. (2014) it is shown that if
the finite-dimensional control system is linear, strictly input-
passive and exponentially stable, then the closed-loop system is
exponentially stable. In the present case a nonlinear finite di-
mensional controller is considered, hence the arguments used
in Ramirez et al. (2014), based on the existence of a contraction
semi-group, cannot directly be applied.

To prove the main theorem some estimates and a technical
lemma are derived. The estimates are presented in the following
lemma.

Lemma 18. The energy of the interconnected system satisfies

Ėtot(t) = −v>2 K2R(K2v2) − u>c S cuc, (30)

Furthermore, the output yc satisfies for some real constant δ2 >
0,

‖yc‖
2 ≤ δ2

[
v>2 K2R(K2v2) + ‖uc‖

2
]
. (31)

Proof. Recalling that Etot = 1
2 ‖x(t)‖2

H
+ Ec and from (5), (7)

and (8), we have

Ėtot =u>y +
∂Ec

∂v

>

(v)v̇

=u>y − v>2 K2R(K2v2) + u>c yc − u>c S cuc,

Using the definition of the power preserving feedback (6) we
obtain (30). The estimate (31) follows from the definition of yc

combined with (21).
Lemma 18 is a measure of passivity of the interconnected

system. It shows that the closed-loop solutions will be nonin-
creasing with respect to the total energy. The following lemma
gives a bound on the total energy of the interconnected system.

Lemma 19. (Ramirez et al., 2014) Consider a BCS defined by
the interconnexion (6) of systems (1) and (7) with r(t) = 0, for
all t ≥ 0. Then, the energy of the system Etot(t) = 1

2 ‖x(t)‖2
H

+

Ec(t) satisfies for τ large enough

Etot(τ) ≤ c(τ)
∫ τ

0
‖(H x)(t, b)‖2dt +

2c(τ)
c1

∫ τ

0
Ec(t)dt,

Etot(τ) ≤ c(τ)
∫ τ

0
‖(H x)(t, a)‖2dt +

2c(τ)
c1

∫ τ

0
Ec(t)dt,

(32)

where c1 is a positive constant and c(τ) is a positive function
only depending on τ satisfying c(τ)→ 0 for τ→ ∞.

Proof. The proof in Ramirez et al. (2014) uses the contraction
property of the semi-group generated by the interconnection of
a BCS and a linear finite-dimensional controller to establish
Etot(t2) ≤ Etot(t1). In the present case, since the controller is
nonlinear, the interconnection does not define a semi-group in
the sense of Ramirez et al. (2014). However, Etot(t2) ≤ Etot(t1)
follows from Lemma 18, hence the proof follows identically to
Ramirez et al. (2014) by taking this last point into considera-
tion.

The following theorem presents the main result of the sec-
tion, namely the exponential stability of BCS subject to the
class of nonlinear dynamic boundary controller of Definition
2. The proof of the theorem follows a similar reasoning to the
proof of Theorem IV.2 in Ramirez et al. (2014). However, since
a nonlinear controller is considered in the present case, lemmas
17, 18 and 19, are necessary to complete the proof.

Theorem 20. Under the assumptions 12, 13, 14, and 15 the
power preserving interconnection (6) of systems (1) and (7),
with r(t) = 0, is exponentially stable.

Proof. See Appendix B.
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6. Conclusion

The existence of solutions and stability properties of bound-
ary controlled port-Hamiltonian systems (BC-PHS) defined on
a 1D spatial domain with a class of nonlinear dynamic bound-
ary control (conditions) have been characterized. The con-
troller is assumed to be passive, with nonlinear (locally) Lips-
chitz continuous potential energy function and damping matrix.
This definition of the finite dimensional dynamic controller en-
compasses a large class of nonlinear mechanical, electrical and
electro-mechanical systems, which are moreover typical actu-
ators in physical applications described by partial differential
equations (PDE).

First it has been shown that the solutions of the BC-PHS
with the nonlinear dynamic boundary conditions exist globally.
Then under some nonrestrictive assumptions on the energy as-
sociated to the nonlinear potential energy function and damping
matrix, which for instance allow for saturation of the damping
force, it is shown that the controller globally asymptotically sta-
bilizes the BC-PHS. Finally, exponential stability is established
by assuming that the BC-PHS satisfies a standard passivity re-
lation and the following properties on controller 1) the energy
related to the nonlinear potential energy and the dissipation ma-
trix possesses some quasi-quadratic bounds 2) there is a strictly
positive feed-through term in order to cope with high frequen-
cies.

