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Abstract: In this work irreversible port-Hamiltonian systems are used to derive a passivity
based controller which shapes the total energy of a non-isothermal reaction network and renders
it asymptotically stable with respect to a desired dynamic equilibrium configuration. The closed-
loop system is in IPHS form, hence it can be identified with a desired reaction network and
the control parameters are related with thermodynamic variables, such as the reaction rates.
A complex reaction network is used to illustrate the approach: the van der Vusse reaction
mechanism.
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1. INTRODUCTION

Reaction network refers to multiple reactions, like chemi-
cal, biochemical, biological etc., occurring simultaneously
in a reactor. Most studies consider mainly closed isother-
mal operation conditions, thus focussing on the dynamics
of the interconnected mass balance laws in a closed envi-
ronment, i.e., without control. Furthermore, most studies
consider stability analysis with respect to the thermody-
namic equilibrium. This is however an unrealistic scenario
since thermal gradients are one of driving forces of the
reactions, for instance industrial processes are open and
designed to operate away from the thermodynamic equilib-
rium. An irreversible thermodynamic approach to model
and analyse reaction networks is hence necessary for a
deeper understanding of their non-equilibrium dynamics.
The works of Oster and Perelson (1974a,b) were pioneers
in introducing network thermodynamics for the analysis
of irreversible reaction networks. A different approach is
to characterize the network by linear graphs and/or its
underlying geometric structure Horn and Jackson (1972);
Feinberg (1987); Angeli (2009). In this direction the works
of Hangos et al. (2001); Otero-Muras et al. (2008) express
isothermal reaction networks as locally dissipative systems
with respect to virtual energy and entropy functions. In
van der Schaft and Maschke (2010) port-Hamiltonian sys-
tems (PHS) (Duindam et al., 2009) are used to propose a
control system representation for open reaction networks
and in van der Schaft et al. (2013) the geometric struc-
ture of the network is explored relating it with graph
theory and some virtual energy and entropy function to
study stability and model reduction. Irreversible port-
Hamiltonian systems (IPHS) (Ramirez et al., 2013a) ex-
press as a structural property , just like standard port-
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Hamiltonian systems, the conservation of energy, but in
addition they also express the second law of Thermody-
namics: the irreversible production of entropy. The first
formulation of non-isothermal chemical reaction networks
as IPHS was presented in Ramirez et al. (2014). Recently
in (Ramirez et al., 2016) a constructive passivity based
control method, which can be interpreted as interconnec-
tion and damping assignment - passivity based control
(IDA-PBC) Ortega et al. (2002) for thermodynamic sys-
tems, has been proposed for IPHS. In this work we extend
the results of (Ramirez et al., 2016) to deal with chemical
reaction networks. To this end the IPHS formulation is
used to derive a passivity based controller which shapes
the total energy of a non-isothermal reaction network and
render it asymptotically stable with respect to a desired
dynamic equilibrium configuration. The closed-loop sys-
tem is in IPHS form, hence it can be identified with a
desired reaction network and the control parameters are
related with thermodynamic variables, such as the reaction
rates. A complex reaction network is used to illustrate
the approach: namely the van der Vusse reaction mech-
anism (Niemiec and Kravaris, 2003). Since the model is a
simplification (in terms of constant reaction enthalpies) of
a thermodynamical model, a linearization assumption on
the gradient of the availability function allows to derive
a globally stabilizing controller directly from the van der
Vusse model. Numerical simulation are performed to show
the effectiveness of the proposed control. The paper is
organized as follows: Section 2 recalls the definition of
non-isothermal chemical reaction netwroks. In Section 3
we present the IPHS formulation of chemical reaction net-
works. Section 4 presents the asymptotic stability result.
In Section 5 the approach is applied to the Van der Vusse
reactor. Finally Section 6 gives some closing remarks and
comments on future work.



