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1. INTRODUCTION

In many physical applications, distributed parameter sys-
tems are controlled through their boundaries. It is the case
for example of compliant mechanical structures, electrical
circuits defined over grids, biological networks, tubular
reactors and so on. The abstract system representation
stemming for this class of controlled systems is called
Boundary Control Systems (BCS). Due to the unbounded-
ness of the related input mapping operators, the study of
the existence and properties of solutions is not trivial. In
the linear case, the semigroup theory is used to prove exis-
tence of solutions, and Lyapunov arguments and LaSalle’s
invariant principle are used to prove asymptotic stability
(Luo et al., 1999; Curtain and Zwart, 2016).

In the last decade, it has been shown that the port Hamil-
tonian formulations (van der Schaft and Maschke, 2002)
are of great interest to prove the existence of solutions in
some quite general linear cases: systems described by high
order differential operators (Le Gorrec et al., 2004, 2005)
and multidimensional systems (Kurula and Zwart, 2015)).
The main reason is that the port Hamiltonian represen-
tations encompass the physical properties of the system,
and then lead to very natural and easy to check conditions
(matrix conditions) to prove existence and convergence of
solutions (Le Gorrec et al., 2005; Villegas, 2007; Jacob and
Zwart, 2012). In the 1D case, systems described by first
order differential operators stemming for example for the
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wave equation, Timoshenko beam model or convection sys-
tems for example have been recast in the port Hamiltonian
framework and conditions for asymptotic and exponential
stability have been derived (Villegas et al., 2005; Villegas
et al., 2009). The case of systems described by second order
differential operators stemming for example for the Euler
Bernouilli beam equation has been studied in (Augner and
Jacob, 2014). Recently these results have been extended
to the case of first order differential operators systems
connected at their boundary to linear or non-linear finite
dimensional systems (Ramirez et al., 2014).

In this paper we consider the case of a system described
by a second order linear differential operator connected
to non-linear finite dimensional systems, focusing on the
Euler Bernouilli beam model connected to non-linear mass
spring systems. This application case is motivated by the
control of compliant micro-mechanical systems (microgrip-
pers) used for the manipulation of bio samples. These
systems, constituted of a flexible silicon arm clamped at
one side to a slide moving shuttle and attached at the other
side to a bio sample are represented by an undamped Eu-
ler Bernouilli model connected to non-linear mass spring
damper systems. The same kind of problem has already
been studied in (Miletic et al., 2016) and in (Augner,
2017) from a theoretical point of view. In (Miletic et al.,
2016) LaSalle’s principle is used and precompactness of
trajectories is first established, but asymptotic stability
was only shown for a dense set of initial conditions. In
(Augner, 2017) non-linear contraction semigroups are used
leading to strong assumptions on the considered non-
linearities. In this paper we use a direct approach based
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on perturbation theory to prove the convergence to zero
for all initial conditions. Furthermore, the conditions we
have on the non-linearities are weak.

The paper is organised as follows. We first present the
application case and the associated port Hamiltonian
model of the open loop and closed loop (beam+mass
spring damper systems) system in Section 2. In Section
3 we prove the existence of solutions of the closed loop
system. The study of the asymptotic stability properties
is detailed in Section 4. The paper ends with Section 5
in which are given some concluding remarks and some
perspectives to this work.

2. CONSIDERED SYSTEM

We consider the system of Fig. 1 composed of a flexible
beam clamped at one side to a non-linear mass spring
damper system connected to a slide link, and to a non-
linear mass spring damper system at the other side.

m1

f1k1

m2

k2 f2

w(z,t)

Fig. 1. Flexible beam + mass spring damper systems.

This system reflects the dynamic behaviour of a boundary
actuated compliant structure connected to a non-linear
finite dimensional dynamic system as it is the case for
example with nanotweezers used for the manipulation of
non-linear bio samples (Boudaoud et al., 2012). For the
sake of simplicity and without any restriction, we assume
the following.

Assumption 1. The equilibrium position is the horizontal
line i.e. the considered stiffnesses are related.

The proposed results can be extended to the general set-
ting by using as state variables the deviation around a
steady state profile defined by additional external bound-
ary force.