The results of this paper are nontrivial extensions of the re-
sults presented in Zwart et al. (2016) and Ramirez et al. (2014).
Indeed, regarding existence of solutions and exponential sta-
bility for the case of linear boundary control, neither the well-
posedness nor the stability can be established by using linear
semigroup theory nor LaSalle’s invariance principle in the case
of nonlinear dynamic boundary control.

Future work shall deal with dynamic boundary control of
BC-PHS defined on higher dimensional spatial domains.
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Appendix A. General results

In this section we present a general result, which we need for
the asymptotic stability of our controlled system. We begin by
quoting a theorem from Oostveen (Oostveen, 2000, Chapter 2).

Theorem 21. Let Z, U be Hilbert spaces, B ∈ L(U,Z) and A
the infinitesimal generator of a contraction C0-semigroup. As-
sume that A has compact resolvent, and that the state linear
system Σ(A, B, B∗, 0) is approximately controllable or approxi-
mately observable on infinite time. Then

a. for all κ > 0, the operator A − κBB∗ generates a strongly
stable semigroup, T−κBB∗ (t);

b. the closed-loop system Σ(A−κBB∗, B, B∗, 0) is input stable,
i.e., for u ∈ L2((0,∞); U)

‖

∫ ∞

0
T−κBB∗ (s)Bu(s)ds‖2 ≤

1
2
‖u‖2L2((0,∞);U).

c. for all u ∈ L2((0,∞); U) we have∫ t

0
T−κBB∗ (t − s)Bu(s)ds→ 0 as t → ∞.

Hence the above theorem gives that if we perturb the system
ẋ(t) = (A − BB∗)x(t) by a square integrable input, then the tra-
jectory still converges to zero. This we apply to the following
nonlinear abstract differential equation

ẋ(t) = (A − BB∗)x(t) + B f (B∗x(t)) + Bg(Cx(t)), x(0) = x0.
(A.1)

Theorem 22. Let Z, U and Y be Hilbert spaces, B ∈ L(U,Z),
C ∈ L(Z,Y) and A the infinitesimal generator of a contrac-
tion C0-semigroup. Assume that A has compact resolvent, and
that the state linear system Σ(A, B, B∗, 0) is approximately con-
trollable or approximately observable on infinite time and B is
injective. Furthermore, assume that the (nonlinear) functions
f : U 7→ U and g : Y 7→ U are locally Lipschitz continuous,
with f (0) = 0, and dg

dy is bounded on bounded sets.
Let x(t) be a bounded solution of (A.1) such that

B∗x(·), f (B∗x(·)) ∈ L2([0,∞); U), Cx(t) is absolutely contin-
uous on [0, τ) for every τ > 0 and its derivative lies in
L2([0,∞); Y). Then the solution x(t) converges to the set V,
defined as

V = {x∞ ∈ D(A) | Ax∞ + Bg(Cx∞) = 0 and B∗x∞ = 0}, (A.2)

as t → ∞.

Proof. We know that the solution is given by

x(t) = T−BB∗ (t)x0 +

∫ t

0
T−BB∗ (t − s)B f (B∗x(s))ds+∫ t

0
T−BB∗ (t − s)Bg(C(x(s))ds.

By the assumptions and our previous result we know that the
first two terms converge to zero, and so we concentrate on the
last term. We denote by y(t) the signal Cx(t). By integrating by
parts we find∫ t

0
T−BB∗ (t − s)Bg(Cx(s))ds

=
[
−(A − BB∗)−1T−BB∗ (t − s)Bg(Cx(s))

]s=t

s=0
+

(A − BB∗)−1
∫ t

0
T−BB∗ (t − s)B

dg
dy

(y(s))ẏ(s)ds

= − (A − BB∗)−1Bg(Cx(t))+

(A − BB∗)−1T−BB∗ (t)Bg(Cx(0))+ (A.3)

(A − BB∗)−1
∫ t

0
T−BB∗ (t − s)B

dg
dy

(y(s))ẏ(s)ds.
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By the boundedness of x, we have that y(t) is bounded, and thus
by the assumption on dg

dy we see that

ũ(s) :=
dg
dy

(y(s))ẏ(s)

lies in L2([0,∞); U). So by Theorem 21.c the integral term in
(A.3) converges to zero as t → ∞. Combining this with the
strong stability of T−BB∗ (t), we see that for t large

x(t) ≈
∫ t

0
T−BB∗ (t − s)Bg(y(s))ds

≈ − (A − BB∗)−1Bg(y(t)). (A.4)

Let tn, n ∈ N be an unbounded sequence in [0,∞). Since y(tn)
is bounded, and (A − BB∗)−1 is compact, we have that there ex-
ists a sub-sequence such that −(A − BB∗)−1Bg(y(tn)) converges
along this sub-sequence. We denote this sub-sequence again by
tn. From (A.4), we see that x(tn) converges as n → ∞. We de-
note this limit by x∞. Since C is a bounded operator and g is
continuous, we find by (A.4) that

x∞ = −(A − BB∗)−1Bg(Cx∞).