2. CHEMICAL REACTION NETWORKS

Let us first consider a single reaction in a continuous
stirred tank reactor with the following reversible reaction
scheme

m∑
i=1

αiAi
r−⇀↽−

m∑
i=1

βiAi

with αi, βi being the constant stoichiometric coefficients
for species Ai in the reaction. The time variation of the
species in the reactor is given by Aris (1989)

ṅi = Fei − Fsi + riV i = 1, . . . ,m (1)

where ni is the number of moles of the species i, (and n

the vector n = (n1, . . . , nm)
>

). All reactions are assumed
to be reversible, with reaction rates obeying the mass
action law Horn and Jackson (1972); Feinberg (1987)
ri = ν̄ir where r (n, T ) is the reaction rate which is
the difference of the forward reaction rate rf and the
backward reaction rate rb: r = (rf − rb) and depends on
the temperature and on the reactant mole number, ν̄i is
the signed stoichiometric coefficient: ν̄i = αi − βi, and is
positive or negative depending on whether the species i
is a product or a reactant in the reaction. Fei and Fsi

are respectively the inlet and outlet molar flows (and Fe

the vector Fe = (Fe1, . . . , Fem)
>

). Following the usual
assumptions Aris (1989); Favache and Dochain (2009), V
the volume in the reactor is assumed to be constant as well
as the pressure. The dynamic evolution of the mole balance
can then be represented by a set of ordinary differential
equations which in compact matrix form is written as

ṅ = CrV + Fe − Fi (2)

where C is a m× 1 is called the stoichiometric vector, and
whose elements are the stoichiometric coefficients of the
reaction. The classical construction of the complete state
space of the ideal mixture in the CSTR, i.e., considering
the energy balance as well, is based on Gibbs’ fundamental
relation. Assuming constant volume and pressure of the
mixture in the reactor, Gibbs’ relation reduces to

dU =

m∑
i=1

∂U

∂ni
dni +

∂U

∂S
dS (3)

where U denotes the internal energy, S the entropy and the
conjugated intensive variables are the chemical potential
∂U
∂ni

= µi and the temperature ∂U
∂S = T . If we consider for

instance a chemical reaction and under the assumption of
constant volume, the internal energy is

U =

m∑
i=1

ni[cpi(T − T0) + u0i], (4)

where cpi, u0i, T0 are respectively the heat capacity at
constant pressure, reference molar energy and reference
temperature. At constant volume and pressure the refer-
ence molar enthalpy h0i = u0i Sandler (2006), and the
balance equation of the internal energy is Couenne et al.
(2006); Favache and Dochain (2009)

U̇ = Ḣ =

m∑
i=1

(Feihei − Fsihsi) +Q, (5)

where Q = λ(Te−T ) is the heat flux from the jacket with
λ the heat conduction coefficient, Te the temperature of
the jacket, H the total enthalpy of the reactor and hei, hsi
respectively the inlet and outlet specific molar enthalpies,

which are related with the chemical potentials and the
specific molar entropies si by:

µi = hi − Tsi.
The entropy function on other hand is given by

S = Cp ln ( T
T0

)−Rg

m∑
i=1

[ni ln ( ni
N )] +

m∑
i=1

(nis0i),

where Cp =
∑m

i=1 nicpi, T0, N , s0i and Rg are respectively
total heat capacity at constant pressure, reference tem-
perature, total number of moles, reference molar entropy
and the ideal gas constant. Hence, the entropy balance
equation is given by

Ṡ =

m∑
i=1

(Feisei − Fssi) +
Q

Te
+ σ, (6)

where sei and si are respectively the inlet molar entropy
and the molar entropy of species i, and σ is the irreversible
entropy creation due to mass transfer, heat transfer and
chemical reactions:

σ =

m∑
i=1

Fei

T
(hei − Tsei − µi) +

Q

T
− Q

Te
−

m∑
i=1

µiνi
r

T
.