2.1 Infinite dimensional system

The out of plane deflection of the beam, noted ω(z, t), is
a function of time and space (z ∈ [a, b] , t > 0). When
small deformations are considered the Euler-Bernouilli
assumptions (Timoshenko (1953)) apply and the shear
stress is neglected. The model of the beam is derived from

the balance equation on the kinetic momentum ρ∂ω(z,t)∂t
i.e.:

∂

∂t

(
ρ
∂ω(z, t)

∂t

)
= − ∂

∂z
Fs + Fl ,

where Fs is the shear force and Fl the external longitudinal
force applied to the beam. Here Fl = 0. Following the
Euler-Bernouilli assumptions, the shear force is derived
from the bending moment that is a linear function of the

curvature ∂2ω(z,t)
∂z2 leading to:

Fs = − ∂

∂z

(
−EI ∂

2ω(z, t)

∂z2

)
,

where EI > 0 is the flexure rigidity of the beam. This lead
to the Euler- Bernouilli model of the beam:

∂

∂t

(
ρ
∂ω(z, t)

∂t

)
= − ∂2

∂z2

(
EI

∂2ω(z, t)

∂z2

)
,

Using as state variable the curvature x1 = ∂2ω
∂z2 and the

kinetic momentum x2 = ρ∂ω∂t this system can be written
as a first order system in time and a second order system
in space:

∂

∂t

(
x1
x2

)
=

 0
∂2

∂z2

− ∂2

∂z2
0

(EI 0

0
1

ρ

)(
x1
x2

)
(1)

The total energy of the infinite dimensional system is given
by the integral of the sum of kinetic energy and elastic
potential energy

H(t) =
1

2

∫ b

a

(
ρ

(
∂ω(z, t)

∂t

)2

+ EI

(
∂2ω(z, t)

∂z2

)2
)
dz

=
1

2

∫ b

a

(
EIx21 +

1

ρ
x22

)
dz (2)

Proposition 1. The infinite dimensional system defined by:

ẋ(z, t) = A (Lx(z, t)) , (3)

with :

A =

 0
∂2

∂z2

− ∂2

∂z2
0

 , L =

(
EI 0

0
1

ρ

)
> 0 , (4)

and

u(t) =


1

ρ
x2(a, t)

1

ρ
x2(b, t)

∂

∂z

(
1

ρ
x2

)
(b, t)

 ,
∂

∂z

(
1

ρ
x2

)
(a, t) = 0 (5)

is a boundary control system. As a consequence A with

D(A) =
{
Lx ∈ H2([a, b] ;R2)

∣∣u = 0
}

generates a contraction semigroup and for any u ∈
C2(

[
0,∞;R3 ), Lx(0) ∈ H2([a, b] ;R2) satisfying (5) (for

t = 0) there exists a unique classical solution to (3)–(5).
Furthermore, with y(t) given by

y(t) =


∂

∂z
(EIx1) (a, t)

∂

∂z
(EIx1) (b, t)

EIx1(b, t)

 , (6)

the balance equation on the energy equals

dH(t)

dt
= yT (t)u(t) (7)

Proof. The proof is a direct application of Lemma 4.5 of
(Le Gorrec et al., 2005). Equation (1) is of the form:
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∂

∂t
x(z, t) = P2

∂2

∂z2
(Lx(z, t)) , with P2 =

(
0 1
−1 0

)
and from (Le Gorrec et al., 2005) we define as input and
output

uext(t) =



∂ω(a, t)

∂t
∂2ω(a, t)

∂z∂t
∂ω(b, t)

∂t
∂2ω(b, t)

∂z∂t

 , yext(t) =



∂

∂z

(
EI

∂2ω

∂z2

)
(a, t)

EI
∂2ω(a, t)

∂z2

∂

∂z

(
EI

∂2ω

∂z2

)
(b, t)

EI
∂2ω(b, t)

∂z2


(8)

such that
dH(t)

dt
= yText(t)uext(t)

By choosing as input and output the interconnection
variables u and y defined by (5) and (6) associated with the

clamping condition ∂
∂z

(
1
ρx2

)
(a, t) = 0 we can conclude

we have a boundary control system with balance equation
given by (7).

2.2 Finite dimensional systems

We are now considering the motion of finite dimensional
systems to which the beam is attached. The motion of the
left non-linear mass spring system along the slide link is
described through its port Hamiltonian formulation as:

d

dt

(
p1

m1v1

)
=

(
0 1
−1 0

)(
k10p1
v1

)
+(

0
k10p1 − k1(p1)− f1(v1)

)
+

(
0
1

)
u1

y1 =
(
0 1
)( p1

v1

)
,

where p1 and v1 are the position and the velocity of the
inertia m1, respectively, u1 is the longitudinal force applied
to the system, y1 the resulting longitudinal velocity. k10 >
0 is an additional linear stiffness and k1(p1) and f1(v1) the
non-linear stiffness and damping functions.