Hence x∞ ∈ D(A), and

0 = (A − BB∗)x∞ + Bg(Cx∞). (A.5)

Since we could have done the same argument with A − BB∗

replaced by A− 2BB∗ and f (B∗x) replaced by f (B∗x) + B∗x, we
see that x∞ also satisfies

0 = (A − 2BB∗)x∞ + Bg(Cx∞).

By the injectivity of B, this implies that B∗x∞ = 0. Combining
this with (A.5), we conclude that x∞ lies in V .

Appendix B. Proof of Theorem 20

Proof. Let σ > 0 be such that S c ≥ σI. By Lemma 18 the
time derivative of the total energy satisfies

Ėtot = −v>2 K2R(K2v2) − u>c S cuc

≤ −v>2 K2R(K2v2) − σu>c uc, since S c ≥ σI

= −v>2 K2R(K2v2) − σε1u>c uc − σε2u>c uc

= −v>2 K2R(K2v2) − σε1‖uc‖
2 − σε2‖y‖2

= −v>2 K2R(K2v2) − σε1‖uc‖
2 + σε2‖u‖2

− σε2

(
‖y‖2 + ‖u‖2

)
with ε1 + ε2 = 1, εi > 0, i ∈ {1, 2}, and where we have used that
uc = −y. From Assumption 14 the following inequality holds

‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖H x(t, b)‖2

for some ε > 0. Using this bound we have

Ėtot ≤ −v>2 K2R(K2v2)

− σε1‖uc‖
2 − σε2ε‖H x(t, b)‖2 + σε2‖yc‖

2. (B.1)

Integrating this equation from t = 0 to τ, with τ large enough
such that Lemma 19 holds, we have

Etot(τ) − Etot(0) ≤ −
∫ τ

0
v2(t)>K2R(K2v2(t))dt+∫ τ

0
− σε1‖uc(t)‖2 − σε2ε‖H x(t, b)‖2 + σε2‖yc(t)‖2dt,

and using Lemma 19

Etot(τ) − Etot(0) ≤ −
∫ τ

0
v2(t)>K2R(K2v2(t))dt + σε1‖uc‖

2dt

+
σε2ε

c(τ)

(
2c(τ)

c1

∫ τ

0
Ec(t)dt − Etot(τ)

)
+ σε2

∫ τ

0
‖yc‖

2dt.

Grouping terms we have that

Etot(τ)
(
1 +

σε2ε

c(τ)

)
− Etot(0) ≤

−

∫ τ

0
v2(t)>K2R(K2v2(t))dt − σε1

∫ τ

0
‖uc(t)‖2dt

+σε2

(∫ τ

0

2ε
c1

Ec(t) + ‖yc(t)‖2dt
)
.

Defining δ1 = 2ε
c1

and using Lemma 18, we have

Etot(τ)
(
1 +

σε2ε

c(τ)

)
− Etot(0) ≤

(σε2δ2 − 1)
∫ τ

0
v2(t)>K2R(K2v2(t))dt + σε2δ1

∫ τ

0
Ec(t)dt

+ σ(ε2δ2 − ε1)
∫ τ

0
‖uc(t)‖2dt. (B.2)

Now, using (25) from Lemma 17 we obtain

Etot(τ)
(
1 +

σε2ε

c(τ)

)
− Etot(0) ≤

(σε2δ2 − 1)
∫ τ

0
v2(t)>K2R(K2v2(t))dt + σε2δ1ξ1Ec(0)

σ(ε2(δ2 + δ1ξ2) − ε1)
∫ τ

0
‖uc(t)‖2dt.

Since Ec(0) ≤ Etot(0) and ε2 may be chosen to be arbitrarily
small, i.e, ε2 � 1 with ε1 = 1 − ε2, we finally have that(

1 +
σε2ε

c(τ)

)
Etot(τ) ≤ (1 + σε2δ1ξ1)Etot(0). (B.3)

Since c(τ) converges to zero for τ → ∞, we can find a τ suffi-
ciently large, such that Etot(τ) ≤ c2Etot(0) with c2 < 1, which
proves the theorem.
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