We have taken the example of a chemical reaction, but
it should be noticed that since the state space is con-
structed from Gibb’s fundamental relation, the energy and
entropy balance equations always fulfil the first and second
principle of thermodynamics; i.e. that the total energy is
conserved and that the internal entropy creation is always
greater or equal to zero. Hence in general it is always
possible to write (5) and (6) as

U̇ = Uin − Uout,

Ṡ = Sin − Sout + σ
(7)

where Uin, Sin, Uout, Sout are respectively the energy
and entropy carried in to the reactor by external sources
and out of the reactor to external sinks. The entropy
creation on other hand is due to the internal irreversible
processes and is completely characterised by the nature
and geometry of the specific process.

Let us now consider a chemical reaction network involving
m chemical species, among which mr chemical reactions
take place

m∑
i=1

αijAi

rj−⇀↽−
m∑
i=1

βijAi, j = 1, . . . ,mr. (8)

with αij and βij being the constant stoichiometric coef-
ficients for species Ai in the reaction step j. The linear
combinations of the species in (8), namely

∑m
i=1 αijAi and∑m

i=1 βijAi, for j = 1, . . . ,mr are called the complexes.
Many fundamental studies on the dynamic behaviour of
reaction networks has been carried out by defining the
complexes to be the vertices of a directed graph Horn and
Jackson (1972); Feinberg (1987); Angeli (2009); van der
Schaft et al. (2013). The basic structure underlying the
dynamics of the vector n of mole numbers of the chemical
species is given by the mass balance law:

ṅ = CrV + Fe − Fs, (9)

where the m × mr matrix C is called the stoichiometric
matrix and whose columns are the stoichiometric vec-
tors of each reaction: C = [C1, C2, . . . , Cmr], and r =
[r1, r2, . . . , rmr ]> is the vector whose elements are the



reaction rates of each individual reaction. The energy and
entropy balance will be given by (7), with each input
and output term given by the sum of the input sources
and output sinks and where the total internal entropy
production will be given by the sum of the internal entropy
production of each reaction.

3. IRREVERSIBLE PORT-HAMILTONIAN
FORMULATION OF REACTION NETWORKS

Let us start by recalling the IPHS of a simple chemical
reaction as proposed in Ramirez et al. (2013a). The dy-
namical equation of a chemical reaction in a CSTR defined
by the mass and entropy balance equations, respectively
(2) and (6), can be expressed as the IPHS

ẋ = RJ
∂U

∂x
(x) + g(x, ∂U∂x , u) (10)

with state vector x = [n1, . . . , nm, S]>, the internal energy
U(x) as Hamiltonian function,

J =


0 . . . 0 ν̄1

0 . . . 0
...

0 . . . 0 ν̄m
−ν̄1 . . . −ν̄m 0

 (11)

a constant skew-symmetric matrix whose elements are the
stoichiometric coefficient of the chemical reaction mapping
the network structure of the reaction, and

R = γ
(
x, ∂U∂x

)
{S,U}J =

(
rV

TA

)
A (12)

with γ = rV
TA and {S,U}J = A, where A = −

∑m
i=1 ν̄iµi is

the chemical affinity of the reaction and corresponds to the
thermodynamic driving force of the chemical reaction. The
port of the IPHS is given by inlet and outlet of mass and
may be modelled simply as g(x, u). Notice that we have
not explicitly defined the input u, but it will indeed be
related to some input or output flow of mass or/and energy
Aris (1989). It is not hard to verify that this dynamical
model indeed is an IPHS and that it expresses the mass
and entropy (energy) balance laws. We leave the exercise
to the reader. Let us now consider a chemical reaction
network. The mass and energy balances are given by (see
eq. (9) and (7)):

ṅ = CrV + Fe − Fs,

Ṡ = σ + Sin − Sout,

Let us define a vector containing the the non-linear Rj

functions of each reaction:

R ∈ Rmr = [R1, . . . , Rm]>, (13)