Assumption 2. There exists a function P1 : R 7→ [0,∞)
which has a unique minimum at p1 = 0, i .e.,P1(p1) >
P1(0) = 0 for p1 6= 0, and dP1

dp1
(p1) = k1(p1). Furthermore,

P1(p1) is radially unbounded. Thus if |p1| → ∞, then
P(p1)→∞.

Assumption 3. We assume that f1 is a function of v1 and
that for all v1 it satisfies

v1f1(v1) ≥ 0

The energy of the system H1 = P1(p1)+ 1
2

(
m1v

2
1

)
satisfies

the following balance equation:
dH1

dt
= y1u1 − v1f1(v1).

The motion of the inertia at the right side of the beam is
described by the following equations:

d

dt

(
p2

m2v2
Jθ̇2

)
=

(
0 1 0
−1 0 0
0 0 0

)(
k20p2
v2
θ̇2

)
+(

0
k20p2 − k2(p2)− f2(v2)

0

)
+

(
0 0
1 0
0 1

)
u2

y2 =

(
0 1 0
0 0 1

)( p2
v2
θ̇2

)

where p2 denotes the position of the inertia m2, v2
the velocity, θ2 the angular position of the load, θ̇2 the
angular velocity. u2 is composed by longitudinal force and
torque applied to the system, y2 is composed by resulting
longitudinal velocity and angular velocity. k20 > 0 is an
additional linear stiffness and k2(p2) and f2(v2) the non-
linear stiffness and damping functions.

Assumption 4. There exists a function P2 : R 7→ [0,∞)
which has a unique minimum at p2 = 0, i .e.,P2(p2) >
P2(0) = 0 for p2 6= 0, and dP2

dp2
(p2) = k2(p2). Furthermore,

P2(p2) is radially unbounded. Thus if |p2| → ∞, then
P2(p2)→∞.

Assumption 5. We assume that f2 is a function of v2 and
that for all v2 it satisfies

v2f2(v2) ≥ 0

The energy associated to this system if given by:

H2 = P2(p2) +
1

2

(
m2v

2
2 + J

(
θ̇2

)2)
and satisfies the following balance equation

dH2(t)

dt
= yT2 u2 − v2f2(v2).

2.3 Closed loop system

We consider the power preserving interconnection(
1 0 0 0
0 0 1 0
0 0 0 1

)
y = −

(
u1
u2

)
, and

(
1 0 0 0
0 0 1 0
0 0 0 1

)
u =

(
y1
y2

)
and the boundary condition (clamping)

∂

∂z

(
∂ω(a, t)

∂t

)
= 0

Denoting x̃ =

(
∂2ω

∂z2
ρ
∂ω

∂t
p1 m1v1 p2 m2v2 Jθ̇2

)
the

closed loop system can be written:

˙̃x =



0
∂2

∂z2
0 0 0 0 0

− ∂2

∂z2
0 0 0 0 0 0

0 0 0 1 0 0 0
∂.

∂z

∣∣∣∣
a

0 −1 0 0 0 0

0 0 0 0 0 1 0
∂.

∂z

∣∣∣∣
b

0 0 0 −1 0 0

.|b 0 0 0 0 0 0


︸ ︷︷ ︸

Ã

(
L̃x̃
)

+



0 0
0 0
0 0
1 0
0 0
0 1
0 0


︸ ︷︷ ︸
B̃

f̃(x̃)

(9)
with

L̃ = diag

(
EI

1

ρ
k10

1

m1
k20

1

m2

1

J

)
and

f̃(x̃) =

(
k10p1 − k1(p1)− f1(v1)
k20p2 − k2(p2)− f2(v2)

)
(10)

The domain of the differential operator is given by:
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D(Ã) =
{
x̃ ∈ L2

(
[a, b] ,R2

)
× R2 × R3

∣∣(
m1x2(a) m2x2(b)

∂x2
∂z

(a)
∂x2
∂z

(b) ρx4 ρx6 x7

)T
∈ kerWD, } (11)

where

WD =

 0 0 1 0 0 0 0
1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 0 1 0 0 −1


The total energy of the system is:

Htot = H+H1 +H2

and satisfies
dHtot(t)

dt
= −v1f2(v1)− v2f2(v2) ≤ 0 (12)

Lemma 2. The linear operator Ã with its domain (11)

generates a contraction semigroup on X̃. Moreover Ã has
a compact resolvant.