The chemical reaction network can then be formulated as
a IPHS from the stoichiometric matrix C and the vector
R as follows

ẋ =

[
0m CR

−R>C> 0

]
︸ ︷︷ ︸

JR

∂U

∂x
+ g(x, u) (14)

with x = [n1, . . . , nm, S] the state vector, U(x) and S(x)
respectively the internal energy and the total entropy of
the complete reaction network, g(x, u) the vector contain-
ing the inputs of the system

g(x, u) =

[
Fe − Fs

Sin − Sout

]
,

and 0m the zero matrix of dimension m ×m. It is inter-
esting to notice how the structure matrix JR expresses the
energy flow from the material domain to the energy (en-
tropy) domain in a somehow similar manner as a symplec-
tic structure does for mechanical systems van der Schaft
(2000). Since JR = −JR it’s straightforward to verify that
the total energy is conserved. The entropy balance on other
hand is expected to be (in the case of a closed-reactor) the
sum of the entropy productions of each reaction in the
network. Indeed, from (14) we have

Ṡ =
∂S

∂x
ẋ =

∂S

∂x
JR

∂U

∂x
= −R>C>µ =

mr∑
i=1

σi (15)

where σi is the entropy production due to the i-th chemical
reaction. It is also interesting to comment on the fact
that unlike traditional representations of reaction net-
works, which are of dissipative nature Otero-Muras et al.
(2008); van der Schaft et al. (2013), the IPHS defines
a conservative system. This follows since for IPHS the
energy (entropy) domain is been considered as part of
the state space, and thus the dissipation in the material
domain is transformed into entropy creation in the energy
domain. Following the same idea as in Ramirez et al.
(2013b) for coupled mechanical-thermodynamical systems,
it is also expected that the dynamical system (14) can be
obtained by considering the addition of each individual
reaction defined with respect to the complete state space.
Indeed, since the temperature in the reactor is common
to all reactions, every individual (closed) reaction can be
represented by the vector field

Xj = RjJj(x)
∂U

∂x
(x),

with x the state vector of the complete network, Jj(x) the
structure matrix and Rj the non-linear function containing
the reaction rate of the j-th reaction. The dynamic of the
complete reaction is then given by the sum of the vector
fields of all individual reactions and the contribution of the
input vector field:

ẋ =

mk∑
i=1

Xj + g(x, u) =

(
mr∑
i=1

RiJi

)
︸ ︷︷ ︸

JR

∂U

∂x
+ g(x, u).

To verify that
∑mr

i=1RiJi = JR it suffices to notice that
the term RJ can equivalently be written as

RJ =

[
0m CR
−RC> 0

]
,

with C the m× 1 stoichiometric vector defined in (2).

4. ASYMPTOTICALLY STABILIZING CONTROL OF
REACTION NETWORKS

In Ramirez et al. (2016) a general IDA-PBC synthesis
method for IPHS has been presented and applied to single
non-isothermal chemical reactions. In this section we shall
extend those results to deal with non-isothermal CRN.
We shall assume the following operation condition for the
reactor.

Assumption 1. 1) The reactor operates in liquid phase, 2)
The molar volumes of each species are identical and the
total volume, denoted by V , in the reactor is maintained
constant, 3) The initial number of moles of a species in



the reactor is equal to the number of moles of the inlet of
the same species, 4) For a given steady state temperature
T and steady state input there is only one possible steady
state for the mass (numbers of moles) balance.

Proposition 2. (Ramirez et al., 2016) Let x∗ be an equilib-
rium point for (10). Assume there exist matrices M(x) ≥ 0
and Jd(x) = −J>d (x), a scalar functions γd > 0 such that

σd = γd {S,A}2Jd
and Rd = γd {S,A}Jd

, and a full-rank

left annihilator g⊥(x) of g(x) satisfying

g⊥(x)
(
RdJd − σdM

)(∂U
∂x

(x)− ∂U

∂x
(x∗)

)
− g⊥(x)RJ

∂U

∂x
(x) = 0 (16)

Then u = β with

β(x) = g†(x)
(
RdJd − σdM

)(∂U
∂x

(x)− ∂U

∂x
(x∗)

)
− g†(x)RJ

∂U

∂x
(x), (17)

globally asymptotically stabilizes x∗. Furthermore, the
closed-loop system is

ẋ =
(
− σdM +RdJd

)∂A
∂x

, (18)

i.e., an IPHS with added dissipation s = σd
∂A
∂x

>
M ∂A

∂x .

Proposition 2 is a thermodynamic equivalent of IDA-PBC.
Indeed (18) is again an IPHS with structure matrix RdJd
and energy function A (interconnection assignment and
energy shaping), and the dissipation assignment given by
matrix σdM assures the convergence to the minimum of
the closed-loop energy function. The parametrization of
the control law (17) is indeed thermodynamic consistent in
the control parameters A, Jd, M , and σd. Proposition 2 is
not constructive however since the matching equation (16)
is not straightforward to solve. It is possible to simplify this
condition for a certain parametrization of the controller.

Corollary 3. x∗ is globally asymptotically stable if

g⊥J = 0, and (19)

g⊥Jd = 0, and (20)

g⊥M = 0. (21)

Condition (21) is in general easy to fulfill since M should
just be positive semi-definite and symmetric. Condition
(20) can be eliminated if Jd = J or Jd = 0. Condition
(19) is more restrictive, since J and o g⊥ are defined
by the structure of the system. Nevertheless, since J
expresses the conserved quantities of the system we may
find this condition fulfilled for systems whose input maps
are related with the physical invariants. A constructive
method to derive a globally asymptotically stabilizing
controller for a chemical reaction networks is given in the
following proposition.

Proposition 4. The chemical reaction network (14) is glob-
ally asymptotically stable with respect to the desired
equilibrium x∗ with the control (17) if Jd = JR and
M = diag(0, . . . , 0, κs), κs > 0 which corresponds to a
diagonal matrix with all elements equal to zero except the
last element. The closed-loop system then takes the form

ẋ =
(
− σdM +RdJR

)∂A
∂x

.

for some arbitrary function σd > 0.

Proof. We shall show that Corollary 3 is satisfied. A full-
rank left annihilator for the input map is the (m− 1)× n
matrix

g⊥ =


ñ2 −ñ1 0 . . . 0 0 0
0 ñ3 −ñ2 . . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 . . . 0 ñm −ñm−1 0

 .
Using this annihilator we compute from (19)

g⊥JR = g⊥−CR

where g⊥− denotes the matrix obtained by removing the

last column of g⊥. Hence condition (19) is satisfied if

g⊥−C = g⊥−C1 = g⊥−C2 = . . . = g⊥−Cmr = 0 (22)

and it suffices to check that for each individual reaction

g⊥−Ci =


0 . . . 0 ν̄i1ñ2 − ν̄i2ñ1
0 . . . 0 ν̄i2ñ3 − ν̄i3ñ2
...

...
...

...
0 . . . 0 ν̄im−1ñm − ν̄imñm−1

 = 0. (23)

which is true if
ñ1
ν̄i1

=
ñ2
ν̄i2

= · · · = ñm−1
ν̄im−1

=
ñm
ν̄im

(24)

with i = 1, . . . , r. It has been shown (Prigogine and Defay,
1954) for batch reactors that (24) is actually the expression
of De Donder’s extent of reaction for each reaction i

n0i − ni
ν̄ii

= ξ.