3. EXISTENCE OF SOLUTIONS

In this section we show the closed loop system is well
posed, i.e. closed loop solutions exist locally. Then from
Assumptions 2, 3, 4, 5 we show the global existence of
solutions. Since f̃ is locally Lischitz continuous on X̃
and X̃ bounded it follows from (Pazy (1983), Chapter
6, Theorem 1.5) that for any initial condition, the closed
loop equation possesses a unique mild solution on the time
interval [0, tmax ). We consider now the total energy Htot

of the closed loop system. By integration of (12) we obtain
(for every initial condition since classical solutions form a
dense set)

Htot(t) ≤ Htot(0)−
∫ t

0

v1(τ)f1(v1(τ))dτ

−
∫ t

0

v2(τ)f2(v2(τ))dτ. (13)

From the uniform boundedness of Htot we deduce the uni-
form boundedness ofH(t), P1(p1(t)), P2(p2(t)), v1(t)f1(v1(t))
and v2(t)f2(v2(t)). Since H(t) is bounded, ‖x(t)‖ is
bounded. Since m1 > 0 and m2 > 0, ‖m1v1(t)‖ and
‖m2v2(t)‖ are bounded. The energy H(t) equals half of
the norm and then the norm of the distributed state
is uniformly bounded. From the fact that P1(p1(t)) and
P2(p2(t)) are bounded combined with Assumptions 2 and
4, we can conclude that ‖p1‖ and ‖p2‖ are bounded.
From (Pazy (1983), Chapter 6, Theorem 1.4) we have that
tmax = ∞ and so we have global existence of solutions.
This result is sumarized in Theorem 3.

Theorem 3. The system (9) with the non-linearity (10)
satisfying Assumptions 2, 3, 4 and 5 possesses for every
initial condition a unique mild solution which is uniformly
bounded. Furthermore inequality (13) holds.

4. ASYMPTOTIC STABILITY

We use a direct approach based on non-linear perturbation
of linear distributed parameter systems. It consists in
expressing the dynamic system (9) on the form:

ẋ(t) = (A−BB∗)x(t) +Bf(B∗x(t)) +Bg(Cx(t)) (14)

and to use the general result from (Ramirez et al., 2017)
recalled in Theorem 4.

Theorem 4. Let Z, U and Y be Hilbert spaces, B ∈
L(U,Z), B∗ ∈ L(Z, Y ) and A the infinitesimal generator of
a contraction C0-semigroup. Assume that A has compact
resolvent, and that the state linear system Σ(A,B,B∗, 0)
is approximately controllable or approximately observable
on infinite time and B is injective. Furthermore, assume
that the (non-linear) functions f and g are (locally)

Lipschitz continuous, with f(0) = 0, and dg
dy is bounded

on bounded sets.

Let x(t) be a bounded solution of (14) such that
B∗x(·), f(B∗x(·)) ∈ L2([0,∞);U), Cx(t) is absolutely con-
tinuous on [0, τ) for every τ > 0 and its derivative lies in
L2([0,∞);U). Then the solution x(t) converges to the set
V as t→∞. This set is given by

V = {x∞ ∈ D(A) | Ax∞+Bg(Cx∞) = 0 and B∗x∞ = 0}.
(15)

In order to apply the aforementioned theorem to prove the
asymptotic stability we have to show:

(1) The approximate controllability on infinite time of
the linear system (A,B,B∗, 0).

(2) The square integrability of B∗x(·), f(B∗x(·)) where
x(t) is a bounded solution of (14).

(3) The square integrability of Cx(t) and its derivative.
(4) The fact that V defined by (15) reduces to {0}.

Before checking these conditions we need an additional
assumption on the non-linear spring.

Assumption 6. We assume that the non-linear stiffnesses
k1 and k2 defined in (10) are such that k1(0) = k2(0) = 0
and are (locally) Lipschitz continuous on R4.

We also need an additional assumption on the non-linear
damping.

Assumption 7. For the damping we assume that there
exist positive constants δ1, α1, γ1 and δ2, α2, γ2 such that
ṽ>1 f1(ṽ1) ≥ α1‖ṽ1‖2 and ṽ>2 f2(ṽ2) ≥ α2‖ṽ2‖2 when ‖ṽ1‖ <
δ1, ‖ṽ2‖ < δ2 and ṽ>1 f1(ṽ1) ≥ γ1, ṽ>2 f2(ṽ2) ≥ γ2 when
‖ṽ1‖ ≥ δ1 and ‖ṽ2‖ ≥ δ2 respectively.

Then we reformulate the original problem as system (14).
The dynamic system (9) with non-linearity (10) is equiv-
alent to the non-linear abstract differential equation

˙̃x(t) =
(
Ã − B̃B̃∗

)
x̃(t)+B̃f0(B̃∗x̃(t))+B̃g0(C̃x̃(t)) (16)

where B̃∗ is defined from the weighted inner product on
X̃

B̃∗ =

 0 0 0
1

m1
0 0 0

0 0 0 0 0
1

m2
0


and

C̃ =

(
0 0 1 0 0 0 0
0 0 0 0 1 0 0

)
with:

f0(v1, v2) =

(
−f1(v1) + v1
−f2(v2) + v2

)
, and g0(p1, p2) =

(
k10p1 − k1(p1)
k20p2 − k2(p2)

)
We now check the conditions of Theorem 4. We fist

start with the approximate observability in infinite time
condition as stated in Proposition 5.

Proposition 5. The closed loop system (9) is approxi-
mately observable on infinite time.
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Proof. We use Corollary 4.1.14 of ((Curtain and Zwart,
1995), Chapter 4, p.156) that states the system is observ-
able in infinite time if the only solution to B∗x̃ = 0 is {0}.
If we assume B∗x̃ = 0 we have x6(t) = 0 = x4(t), which
is equivalent to v1(t) = 0 = v2(t). This implies that p1(t)
and p2(t) are constant and −k10p1(t) + ∂

∂zx1(a, t) = 0,

−k20p2(t) + ∂
∂zx1(b, t) = 0 and ∂ω

∂t (a, t) = 0, ∂ω
∂t (b, t) = 0.

From the domain of Ã we have ∂
∂z

(
∂ω
∂t

)
(a, t) = 0. It means

that the only possible solution is the equilibrium position
i.e. x̃ = 0. We conclude the system is approximately
observable on infinite time.

We are now considering the square integrability of the non-
linear functions.

Lemma 6. The system being approximatively controllable
on infinite time and under Assumptions 7 and 6 the
function f0(B̃∗x̃(t)) and B̃∗x̃(t) are square integrable.

Proof. From boundedness of the energy we have∫ ∞
0

(
v>1 (τ)f1(v1(τ)) + v>2 (τ)f2(v2(τ))

)
dτ <∞

Then from Assumption 7 it is possible to show that
f1(v1(.)), f2(v2(.)), v1(.) and v2(.) are square integrable
functions.

It remains now to prove the square integrability of Cx(t)
and its derivative, and to show that the only point con-

tained in the set V is 0. Since C̃x̃ =

(
p1
p2

)
and since

ṗ1 = v1, and ṗ2 = v2 we have from Lemma 6 that p1 and p2
are absolutely continuous with square integral derivative.
Furthermore the solution of (16) which satisfies m1v1 = 0
and m2v2 = 0 is zero. All the conditions of the general
Theorem hold and we have then proven the asymptotic
stability of our closed loop system, as summarized in
Theorem 7.

Theorem 7. Consider the closed-loop system (9) and as-
sume that zero is the only equilibrium point of this equa-
tion for which v2 = 0. If Assumptions 4, 2, 5, 3, 6, and 7
hold, then the system is globally asymptotically stable.

5. CONCLUSION

In this paper we consider the stability of a linear Eu-
ler Bernouilli beam connected to non-linear mass spring
damper systems. It is shown that under mild assumptions
on the non-linear constitutive equations the system is
globally asymptotically stable. For that purpose we first
prove global existence of solutions and then we show the
asymptotic convergence to zero by using a general result on
non-linear perturbation of linear infinite dimensional sys-
tems. This alternative approach to the use of the LaSalle’s
invariant principle save the difficult problem of proving
precompactness of trajectories. The resulting assumptions
n the non-linearities are weak and allow to consider the
usual non-linearities encountered in physical applications
(polynomial laws, sector conditions, saturations etc ...).
Even if the paper focusses on a particular case, the use
of the port Hamiltonian framework and of some general
Theorems for the convergence proof makes the approach
general and easy to extend to other scenari.
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