This property can easily be extended to the CSTR case as
soon as Assumption 1 is satisfied, i.e., when the initial
number of moles of each species equals the number of
moles at the inlet: n(t = 0) = n0 = ne (see also Aris
(1989)). Hence (19) is automatically fulfilled. This comes
from the fact that JR expresses the stoichiometry of the
reaction network and g the mole balance relation. Since
the reactor operates at constant volume, the total mass
becomes an invariant for the reaction, and g⊥JR = 0
characterizes this invariant. Condition (21) is solved by
any matrix M(x) = M>(x) ≥ 0 for which the first m rows
and columns forms a null submatrix. This comes from the
fact that the last column of g⊥ is zero.

5. EXAMPLE: THE VAN DER VUSSE REACTOR

Let us consider the van der Vusse reactor Niemiec and
Kravaris (2003); Ramirez. et al. (2009). This is a classi-
cal benchmark example which considers a non-isothermal
CSTR where the following series/parallel reactions take
place,

C5H6
k1/+H2O−→ C5H7OH

k2/+H2O−→ C5H8(OH)2

2C5H6
k3−→ C10H12

The reactor model is traditionally written in terms of mole
balances for species C5H6 and C5H7OH, which we shall
denote with indexes 1 and 2 respectively, completed by a
energy balance:

ċ1 = −k1(T )c1 − k3(T )c21 + (c10 − c1)u1
ċ2 = k1(T )c1 − k2(T )c2 − c2u1
Ṫ = ϑ(c, T ) +

u2
ρCp

+ (T0 − T )u1,
(25)



with

ϑ(c, T ) = −∆H1k1(T )c1 + ∆H2k2(T )c2 + ∆H3k3(T )c21
ρCp

.

The rate coefficients ki are dependent on the reactor
temperature via the Arrhenius equation

ki(T ) = ki0 exp
Ei

RT
, i = 1, 2, 3.

The rest of the process parameters and their numerical
values are summarized in tables 1 and 2, respectively.
The control objective, see (Niemiec and Kravaris, 2003),
is to maintain the outputs y1 = T and y2 = n2 at
set points by manipulating the dilution rate u1 = F/V
and the rate of heat addition or removal per unit volume
u2 = QH . We observe that the n3 and n4 do not contribute
to the dynamics of the process since the reaction rates
do not depend on these two concentrations. Initially, the
reactor is operating at a steady-state of n∗1 = 1.25mol/l,
n∗2 = 0.90mol/l, and T ∗ = 407.15K, which corresponds
to u∗1 = 19.52/h and u∗2 = −451.51kJ/(lh). Around this
steady-state, the process is locally asymptotically stable
with eigenvalues of −96.465 and −33.154 ± 9.815i. The
transmission zero of the linearized system is found to
be +122.71. This indicates that the process is locally
nonminimum phase around the given steady-state due
to the right-half plane transmission zero. This implies
that the process is a challenging control problem and not
straightforward to tackle using linear approaches. Note
that (25) is written in terms of concentrations and not
mole numbers. However, the IPHS formulation remains
valid as long as soon as proper care is taken care with the
thermodynamic functions. In order to write the reaction as
an IPHS we can complete (25) with the balance equations
of the two elements which do not produce additional
reactions, C5H8(OH)2 and C10H12, which we shall denote
with indexes 3 and 4 respectively,

ċ3 = k2(T )c2 ċ4 = 1
2k3(T )c21.

Then we may identify the stoichiometric matrices of the
three reactions involved in the process,

J1 =


0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 −1 0 0 0

 , J2 =


0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1
0 0 0 0 0
0 1 −1 0 0

 ,

J3 =


0 0 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1/2
1 0 0 −1/2 0

 .
(26)

For a detailed description of the process it is possible to
derive the entropy balance equation directly from these
matrices using (15). However (25) is a simplified model
since it depends on the heat of reactions ∆Hi for each
individual reaction, i.e., the affinities of reactions are
assumed constant for each individual reaction (and hence
the chemical potentials as well). This implies that the
IPHS cannot be written directly as shown in Section 3,
but a ”linearized” version of it can be used to describe the
open and closed-loop system.

Assumption 5. The approximated internal energy func-
tion and energy based availability function satisfy, respec-
tively,

CA ,CB Molar concentrations of A and B
T Reactor temperature
F/V Dilution rate
QH Rate of heat added or removed per unit volume
Cp Heat capacity of the reacting mixture
ρ Density of the reacting mixture
∆H Heat of reaction
E Activation energy
R Joule constant

Table 1. CSTR Parameters

∂U

∂c
=

µV 1

µV 2

µV 3

µV 4

 , ∂A

∂c
=

κ1(c1 − c∗1)
κ2(c2 − c∗2)
κ3(c3 − c∗3)
κ4(c4 − c∗4)


where c is the vector of concentrations, and µV i and κi,
i = 1, . . . , 4 are respectively, constant normalized chemical
potentials with respect to the constant volume and positive
constants of appropriate dimensions.

The chemical reaction network (25) can then be written
as the IPHS

ẋ = (R1J1 +R2J2 +R3J3)


µV 1

µV 2

µV 3

µV 4

T

+ gu (27)

where x = [c1, c2, c3, c4, S]>, u = [u1, u2]>, R1 = k1(T )
T c1,

R2 = k2(T )
T c2, R3 = k3(T )

T c21 and

g =


(c10 − c1) 0
−c2 0

0 0
0 0

ρCp

T
(T0 − T )

1

T

 ,
and where the constant chemical potentials µV i are such
that −∆H1 = µV 1 − µV 2, −∆H2 = µV 2 − µV 3 and
−∆H3 = µV 1 − 1

2µV 4. It is straightforward to verify
that the energy and entropy balance equations are satis-
fied under the conditions of Assumption 5. Notice since
the dynamics of the concentrations of c3 and c4 don’t
affect the reaction rates, these dynamics are redundant
for the computation of the controller. A globally asymp-
totically stabilizing control can then be derived directly
from Proposition 4. Numerical simulations were carried
out over a time span of one hour. The process starts
at the initial steady-state of y∗1 = T ∗ = 407.15K and
y∗2 = c∗2 = 0.90mol/l. Then starting at t = 0.1h a step
change in y∗2 is performed by maintaining y∗1 constant.
The simulations are shown in figures 1 and 2. We can ob-
serve from the figures that the closed-loop system behaves
well despite the non-minimum phase characteristic of the
chemical reaction network. Furthermore, the responses are
comparable to the ones in Ramirez. et al. (2009) where
only local stability is guaranteed.

6. CONCLUSION

Recent results presented in Ramirez et al. (2016) for the
control of IPHS have been extended to deal with chemical
reaction networks. To this end the IPHS formulation has
been used to derive a passivity based controller which



CA0 5.0 mol/l k10 1.287× 1012 h
T0 403.15 K k20 1.287× 1012 h
Cp 3.01 kJ/(kg K) k30 9.403× 109 l/(mol h)
ρ 0.94342 kg/l E1/R -9758.3 K
∆H1 4.20 kJ/mol E2/R -9758.3 K
∆H2 -11.00 kJ/mol E3/R -8560.0 K
∆H3 -41.85 kJ/mol

Table 2. CSTR Numerical Parameters

Fig. 1. Molar concentration c2

Fig. 2. Temperature

shapes the total energy of a non-isothermal reaction net-
work and render it asymptotically stable with respect to
a desired dynamic equilibrium configuration. The closed-
loop system is in IPHS form, hence it can be identified with
a desired reaction network and the control parameters are
related with thermodynamic variables, such as the reaction
rates. A complex reaction network is used to illustrate the
approach: namely the van der Vusse reaction mechanism.
Since the model is a simplification (in terms of constant
reaction enthalpies) of a thermodynamical model, a lin-
earization assumption on the gradient of the availability
function allows to derive a globally stabilizing controller
directly from the van der Vusse model. Numerical sim-
ulations are performed to show the effectiveness of the
proposed control.
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